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Abstract

Many assays have been developed for the detection of influenza virus which is an important

respiratory pathogen. Development of these assays commonly involves the use of human

clinical samples for validation of their performance. However, clinical samples can be diffi-

cult to obtain, deteriorate over time, and be inconsistent in composition. The goal of this

study was to develop a simulated respiratory secretion (SRS) that could act as a surrogate

for clinical samples. To this end, we determined the effects major respiratory secretion com-

ponents (Na+, K+, Ca2+, cells, albumin IgG, IgM, and mucin) have on the performance of

influenza assays including both nucleic acid amplification and rapid antigen assays. Minimal

effects on the molecular assays were observed for all of the components tested, except for

serum derived human IgG, which suppressed the signal of the rapid antigen assays. Using

dot blots we were able to show anti-influenza nucleoprotein IgG antibodies are common in

human respiratory samples. We composed a SRS that contained mid-point levels of human

respiratory sample components and studied its effect compared to phosphate buffered

saline and virus negative clinical sample matrix on the Veritor, Sofia, CDC RT-PCR, Sim-

plexa, cobas Liat, and Alere i influenza assays. Our results demonstrated that a SRS can

interact with a variety of test methods in a similar manner to clinical samples with a similar

impact on test performance.

Introduction

Influenza is an important respiratory virus that infects millions of people each year and can

lead to severe illness and hundreds of thousands of deaths worldwide. Because of its prevalence

and potential for severe illness, there have been many diagnostic assays developed for the

detection of influenza viruses. These methodologies include: detection of influenza virus pro-

teins using immunoassays (e.g., rapid antigen tests (RATs)) or nucleic acid amplification tests

(NAAT) (e.g., real-time RT-PCR), or the decreasingly common traditional methods of viral

tissue culture and direct fluorescent microscopy. Additionally, more rapid methods of virus
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detection are trending toward use of respiratory tract swab specimens that are tested directly

without dilution and stabilization in viral transport media. During the development of these

assays, analytical studies were commonly used to assess virus detection in a background matrix

prior to evaluating detection in clinical samples. Assay developers have traditionally used

archived, leftover, de-identified respiratory samples that were often pooled. However, the

availability of these samples may be limited and may not represent the general population.

Additionally, there are increasing concerns with genetic information contained in such sam-

ples thereby leading to increased regulations regarding retention of clinical samples. Also,

results may not be reproducible due to large variability in clinical sample composition, speci-

men collection, and/or storage methods. Thus, clinical samples are not necessarily ideal for

development purposes. An artificial matrix (i.e., simulated respiratory secretion (SRS)) that

reflects the biological, chemical, and physical characteristics of respiratory secretions could be

useful for developers with limited availability to suitable clinical samples.

Human respiratory secretions, typically collected as the substrate for influenza virus detec-

tion, are a complex matrix containing a variety of host components in addition to an infecting

virus and commensals. Even though a number of studies report investigating the concentra-

tions of these components [1–7], it is generally not well understood how these components

interact to affect the reactivity with different diagnostic assay methods. In this study, the effects

of major respiratory sample components on representative influenza diagnostic assays were

evaluated, and an SRS formulated that could be used as a matrix during development of influ-

enza diagnostics assays.

Materials and Methods

Ethics statement

This study was approved by the Medical College of Wisconsin Institutional Review Board and

allows for the collection of de-identified samples from various institutions.

Quantification of respiratory sample components in nasopharyngeal

swab (NPS) specimens stored in viral transport media (VTM)

De-identified NPS specimens were collected from Children’s Hospital of Wisconsin (CHW)

and Dynacare laboratories. Ten samples from children (< 18 years old) were collected at

CHW and ten samples from adults (� 18 years old) at Dynacare. The CHW samples were col-

lected and stored in 1.5 ml of M6 transport media (Remel, Lenexa, KS, USA). The samples

from Dynacare were collected and stored in 3.0 ml of M6 transport media (Remel). Samples

were remnants from routine clinical testing for influenza A and B and Respiratory Syncytial

Virus (RSV) and were collected between January 31, 2015 and April 30, 2015 and stored at

-80˚C. After transport to our lab, the samples were thawed and aliquoted into appropriate vol-

umes for each of the quantification assays. Aliquots were stored at -80˚C until use.

The quantity of albumin, IgG, IgA, IgM, and nucleic acid were determined. Albumin, IgG,

IgA, and IgM were quantified using ELISAs (Model # KA0455, KA3817, KA1855, and

KA2110, Abnova Corporation, Zhongli District, Taiwan). Assays were performed as described

in the product manual following the instructions for saliva with samples diluted 1:500 for the

albumin and IgA assays, 1:1000 for the IgG assay, and 1:100 for the IgM assay. Several samples

needed to be diluted 1:5000 for the albumin and IgA assays to fall within the range of the stan-

dards. Each of these assays comes with a standard that is 2-fold serially diluted to generate a

standard curve for each run. Data were analyzed using a four parameter regression for the

standard curves on the MyAssays.com website (http://www.myassays.com/). Nucleic acid
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quantity was determined by extraction with an easyMAG and quantification with a Nanodrop

2000c (Thermo Fisher Scientific, Waltham, MA, USA). The concentrations were determined

in triplicate for each component for each sample.

