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Abstract

The analysis of the SARS-CoV-2 genome datasets has significantly advanced our understanding of the biology and genomic
adaptability of the virus. However, the plurality of advanced sequencing datasets—such as short and long reads—presents a
formidable computational challenge to uniformly perform quantitative, variant or phylogenetic analysis, thus limiting its
application in public health laboratories engaged in studying epidemic outbreaks. We present a computational tool,
Infectious Pathogen Detector (IPD), to perform integrated analysis of diverse genomic datasets, with a customized analytical
module for the SARS-CoV-2 virus. The IPD pipeline quantitates individual occurrences of 1060 pathogens and performs
mutation and phylogenetic analysis from heterogeneous sequencing datasets. Using IPD, we demonstrate a varying burden
(5.055–999655.7 fragments per million) of SARS-CoV-2 transcripts across 1500 short- and long-read sequencing SARS-CoV-2
datasets and identify 4634 SARS-CoV-2 variants (∼3.05 variants per sample), including 449 novel variants, across the genome
with distinct hotspot mutations in the ORF1ab and S genes along with their phylogenetic relationships establishing the
utility of IPD in tracing the genome isolates from the genomic data (as accessed on 11 June 2020). The IPD predicts the
occurrence and dynamics of variability among infectious pathogens—with a potential for direct utility in the COVID-19
pandemic and beyond to help automate the sequencing-based pathogen analysis and in responding to public health
threats, efficaciously. A graphical user interface (GUI)-enabled desktop application is freely available for download for the
academic users at http://www.actrec.gov.in/pi-webpages/AmitDutt/IPD/IPD.html and for web-based processing at http://i
pd.actrec.gov.in/ipdweb/ to generate an automated report without any prior computational know-how.
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Introduction
Understanding the genome variability and evolution of pathogens
with pandemic potential is fundamental to mount an effec-
tive response to contain the pandemic. Several multicenter
collaborative sequencing efforts are underway to characterize
the COVID-19 pandemic causal agent, severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), that has resulted in
more than 800 000 deaths worldwide [1]. These include the
initiatives taken by the SARS-CoV-2 Sequencing for Public Health
Emergency Response, Epidemiology and Surveillance (SPHERES),
CDC USA [2], Covid-19 Genomics Consortium (COG) UK [3], 1000
genome sequencing of SARS-CoV-2, and DBT-India [4], which
have resolved to perform extensive regional sequencing of the
viral isolates to understand the transmission dynamics and to
derive information on the diagnostic and therapeutic targets,
using next-generation sequencing (NGS) technology [5–8].

The NGS-based characterizations have contributed to the
growing insights into the SARS-CoV-2 genome organization
and transcriptional complexities [9–11]. Short-read–based
sequencing is most commonly employed, with COVID-Seq as
one of the first FDA-approved NGS-based diagnostic tests [12,
13], for quantitative detection of SARS-CoV-2 [14–16]. Besides,
traditional shotgun sequencing-based meta-transcriptome
analyses are being used in the context of the microbiomes
from human samples [17]. Similarly, Oxford Nanopore and
PacBio long-read advanced sequencing techniques with read
length >2 Kb RNA stretches (direct RNA method) have allowed
elegant assessment of translocations, structural variants and
SARS-CoV-2 genome architecture [9].

Accordingly, several computational protocols for quantifica-
tion and analysis of pathogens/microbes from metagenomic,
transcriptomic, as well as human genomic data generated using
short-read NGS platforms have been developed to identify
known and novel pathogens [18–24]. Similar quantification
and variation analysis protocols have also been developed to
handle the long-read sequencing data [25]. However, multiple
advanced sequencing platforms in use possess a unique
challenge of heterogeneity in the type and quality of the data
generated, with an unmet need for a tailored computational
pipeline with application to the current SARS-CoV-2 pandemic
to derive valuable information from the genomic datasets
and help understand the viral evolution. Uniform analysis of
the heterogeneous advanced sequencing datasets demands
development of robust and inclusive computational methods.
Here, we introduce the Infectious Pathogen Detector (IPD), an
automated pathogen analysis pipeline for seamless analysis of
data from a diverse form of advanced sequencing platforms.
It is available as a GUI-enabled desktop application as well
as a web-based application. IPD performs integrated variants
analysis, along with systematic quantification of pathogen
genomes. IPD additionally has an in-built SARS-CoV-2 analysis
module, for assignment of viral clades of the samples analyzed
and an automated report generation. We validate the results
obtained from IPD using orthologous quantification technique
and benchmark against previously published methods using
real and simulated sequencing dataset. We further demonstrate
the utility of the IPD for analysis of SARS-CoV-2 samples.