Levels of components from children and adults were compared using a generalized linear

model with repeated measures for albumin, IgA, IgG, IgM, and nucleic acid, which had three

replicates. Compound symmetry was used as the correlation matrix for the measurements

within subjects. No data sets had a normal distribution. All of the components except albumin

were log base 2 transformed. Albumin, which was skewed by a few exceptionally high values,

was transformed using 1 over the square root of the original value. Also, correlations between

each of the components were determined using Spearman’s rank correlations.

Components for effects model testing and preparing SRS

Concentration ranges for major compositional components of respiratory secretions used in

these studies were compiled from cited references (Table 1).

Viruses

Viruses were provided by the Influenza Division, WHO Collaborating Center for Surveillance,

Epidemiology and Control of Influenza, Centers for Disease Control and Prevention (CDC),

Atlanta, GA, USA. The five influenza viruses used in this study were A/Minnesota/03/2011

(H1N1pdm), A/Montana/05/2011 (H3N2), A/Indiana/10/2011 (H3N2v), B/Nevada/03/2011

(Victoria-like), and B/Wisconsin/01/2010 (Yamagata-like). Viruses were propagated in

MDCK cells (Model#CCL-185, obtained directly from ATCC, Manassas, VA, USA) and quan-

tified by TCID50 using the Reed-Muench method [8]. Viruses were stored at -80˚C until

thawed on day of use, and diluted in 1X PBS (Phosphate Buffered Saline) (Model# D8537,

Sigma-Aldrich, St. Louis, MO, USA) when appropriate.

Influenza assays

The assays used included the BD Veritor Flu A+B Test—For Swab Specimens (Model#256045,

Becton, Dickinson and Company, Franklin Lakes, NJ, USA), the Sofia Influenza A+B FIA

(Model#20218, Quidel, San Diego, CA, USA), the CDC Influenza A, Influenza B, RNaseP

Real-Time RT-PCR Assay (Model#FR-198, Influenza Reagent Resource, Manassas, VA, USA),

the Simplexa Flu A/B & RSV Direct assay (Model#MOL2650, Focus Diagnostics, Cypress, CA,

Table 1. Simulated respiratory secretion components and ranges.

Component Range References Sourcea

Na+ 150–211 mM [4,7] NaCl, BDH, 0241

K+ 4.1–16.6 mM [4,6,7] KCl, BDH, 0395-VBD

Ca++ 2.5–8.1 mM [4,6,7] CaCl2, Spectrum, C1096

Epithelial Cells 1×106–1×107 cells/ml [5] A549, ATCC, CCL-185

Albumin 0.23–1.05 mg/ml [3,4] Human Albumin, Sigma, A1653

IgG 0.051–1.36 mg/ml [1,3,4,6] Human IgG, Sigma, 56834

IgM 0.014–0.158 mg/ml [1] Human IgM, Millipore, AG722b

Polysaccharide / Mucin 1.0–4.22 mg/ml [6] Bovine Mucin, Sigma, M3895

a Lists the item being used, the manufacturer, and the model number.
b Isolated from serum IgM myeloma patients. This was used only for the fractional factorial design experiment. Human IgM purified from normal healthy

patients was used for remaining studies (Sigma, I8260).

doi:10.1371/journal.pone.0166800.t001
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USA), the cobas Liat Influenza A/B assay (Model# 07341890190, Roche, Basel, Switzerland),

the Alere i Influenza A & B assay (Model#425–000, Alere, Waltham, MA, USA), and a virus

culture method in MDCK cells (Model#CCL-34, ATCC, Manassas, VA, USA) with TCID50 for

quantification. The Alere i and cobas Liat assays were not released at the beginning of this

work and were included in only some of the experiments. Becton, Dickinson and Company

and Quidel provided research software which allowed viewing of the raw signal data from the

Veritor and Sofia instruments and which facilitated analysis of these assays.

Infected cells

A549 cells (Model#CCL-34, obtained directly from ATCC) were grown until 80% to 90%

confluence and then inoculated with influenza virus. At the first sign of cytopathic effect (8 to

10 h), cells were harvested. Cells were washed twice with PBS to remove cell free virus, re-sus-

pended, and then stored at -80˚C until used. The number of cells was counted microscopically

with trypan blue staining and a hemocytometer. The percentage of infected cells was deter-

mined with the Light Diagnostics Influenza A & B DFA (EMD Millipore, Billerica, MA, USA).

The viral RNA within infected cell stocks was approximated by a quantitative real-time

RT-PCR.

Effect of respiratory secretion components on influenza assays

To identify the appropriate dilutions for each test/virus, an initial screening with each virus

and test was performed with ten-fold serial dilutions. Dilutions were selected that were

approximately 1 log above the limit of detection for each virus/test when possible (S1 Table).