Materials and Methods
Reference database and annotation

The pathogen reference genome is composed of 1060 infectious
pathogens, constituting 192 viral strains and 868 bacterial

species (detailed list provided in Supplementary Table S1
available online at https://academic.oup.com/bib). The pathogen
list is mainly derived from FDA-ARGOS database [26] and
literature, including the human SARS viruses from NCBI
Virus [27]. The complete genomes have been downloaded
from NCBI Genomes database in GenBank format and parsed
using in-house BioPython [28] scripts to generate genome
statistics, a pathogen sequence (FASTA) and an annota-
tion (GFF) file. The human reference genome sequence and
annotation was obtained from GENCODE database (GRCh38,
version 33.p13) [29]. A database constituting 29 110 reference
prokaryotic and viral genomes was obtained from NCBI RefSeq
[30] and has been termed as a secondary database in the
pipeline. The installed IPD primary database of 1060 pathogens
can be further updated to include the pathogen of user’s
choice, using the ‘ipdupdatedb.py’ script, provided with the
package.

Implementation of IPD desktop and web-based pipeline

IPD pipeline is mainly implemented in python and partly shell
programming has been used. Parallel processing of the pathogen
quantification and variant calling modules (detailed module
description below) is achieved using the multiprocess package
[31] in python. The graphic user interface (GUI) for the desktop
version is developed using the python Tkinter library [32]. For
the web-based IPD application, the server-side scripts have been
developed using PHP. The data submitted on the job form (web
page) are stored in the SQLite database on the server. A python-
based custom job-queuing script performs check on the new job
submissions and performs their execution. Upon completion of
the job, the analysis results, pathogen counts (TSV), annotated
variants (VCF) (and SARS-CoV-2 specific report, if opted for), are
sent to the user via email using a custom PHP-based mailer
script.

IPD analysis modules

The analysis pipeline consists of the (a) data assessment and
alignment module, (b) integrated pathogen quantification and
variant calling module, and (c) SARS-CoV-2 analysis module. A
detailed pipeline workflow of IPD has been shown in Figure 1
and the GUI in Supplementary Figure S1 is available online at
https://academic.oup.com/bib.

Data assessment and alignment module

IPD pipeline begins with filtration of reads with low sequencing
quality and short length, followed by alignment. For short-
read analysis, reads with average Phred quality less than 20,
sequence complexity less than 30% and read length below
40 are filtered out using fastp [33]. The reads qualifying
these filters are further aligned to the primary reference
database consisting of 1060 pathogen and the human genome,
using Hisat2 [34]. For long-read analysis, the input data are
to adapter trimming using the default library of PoreChop
[35]. The trimmed reads having quality less than Q13 and
length less than 500 are filtered using NanoFilt [36]. The
filtered reads are aligned to the pathogen (1060) genome using
minimap2 [37].

Integrated pathogen quantification and variant calling module

Normalized pathogen quantification. For both the short- and
long-read data, the aligned SAM files are converted to BAM
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Figure 1. Analytical pipeline of IPD. The pipeline is composed of three modules: (A) heterogeneous data filtration/alignment, (B) integrated variant calling and

quantification, and (C) specialized SARS-CoV-2 analysis module.

and are indexed using Samtools (version 1.10) [38]. Since
short reads may show multialignments, an additional step of
ambiguous alignment filter is introduced. The reads aligned
to the pathogen are further subject to secondary alignment to
complete NCBI bacterial and viral genomes using BLAST [39]. The
reads showing an alignment of comparable or greater identity
with genomes other than one reported in primary alignment
are filtered. These genus-specific reads are further subject
to quantification using FeatureCounts tool [40]. For paired-
end data, fragment-based counting option is used, making it
theoretically comparable to the single-end count data. The
fragment-based counts are further subject to normalization:
(a) conversion of the fragment counts to fragments per million
(FPM) for each pathogen (i.e. fragments in a feature ∗ 106/total
number of fragments sequenced for a sample), (b) FPM divided
by the genome length of the pathogen to convert it to FPKM.
A tabulation of pathogen name, genome length, number of
fragments, FPM and FPKM is provided as an output from this
module.

Variant calling module. Broadly, this module is sub-divided
into alignment file pre-processing, consensus variant calling
and variant annotation. For short-read data, the aligned reads
undergo mate fixing (for paired-end data), duplicate removal

and re-indexing using the Picard toolkit [41]. Further, the pre-
processed files are subject to consensus variant calling with
VarScan2 [42], LoFreq [43] and FreeBayes [44]. A variant called
by at least two callers out of the three is retained. Selection of
these three variant callers, to be used in IPD, was based on the
previously reported accuracy assessment on microbial genomic
data [45]. For long-read data, the sorted aligned files are subject
to consensus variant calling as described for short reads. In
addition, we call variants using Medaka [46], which is built for
analyzing the long-read data. A variant that is common among
the consensus calling process and is also called by Medaka is
retained. Among the common variants, the ones having a quality
of less than 20, depth of less than 10 and alternate allele fraction
of less than 0.75 are filtered. Finally, the filtered variants are
annotated using SnpEff [47], using a custom annotation database
for the 1060 pathogens.

Identification of closest SARS-COV-2 isolate and phylogenetic clade
assignment

To generate a database of the SARS-CoV-2 variants of the
isolates from all over the world, we downloaded complete
(>29 Kb), high-coverage genomes from the GISAID database
(N = 23 367, as of 11 June 2020) [48] and performed variant
identification using Snippy [49] by keeping the Wuhan reference
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Figure 2. Conceptual algorithm to compute and assign phylogenetic clades based on the variants obtained in a sample, using GISAID-based IPD variation database as

reference.

isolate genome (RefSeq ID: NC_045512) as the reference. We
identified 162 448 (11 739 unique) variants, which consti-
tute the SARS-CoV-2 reference variant database for IPD. We
constructed a phylogenetic tree based on the divergence
of genomes of isolates from GISAID based on the variants
identified by Snippy (Supplementary Figure S2 available online
at https://academic.oup.com/bib). We obtained the metadata
from the GISAID database, which also contains the Pangolin and
GISAID clade information for each isolate. Merging the variant
database and metadata allowed us to map the specific variants
representing a clade. The variants identified from the variant
calling module of IPD are used to create a mutation profile for
a sample. The mutation profile is compared using Euclidean
distance against the variant-based mutation profiles in the
database of isolates. The isolate showing the lowest relative
distance is selected and its clade is extracted from the database,
allowing clade assignment based on the genomic variants.
Conceptual algorithm describing the same is represented in
Figure 2.

SARS-CoV-2 analysis module and automated report generation

The module is developed to specifically analyze and visual-
ize the SARS-CoV-2 sequencing data. This module takes the
files generated by the IPD workflow as input. Mainly the mod-
ule performs four distinct functions: (a) alignment statistics

computation, (b) SARS-CoV-2 genome coverage plot generation,
(c) k-mer–based genome assembly and tertiary alignment, (d)
variant based clade assignment and isolate distance estima-
tion. The alignment statistics are generated using Picard toolkit
and the genome coverage is calculated using bedtools [50]. Mat-
plotlib [51] python package is used for generation of plots in
the report. Assembly using the pathogen reads is performed
using MEGAHIT tool [52]. Additionally, variants obtained from
the variant calling module of the IPD are searched in the IPD
SARS-CoV-2 variant database. This module also reports the novel
variants obtained in the samples, along with the matching clade
and closest isolates, assigned by retrieving the number of com-
mon variants among the samples analyzed and the isolates in
the SARS-CoV-2 variant database. Finally, the module generates
an HTML report of the analysis performed using the python
Markdown package [53].

Assessment of IPD quantification and variant
calling pipeline

qPCR validation of Fusobacterium nucleatum from in-house
primary tumor and cell line samples

We re-analyzed 68 in-house exome and transcriptome data of
clinical cancer specimens and four cell lines [54, 55] using IPD
pipeline. Of the 68 samples analyzed, qPCR-based F. nucleatum
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quantification was performed for 33 samples, where adequate
RNA was available. We performed IPD quantification on these
transcriptome samples to check for the pathogen load. PCR
was performed using the primers and protocol described earlier
in the study [56], and the protocol for samples procurement
and qPCR quantification is detailed in Supplementary Methods
available online at https://academic.oup.com/bib.