For this study, a 27−4 resolution three fractional factorial design (using the high and low limits

listed in Table 1) was selected (S2 Table) resulting in eight formulations that allowed for the

separation of main effects. The main effects were confounded with two-factor interactions due

to the compactness of this design.

Dilutions of the five influenza viruses in each of the component formulations were tested

with the Sofia, Veritor, Simplexa, CDC RT-PCR, and virus culture assays. A single dilution of

each virus was tested with three replicates at that dilution. All eight formulations were tested

per day with one virus and all assays. Virus dilutions were prepared in freshly made compo-

nent formulations and stored at 4˚C or on ice until used. For each test, 50 μl of sample was

absorbed on a flocked swab (Model # 503CS01, Copan Diagnostics, Murrieta, CA, USA) and

then tested in the assay either directly for the Sofia and Veritor assays or placed in 3 ml Uni-

Tranz-RT Transport Media (Puritan Medical, Guilford, ME, USA) and then tested with the

CDC, Simplexa, and virus culture assays. For the CDC assay, easyMAG extraction (bioMer-

ieux, Marcy-l’Etoile, France) was performed before amplification on the ABI 7500 (Thermo

Fisher Scientific, Waltham, MA, USA).

The component fractional factorial data was analyzed using a linear regression model in

which each of the components was considered a variable using the R statistical software ver-

sion 3.1.1 (R Foundation for Statistical Computing, Vienna, Austria). The mean value for each

formulation was calculated for each virus and the viruses acted as repeats. A log2 transforma-

tion was performed on the Sofia and Veritor data prior to analysis. The data for Sofia and Veri-

tor assays also was analyzed with a random effects model where the IgG effect was allowed to

vary across viruses.

An extension of this testing was done with the Liat assay (not available during the original

respiratory component screening experiment). H1N1pdm was diluted to a 10−4 dilution from

stock in SRS, PBS, and PBS supplemented individually with cations (Na+, K+, and Ca++),

albumin, cells, IgG, IgM, or mucin. The concentration for each component was the midpoint
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of the range in Table 1. Each component was compared to the PBS only data and significance

(p-values) calculated using a two-sample t-test assuming equal variances.

Assessment of matrix effects using SRS, PBS, and pooled negative

clinical sample (NCS)

Virus dilutions selected for this study (S3 Table) were based on a preliminary screening experi-

ment. NCS was prepared from nasopharyngeal swab specimens that were self-collected volun-

tarily by three adult lab members and placed in 3 ml of UniTranz-RT Transport Media

(Puritan Medical). Each person collected one swab per nostril for five days. Specimens from

each day were pooled and screened for influenza using the CDC assay. All pools were negative.

All NCS was pooled, aliquoted into single use aliquots, and stored at -80˚C until use. The SRS

formulation used contained the midpoint concentration of the range listed for each compo-

nent in Table 1 and was prepared on the day of testing.

On the day of testing, one virus was diluted in PBS and the final dilutions for each test were

made in the appropriate matrix (PBS, SRS, or NCS). Dilutions were made into three 50 μl ali-

quots. Then, each aliquot was absorbed on a swab and tested in each of the assays. Virus,

matrix, and dilution order were randomized prior to testing. For the CDC, Liat, and Simplexa

assays the NCS swab was placed into a 3 ml aliquot of NCS rather than just transport media so

as to maintain the appropriate concentrations of respiratory sample components.

Data for the CDC, Liat, Simplexa, Sofia, and Veritor assays were analyzed using a general-

ized linear model with repeated measures to compare the three matrices. Compound symme-

try was used as the correlation matrix of measurements within virus. If the three matrices were

significantly different, pairwise comparisons were performed. Only the Simplexa data had a

normal distribution. For all the other assays a Box-Cox transformation was performed before

the analyses. Since the Alere data was binary, a Chi-square test was used to compare the three

matrices.

Assessment of SRS in the Simplexa, Liat, and Alere Assays

Ten-fold serial dilutions of each of the five viruses were made in SRS containing the midpoint

concentration of each component and tested in the Simplexa, Liat, and Alere assays in

triplicate.

Reactivity levels with infected cells

Infected cell stocks for influenza A H1N1pdm and influenza B Victoria-like were thawed and

ten-fold serial dilutions prepared in PBS. For each dilution 50 μl was tested (in triplicate) with

Sofia, Veritor, Simplexa, and CDC assays following the same protocol as described above.

Comparing effect of SRS on cell-free virus and infected cells

Dilutions were selected for which the number of viral RNA copies should be about equal for

infected cells and cell-free viruses (S4 Table). On the day of testing the appropriate replicate

dilutions were prepared in SRS with infected cells and with cell-free virus. The order of each

sample to be tested was randomized for each assay and tested in the Sofia, Veritor, Liat, and

Simplexa assays.

Dot blot assay

The Sofia and Veritor assays use antibodies to detect the nucleoprotein (NP) of influenza

virus. We suspected that the IgG that had been used was able to interfere with the signal in

Simulated Respiratory Secretions for Diagnostic Development
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these assays because it contained anti-NP antibodies that were competing with the detection

antibodies. To determine if the IgG contained anti-NP antibodies we developed a dot blot assay

which used influenza A NP protein spotted onto a polyvinylidene difluoride (PVDF) membrane.

After preliminary experiments showed that the IgG from human serum did produce signal in

the dot blot assay, we tested for the presence of anti-influenza NP IgG antibody in the 20 samples

used for the quantification of respiratory sample components. PVDF membranes were spotted

with 10 μl of 0.05 mg/ml of purified NP from influenza A/California/07/2009(H1N1pdm)

(Model # 40205-V08B, Sino Biological, North Wales, PA, USA). After blocking for 1 h with agi-

tation at room temperature membranes were ready. Serum IgG (1 mg/ml) diluted 1:250 was

used as a positive control. Samples were diluted 1:10 in blocking buffer [1×PBS Tween 20 (KPL,

Gaithersburg, MD, USA) with 5% Non-fat Milk] and incubated with the membrane at 4˚C for

about 17 h. Membranes were washed 5 times (1×PBS Tween 20) with agitation for 5 min. Mem-

branes were incubated with chicken anti-human IgG HRP (Thermo Fisher Scientific) diluted

blocking buffer, for 45 min at room temperature with agitation. Membranes were washed 5

times. Membranes were incubated for 10 min in 1-Step Ultra TMB Blotting Reagent (Thermo

Fisher Scientific) and then washed for 10 min in deionized water to stop development. Dot

intensity was determined using Gel Analyzer 2010a (http://www.gelanalyzer.com/) software with

valley-to-valley background subtraction.

To rule out non-specific binding a monoclonal human IgG antibody (Model # HCA228,

AbD Serotec, Raleigh, NC, USA) was purchased and a dot blot was performed using either

blocking buffer alone, blocking buffer with monoclonal IgG (0.5 mg/ml) diluted 1:125, or

blocking buffer with IgG from human serum (1.0 mg/ml) diluted 1:250 as the primary

antibody.

In a separate experiment a 1:10 dilution of H1N1pdm virus was prepared in PBS, monoclo-

nal IgG (0.5 mg/ml), and IgG from human serum (0.5 mg/ml) and 50 μl aliquots were pre-

pared. Also, fresh midturbinate swabs were self-collected by a lab volunteer. All three sample

types were tested with a clean swab and the virus in PBS was tested with the fresh midturbinate

swabs in the Sofia and Veritor assays.

Results

Verification of respiratory sample components in NPS specimens

We had originally intended to use banked frozen NPS samples that had been collected in 3 ml

of M4 transport media (Remel) and stored at ˗80˚C for about four years for the quantification

of respiratory sample components. However, preliminary testing showed that the measured

OD450 index (sample OD/negative control OD) for IgG was significantly lower in these older

samples than in specimens which had been collected in 1.5 ml of M6 transport media and

stored at ˗80˚C for less than 6 months (for n = 10; fresh mean OD450 index of 31.9 vs. old

mean OD450 index of 8.1; p<0.001 for unpaired t-Test). Therefore, we collected and tested

specimens that were less than six months old. The results of measuring the quantity of IgG,

IgM, IgA, albumin, nucleic acid, and relative amount of anti-influenza NP IgG are shown in

Table 2. The range of quantities measured for IgG, IgM, IgA, and albumin overlapped with the

ranges for these constituents as used in the component effects testing (Table 1). Based on the

statistical analysis there was no significant difference in concentrations between children and

adults although several children did have exceptionally high amounts of albumin. These data

confirm that the compositional makeup of materials collected by nasal/NP swab and diluted in

transport media is consistent with previous reports respiratory secretions collected and mea-

sured directly assuming a volume of 10 to 50 μl per swab.

Simulated Respiratory Secretions for Diagnostic Development
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Our results indicate that for all of the components there is no significant difference in quan-

tity between children and adults, which is reflected in there generally being a poor correlation

between component quantity and age (S5 Table). Multiple significant correlations were

observed between the quantities of respiratory sample components. However, only three of the

component combinations were significant in both groups.

Effects of respiratory sample components on influenza assays

The results of the fractional factorial design testing showed minimal effects for most of the

components tested across all of the assays. Surprisingly a strong negative effect of IgG was

observed on the Sofia and Veritor assay signals (>80% reduction) with each of the viruses

tested (S1 Fig). Results of the statistical analysis are shown in Tables 3 & 4. Using a linear

model in which each of the components and the viruses was considered a variable, IgG had a

significant negative effect on the CDC, culture, Sofia, and Veritor assays. While the effect was

statistically significant for the CDC assay it was still functionally minimal with only a 0.24 Ct

change. The effect on virus culture was also minimal with a 0.31–0.37 TCID50 change.

The data for Sofia and Veritor assays were also analyzed with a random effects model where

the IgG effect was allowed to vary across viruses (Table 3). This decreased the standard error

and increased the significance for the remaining components. With the random effects model

the Ca2+ and IgM had a significant positive effect on the Veritor assay while the A549 cells and

Table 2. Per swab quantities of respiratory sample components in NPS samples from children and adults.