IPD quantification benchmarking

For benchmarking the short-read quantification pipeline of
IPD, we analyzed (a) public meta-transcriptomic SARS-CoV-2 (50
positive and 21 negative) sample data from SRA database [57],
(b) Fusobacterium-positive in-house oral patient tumor samples
(exome + transcriptome) (n = 13) and negative cell lines (n = 4),
as confirmed by qPCR and (c) Human Papilloma Virus (HPV)
positive (n = 32) and negative (n = 56) head and neck cancer tumor
samples from The Cancer Genome Atlas (TCGA-HNSC) [58].
Downloading and pre-processing of the TCGA-HNSC RNA-Seq
data have been described in Supplementary Methods available
online at https://academic.oup.com/bib in detail. IPD pipeline,
along with GATK-PathSeq [21], Kraken2 [20] and PathoScope
2.0 [59], has been evaluated based on the truth set of the
above three dataset. For long-read quantification evaluation, 29
(20 MERS and 9 SARS-CoV-2) simulated datasets, with varying
read length and coverage, were generated using the neat-
genreads [60] tool (details in Supplementary Methods available
online at https://academic.oup.com/bib). The IPD quantification
was evaluated against the long-read quantification pipelines
NanoSPC [25] and minimap2 + Nanocount [37, 61].

IPD variant analysis benchmarking and clade
assignment assessment

In total, 36 simulated samples were generated using the neat-
genreads [60], for SARS-CoV-2 genomes representing lineage A
(EPI_ISL_404895; GISAID clade ‘S’), lineage B (EPI_ISL_452360;
GISAID clade ‘L’) and sub-lineage B.1.1 (EPI_ISL_455479; GISAID
clade ‘GR’). For each representative genome, a combination of
three varying genome coverages of 10×, 100× and 1000× and
four background mutation models (M = 0, 0.0001, 0.0003, 0.0005)
to simulate the background mutations that might be acquired by
the SARS-CoV-2 genome during the course of evolution, we intro-
duced random mutations (using the -m option in neat-genreads
simulation tool) and evaluated its effect on the clade prediction
ability of the IPD. Prediction accuracy was measured by scor-
ing the right prediction (exact matching clade) as ‘1’, sub-class
match (when the predicted lineage being a sub-lineage of the
original clade) as ‘0.5’ and ‘0’ in case of a mismatch. Short-read
variant calling of IPD was compared against Snippy [49], PHEnix
[62], NovoAlign + GATK [63, 64] and Hisat2 + Strelka [34, 65]. Sim-
ilarly, we simulated 27 long-read samples (read length = 5000)
by using the three mutation models (M = 0, 0.0001, 0.0003) for
the above-mentioned SARS-CoV-2 genomes. Long-read variant
calling by IPD was compared against four pipelines/tools, namely
Snippy [49], Clair [66], Longshot [67] and SNVer [68].

Accuracy evaluation of the pathogen analysis pipelines

Statistical evaluation of the quantification and variant calling
accuracy of the IPD was performed and compared using the
F-score metric as described below. The total number of true
positive (TP), false positive (FP) and false negative (FN) for the

presence of pathogen was used to calculate F-score (F), sensitiv-
ity (S) and precision (P) in case of comparison of pathogen quan-
tification, as defined in the study [18]. In short, the following
calculations were performed: precision = TP/(TP + FP), sensitiv-
ity = TP/(TP + FN), F-score = 2/(S−1 + P−1). For variant calling, the
metric suggested in this study [69] was used to calculate the
F-score for variant analysis, F-score = 2TP/(2TP + FP + FN), and
the precision and the sensitivity were calculated in the similar
manner as for quantification pipeline.

Analysis of SARS-CoV-2 sequencing dataset

In total, 1500 samples, including 1095 short- and 405 long-
read sequencing datasets were analyzed using IPD. The
short-read samples consisted of 1035 SARS-CoV-2 positive
(meta-genome/transcriptome and human cell line co-culture
transcriptome) samples, 16 MERS positive and 44 SARS-CoV-2
negative meta- and in-house human transcriptome samples,
constituting the pre-COVID-19 pandemic probands. The 405
long-read data were mainly clinical samples, sequenced using
the Nanopore direct transcript sequencing. The literature-
based, 1464 sequenced samples used in the analysis were
downloaded from the SRA database [57]. Complete list of
sample sets (with metadata) included in the analysis has
been listed in Supplementary Table S3 available online at
https://academic.oup.com/bib, and the total sequencing yield
for the individual project used in the analysis has been shown
in Supplementary Figure S3 available online at https://academic.
oup.com/bib.