Children Adults

Target Units Min Max Median Min Max Median

IgG ug 2.20 38.64 9.50 2.69 24.78 5.91

IgM ug 0.67 14.24 3.17 2.22 8.51 3.93

IgA ug 0.92 49.02 4.43 3.46 47.17 7.49

Albumin ug 4.79 527.35 94.67 10.05 46.56 24.57

Nucleic Acid ug 1.46 24.10 8.10 3.51 31.50 8.01

Anti-NP IgGa log volume 1.58 3.23 2.60 2.21 3.36 2.70

a Determined by nucleoprotein dot blot.

doi:10.1371/journal.pone.0166800.t002

Table 3. Mean effect and p-values for the fractional factorial testing for the RATs.

Veritor Sofia

Component Effect p-value RE p-valuea Effect p-value RE p-value

Na+, K+ 0.17 0.462 0.227 0.21 0.554 0.023 *

Ca++ 0.29 0.223 0.050 * 0.02 0.962 0.849

Cells -0.31 0.183 0.033 * -0.71 0.052 2e-08 ***

Albumin -0.31 0.190 0.035 * -0.10 0.781 0.266

IgG -4.27 < 2e-16 *** 0.001 ** -4.87 3.95e-14 *** 0.006 **

IgM 0.32 0.175 0.030 * 0.03 0.937 0.750

Mucin -0.25 0.277 0.078 0.25 0.483 0.008 **

a Used a random effects model in which the IgG value was allowed to vary between viruses.

* p-value < 0.05

** p-value < 0.01

*** p-value < 0.001.

doi:10.1371/journal.pone.0166800.t003
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albumin had a negative effect. Also, with the Sofia assay, the Na+ and K+ ions and mucin had a

significant positive effect and the A549 cells had a significant negative effect. These last effects

were relatively small.

With the exception of strong suppression by IgG of the antigen assay signals, the effects of

the nasal secretion components for all of the assays, though significant in some cases, were rel-

atively small. This being the case, we arbitrarily chose the midpoint concentrations of the liter-

ature ranges for our SRS formulation.

The results of testing the effects of sample components on the Liat assay showed a signifi-

cant reduction of the Ct value was observed with SRS (p-value = 0.018), cations (p-

value = 0.043), and cells (p-value = 0.021) when compared to PBS alone (~2 to 4 Ct units). (Fig

1 and S6 Table).

Comparing SRS, PBS, and NCS matrices

Results from comparing the detection of the five influenza viruses in PBS, SRS, and NCS with

the Sofia, Veritor, CDC, Simplexa, and Liat assays are shown in Fig 2 and Table 5. Assay sig-

nals for the five viruses in SRS or NCS are normalized as a percentage of the assay signal for

the same viruses in PBS.

For all of the NAAT assays (except Alere i), spiking virus into SRS resulted in a significant

lowering of the Ct values observed, when compared to PBS. Pooling the results for all viruses

tested, the average ΔCt differences for the Liat, Simplexa, and CDC assays were ˗4.1, ˗1.6, and

˗0.7 for high level of viruses and ˗4.2, ˗2.0, and ˗1.4 for low virus levels, respectively, a potential

improvement in assay performance over PBS. The results using pooled NCS as a sample matrix

are less consistent. There appears to be a trend toward lower Cts with the CDC and Liat assays,

while the Simplexa assay Cts trended higher. Only the Liat ΔCts of -2.6 and -1.3 for high and

low virus levels in pooled NCS were significant. No significant differences between the matri-

ces (p-value = 0.141) was observed for the Alere i. Since the data from the Alere i assay were

binary (positive or negative) and the sample size small, it would not have been possible to

detect anything other than large negative effects on the assay.

For the RATs (Sofia and Veritor), SRS significantly reduced signal (>80% reduction) with a

negative impact on apparent sensitivity. This is consistent with the previous observation that

serum derived IgG (as a constituent of the SRS) suppresses the assay signal in the RATs. For

the Sofia assay, the results of the pooled NCS with low levels of virus showed signal reduction

for four of the five viruses. H1N1pdm displayed unusually high signal values in the NCS, but

when this virus’ data was omitted from the matrix comparison, NCS produced a significantly

Table 4. Mean effect and p-values for the fractional factorial testing for the NAATs and virus culture.

CDC Simplexa Culture Day 2 Culture Day 3

Component Effect p-value Effect p-value Effect p-value Effect p-value

Na+, K+ 0.02 0.852 -0.25 0.089 -0.27 0.071 -0.24 0.066

Ca++ -0.09 0.415 0.13 0.387 0.15 0.311 0.18 0.172

Cells -0.02 0.841 0.02 0.909 0.12 0.410 -0.08 0.526

Albumin 0.08 0.443 -0.09 0.522 -0.08 0.596 0.00 0.989

IgG -0.24 0.026 * -0.20 0.183 -0.37 0.015 * -0.31 0.022 *

IgM -0.15 0.148 0.00 0.982 0.05 0.701 0.09 0.470

Mucin 0.04 0.700 -0.15 0.307 -0.01 0.942 -0.02 0.895

* p-value < 0.05

doi:10.1371/journal.pone.0166800.t004
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lower value than PBS (p-value = 0.0040). No reduction in signal was observed with the high

levels of virus.

Performance of Alere, Liat, and Simplexa assays with SRS matrix

We compared the performance of three NAATs with viruses in SRS. All three assays per-

formed similarly for influenza A while some assay to assay variation was observed with influ-

enza B (Table 6).

Sensitivity of the assays with infected cells

Infected cells are a component of clinical specimens which contain viral proteins and RNA

(targets of diagnostic assays). Table 7 demonstrates that the Sofia and Veritor assays detected

approximately 24 H1N1pdm infected cells and 240 influenza B (Victoria-like) infected cells.

The molecular tests (CDC, Simplexa) were about 1 log more sensitive. Using the in-house

Fig 1. The results of testing each component’s effect on the Liat assay. H1N1pdm was diluted in each of the matrices containing each of the

components and tested in triplicate in the Liat assay. The experiment was performed twice with the repeats shown in black and red. Each matrix

was compared to PBS using the t-test. Bars indicate the mean of the three replicates for each repeat. Asterisks indicate a significant difference from

PBS alone.

doi:10.1371/journal.pone.0166800.g001
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quantitative RT-PCR the calculated RNA copies per infected cell were 45,000 viral RNA cop-

ies/cell (H1N1pdm), 17,000 viral RNA copies/cell (influenza B, Victoria-like), 9 RNaseP cop-

ies/cell (infected cell lines), and 29 RNaseP copies/cell (uninfected cells). This suggests that 1–2

cells lysed in VTM could be sufficient for virus detection by molecular methods and infected

cells are a rich source of diagnostic assay targets.

Fig 2. Results of testing virus spiked in PBS, SRS, and NCS with six assays. Ct and antigen assay signal results were normalized as a

percentage of the PBS result value. Data for high and low concentrations of virus are shown.

doi:10.1371/journal.pone.0166800.g002

Table 5. P-values from statistical analysis of matrix comparison data.

High Concentration Low Concentration

Assays NCS vs. PBS NCS vs. SRS PBS vs. SRS NCS vs. PBS NCS vs. SRS PBS vs. SRS

CDC 0.625 0.019 0.0028 0.083 0.011 0.0013

Liat Ct <0.001 0.0011 <0.001 0.017 0.0020 <0.001

Simplexa 0.0013 <0.001 0.011 0.053 <0.001 0.0046

Sofia 0.072 <0.001 <0.001 0.635 <0.001 <0.001

Veritor 0.320 0.0012 0.0013 0.102 <0.001 <0.001

p-values <0.05 highlighted in bold.

doi:10.1371/journal.pone.0166800.t005
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Infected cells versus cell free virus with PBS and SRS

To normalize the differences between virus and infected cells in PBS, the SRS values were con-

verted to a percentage of the PBS value (Table 8 and S2 Fig). For the Sofia and Veritor assays,

the viruses and infected cells in SRS produced about 26% or lower signal than in PBS. With the

Liat assay lower Ct values were found in SRS (ΔCt ~ 2 to 4). But, for the Simplexa assay the

results were somewhat mixed. In general, these results were consistent with the previous

matrix comparison results that were conducted with only virus thereby suggesting that the

detection of target molecules in virus and infected cells are affected in the same manner by the

SRS matrix.

Characterization of IgG suppression of antigen assay signals

Table 2 summarizes the quantitative dot measurements of the samples analyzed in this

method. All samples were positive and a strong correlation between dot intensity and IgG con-

centration was observed (S5 Table).

To provide further evidence that the dot blot assay was detecting anti-NP antibodies and

was not just a result of any IgG being detected, we tested a monoclonal IgG antibody in the

assay. In Fig 3A membranes 4 to 6 show strong reactivity of human IgG from serum with the

spotted nucleoprotein while membranes 6 to 9 were unreactive with just the monoclonal

human IgG.

To show that the suppression of the Sofia and Veritor assays was not just caused by the

presence of any IgG, we also tested the monoclonal IgG with these assays. Again, human

serum IgG suppressed the assay signal in the Sofia and Veritor assays, but the monoclonal IgG

had no effect (Fig 3B and 3C). The effect with serum IgG was less than what was observed in

previous testing due to the lower concentration used in this experiment (0.45 mg/ml versus

Table 6. Serial dilutions of viruses in SRS in the Simplexa, Liat, and Alere assays.

H1N1pdm H3N2 H3N2v B Vic B Yam

Dilution La A S L A S L A S L A S L A S

-2 -b - - - - - - - - - - - - 2 -

-3 - - 3 - 3 3 - 3 3 - - 3 3 1 3

-4 3 3 3 3 3 3 3 3 3 3 3 1 3 0 3

-5 2 1 1 3 3 0 3 0 3 3 3 0 3 0 0

-6 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0

-7 0 0 - 0 - - 0 - - 0 0 - - - -

a L = Liat, A = Alere, S = Simplexa
b Values shown are the number of positive replicates out of 3. A dash indicates the dilution was not tested in the assay.

doi:10.1371/journal.pone.0166800.t006

Table 7. Results of testing 10-fold serial dilutions of infected cells with each assay.

H1N1pdm Flu B Victoria

Cells Sofia Veritor CDC Simplexa Sofia Veritor CDC Simplexa

2400 - - - - 3 3 3 3

240 3 3 3 3 3 3 3 3

24 3 1 3 3 0 0 3 3

2.4 0 0 3 3 0 0 3 1

0.24 0 0 0 1 0 0 0 0

doi:10.1371/journal.pone.0166800.t007
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0.71 mg/ml). To see if a real clinical sample could also affect these assays, freshly collected mid-

turbinate swabs were tested. The swabs had a negative effect on the Sofia assay, but not the

Veritor assay. As both assays were inhibited by higher concentrations of antibody in previous

experiments this observation could reflect relative sensitivity to the level of the interferant.

Characterizing the levels and affinities of the anti-NP antibodies would be needed to determine

if this is a real difference. Also, in this testing we estimate the contents of the swabs were

diluted about five-fold when added to the 50 μl of sample. Since the inhibitory effect is concen-

tration dependent, it is likely that a lower volume of sample would have resulted in a greater

observed effect.

Discussion

The findings of this study support using a simulated respiratory sample matrix for influenza

test development and validation activities as initially called for by the WHO Global Influenza

Programme [9]. Leftover human clinical respiratory specimens can be pooled for limit of

detection and other analytical studies according to Food and Drug Administration (FDA)

guidance [10,11]. While pooled samples are often used for analytical studies, such samples

have limited volumes, vary constitutively, and may be altered by storage or handling. Hence

findings from studies with pooled samples may not repeat with a different pool, precluding

comparability across studies. The lower levels of IgG in older stored samples, compared to

recent specimens observed during our study highlight the potential variability of pooled sam-

ple composition. FDA guidance also suggests viral transport medium or a simulated matrix

can be used for influenza testing if analytical performance of an assay is equivalent in simu-

lated and natural clinical matrices. Thus, SRS spiked with influenza virus could conceivably

parallel pooled influenza-negative clinical specimens for influenza virus detection in analytical

experiments and evaluations, enable side-by-side assessments of assay differences, and facili-

tate earlier optimizations when emerging virus isolates are first available and clinical samples

are restricted or rare.

Ideally, a simulated matrix would be applicable to all methods or platforms, and enable a

standardized means to assess analytical accuracy, especially with novel and newly emerging

viruses. Such an approach could enable developers to more quickly assess analytical accuracy

of existing tests, validate changes as needed, and also facilitate analytical assessments with new

influenza tests. Notably, a simulated saliva matrix spiked with virus is a precedent recognized

for standardized testing of decontamination procedures for materials challenged with biologi-

cal aerosols [12].

The SRS formulation we used incorporates the mid-point concentrations of major ionic,

protein, nucleic acid and cellular components documented in cited literature reports. A small

sampling of clinical archived samples verified the applicability of the literature-reported

ranges. Importantly, the relative component levels in samples from children and adults were

similar. No previous reports were found that documented comparability of respiratory

Table 8. Comparing the effect of SRS versus PBS on the detection of infected cells or cell free virus (analytes). (SRS Value/ PBS value).

H1N1 B Victoria

Assay Virus Cells Virus Cells

Sofia 3.7% 3.1% 15.8% 15.7%

Veritor 26.2% 9.4% 7.1% 20.5%

Simplexa 90.3% 102.0% 98.4% 96.7%

Liat 84.1% 93.9% 92.9% 86.3%

doi:10.1371/journal.pone.0166800.t008
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secretions from children and adults. This potentially justifies the use of a single SRS formula-

tion to represent samples from both groups.

With the NAAT assays, SRS and pooled NCS performed differently than PBS even though

minimal effects were observed for the individual components in the fractional factorial experi-

ment. Differences in the concentrations of the components used in these experiments likely

account for this discrepancy. The significant positive effect of cations and cells with the Liat

assay were similar in magnitude to SRS and suggested improved extraction efficiency by a car-

rier effect from cellular nucleic acid, especially with low viral RNA copy numbers [13,14].

Pooled NCS was shown to have a similar but less pronounced effect.

In contrast, findings with the two rapid antigen tests with SRS, showed significantly

reduced signal compared to spiking in PBS. The strong suppression of the RAT signal values

by IgG identified in the fractional factorial experiment anticipated this finding. Even though

the IgG used had been purified from the serum of normal human donors, the majority of IgG

present in the respiratory secretions of humans and other animals comes from serum [15–17],

which suggests serum IgG should be representative of the IgG in human respiratory secretions.

Suppression with multiple lots of commercially obtained serum-derived IgG, anti-NP reactiv-

ity in all 20 nasal swab samples tested, correlation of the intensity of the dot blot reactivity with

total IgG in the sample, and no observed signal suppression with an irrelevant human mono-

clonal IgG indicate that signal suppression is due to specific anti-influenza NP antibodies.

These antibodies were even detected in individuals less than one month of age who were

unlikely to have been previously infected with influenza yet may have maternal pathogen spe-

cific antibodies transferred to the fetus through the placenta and to infants via breast milk [18–

20]. The development of host anti-NP antibodies was previously described following viral

infection or vaccination in humans and other animals [21,22]. Repeated exposure (infection or

vaccination) to this highly conserved antigen, ideal for these broadly reactive immunoassays, is

likely to result in boosting and maturation of the antibody response as described for HA anti-

bodies [23]. Additionally, a previous study from this lab demonstrated that RAT reactivity was

directly correlated to the amount of NP in virus isolates [24]. Therefore, blocking of NP epi-

topes targeted by the RAT assay monoclonal antibodies or clearing of host antibody NP aggre-

gates are possible mechanisms by which anti-NP antibodies in respiratory secretions may be

an unrecognized factor in reducing clinical performance of RATs compared to other assay for-

mats [25,26].

While the pooled NCS in the matrix comparison did not have a large effect on the RATs

these results should be viewed with caution. Even though the SRS had been designed to

directly mimic a respiratory secretion, the respiratory secretion for the pooled NCS had been

diluted >60-fold when the original swab was collected and placed in transport media resulting

in much lower concentrations of sample components than if the secretion had been used

directly. Since IgG affects these assays in a concentration dependent manner the concentration

in the pooled NCS in transport media was generally too low to have a significant effect. These

results clearly demonstrate that analytical data determined using NCS in transport media for

development of direct swab assays may falsely overestimate sensitivity, which highlights

another advantage of SRS in that it is applicable to assay designs using a direct swab specimen

as well as those designs requiring use of transport media.

Fig 3. (A) Dot blot for the detection of IgG antibodies specific to the H1N1pdm NP. Membranes 1 to 3 were negative controls, 4 to

6 were human serum IgG, and 7 to 9 were monoclonal IgG. (B-C) Comparison of PBS, serum IgG, monoclonal IgG, and

respiratory swabs with the Sofia and Veritor assays. H1N1pdm was diluted 10-fold from stock in PBS, serum IgG, or monoclonal

IgG, absorbed on a clean swab, and tested. Also, a set of samples with virus diluted in PBS was absorbed on a freshly collected

NPS and tested.

doi:10.1371/journal.pone.0166800.g003
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These findings represent a challenge to rapid antigen test manufacturers. While all of the

patient nasal samples tested demonstrated some level of anti-NP thereby suggesting a wide

prevalence in the population, the distribution, levels, specificities and affinities of these anti-

bodies are not known. The prevalence profile of anti-NP antibodies could be dynamic, as

annual vaccination and infections rates vary across populations. Additional characterization of

anti-NP IgG levels and reactivity in nasal secretions and their impact is needed to better define

an SRS formulation representative of clinical specimens for use with RAT assays.

Our study did confirm that infected cells are a rich source of assay targets (both viral RNA

and NP) for NAAT and RAT tests with 2.4 and 24 cells detected respectively. Though the

infected cell preps were extensively washed, we were unable to rule out contributions from

“free” RNAs, proteins, or released virus in the infected cell preps. Understanding the contribu-

tions of free virus or cell-associated components remains important for optimizing collection

of clinical specimens. Rapid antigen tests may be quite suitable for detecting virus when it is

actively replicating and a cell-enriched quality specimen is obtained [27]. Notably, analytical

testing could be more representative for both nucleic acid amplification and rapid antigen

tests by adapting an SRS to include infected cells.

The fractional factorial design used was limited to the major components of nasal secretions

and only looked at major effects. Additionally, all of the single factor effects could be con-

founded with two factor interactions. Further analysis of some of the small, but significant

effects observed and expansion to capture secondary effects could improve recognition of sup-

pressing or enhancing effects with assay chemistries. The components studied represent

approximately 90% of the biological and chemical constituents documented in respiratory

secretions. Analyses of the remaining components could reveal additional effects on assay per-

formance. IgA was not included in the SRS formulations for cost reasons, but it is possible that

like IgG it could also have an effect on assay performance.

The result of our study demonstrate significant effects from components in respiratory

samples that can impact analytical findings from different influenza virus detection methods

thereby highlighting the importance of understanding interactions in clinical samples and

spiked virus concentrations with analytical experiments. While the formulated SRS matrix

appears to mimic the effects of clinical samples for detecting influenza virus with nucleic acid

amplification assays, further work is needed to characterize the extent of signal suppression

inherent in virus positive clinical samples with NP antigen based tests. The identification of

anti-NP antibodies as a potential interference in the RAT assays requires caution when infer-

ring clinical performance from analytical studies using leftover clinical samples as a matrix.

Regardless of the method used, an accurate clinical diagnosis depends heavily on the quality

of the specimens collected and prepared. If samples are not collected from anatomical sites

where the virus is replicating and shed, or if samples are not handled, stored, and transported

appropriately, false-negative tests may ensue irrespective of the analytical validity of any partic-

ular assay method. Either the current SRS or further refined SRS formulations would allow for

the production of a cost effective matrix that could overcome these issues and improve the

validity of analytical testing.
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