Results
IPD-based quantification of pathogens
from short- and long-read sequencing datasets

We analyzed 1095 short- and 405 long-read data, consisting of
SARS-CoV-2–positive, MERS-positive and pre-pandemic proband
samples using IPD (as accessed on 11 June 2020). The short-
read SARS-CoV-2–positive samples were identified to be virus
positive by IPD (Figure 3A, left panel), wherein the abundance
ranged from 5.055 to 999655.7 FPM (median = 990828.9). Such
high viral abundance in the samples is observed, as most
of the meta-transcriptome samples have been enriched
for the SARS-CoV-2 virus. We also identified background
abundance of SARS-CoV virus in the SARS-CoV-2–positive
sample set, which could be attributed to the high genome
conservation between the two viruses [70]. To check the
specificity of the pipeline to differentiate between other
members of SARS family of viruses, we included 16 MERS-
positive meta-transcriptome samples, showing an abundance
in the range of 22.7–455997.7 FPM (median = 583.7) and 44
human transcriptomes comprising the pre-pandemic probands.
We observed diverse commensal, opportunistic pathogens
across the samples analyzed (Supplementary Figure S4A avail-
able online at https://academic.oup.com/bib). We performed
a correlation of abundance of the background level bacterial
pathogens with the SARS-CoV-2 quantification, but no significant
correlation was found in the analyzed dataset consistent with
a recent report [71]. Since we analyzed SARS-CoV-2–positive
samples from different sample sources (nasal/pharyngeal)
and also of different sequencing/library types, we performed
statistical tests to assess differential burden of background
infectious bacteria. However, we did not observe significant
enrichment of background infections in the analyzed samples,
with respect to either the site of sample collection or sequencing

https://academic.oup.com/bib
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Figure 3. Integrated pathogen quantification and variant analysis using IPD (A) heatmap representation of the pathogens having minimal burden of 1 FPM in at least

1% of the samples in both short-read (left-panel) and long-read (right panel) data. The sample set consisted of 1440 SARS-CoV-2–positive (1035 short and 405 long read),

16 MERS-positive and 44 SARS-CoV-2–negative samples. Left panel shows bacterial pathogens summed up into a single entity in the plot as ‘Pathogenic bacteria’. A

detailed heatmap of bacterial pathogens has been provided in Supplementary Figure S3 available online at https://academic.oup.com/bib. (B) IPD-based variant analysis

of publicly available SARS-CoV-2–positive sequencing samples; left panel shows the position-wise mutation count generated by IPD variant analysis of short- (n = 1095)

and long-read (n = 405) sequencing data. The right panel shows the mutation distribution of the Snippy-based variant analysis of the GISAID genomes (n = 23 376).

The hotspot mutation positions (241, 3037, 14 408, 23 403) are marked in the plot along with the common mutant alleles observed in the IPD-based and Snippy-based

analysis, respectively. X-axis (bottom) shows the overlay of the gene annotations of the SARS-CoV-2 (arrows are used to indicate specific genes in the genome).

library type. IPD quantification on 416 long-read samples
(11 samples failed data quality filters) showed that SARS-
CoV-2 abundance in the range of 38161.32 −1.0 × 106 FPM
(median = 106 FPM). The long-read samples analyzed showed
a specific abundance of the SARS-CoV-2 virus and very little or
no abundance of other pathogens in the samples, probably due
to target selection/capture protocols (Figure 3A, right panel).
In addition, we observed the background traces of multiple
pathogenic bacteria in the long-read sample set, which have
been shown in Supplementary Figure S4B available online at
https://academic.oup.com/bib.

IPD-based pathogen variant analysis and phylogenetic
clade assignment

In the above-mentioned 1500 (1095 short-read and 405 long-
read) sample dataset, IPD variant analysis pipeline identified
variants in SARS-CoV-2, Human mastadenovirus, Escherichia spp.,
Acinetobacter spp., Psychrobacter spp., Prevotella spp. and others
(Supplementary Figure S5 available online at https://academic.
oup.com/bib). Distribution of 4634 SARS-CoV-2 variants (∼3.05
variants per sample) across the genome (Figure 3B, left panel)
shows hotspot mutations (>300) at the positions 241 in the
5′ leader sequence, 3037 and 14 408 in the ORF1ab gene and
23 403 in the S gene. These mutations have been described
as predominant in the population from the early SARS-CoV-2
genome-based analysis [72]. To validate the presence of these
mutations in the isolates deposited in the public domain, we
compared the mutation distribution of the IPD analyzed samples
with the distribution in the IPD variant database (generation of
database described in the Materials and methods). The mutation
distribution obtained (Figure 3B, right panel) was found to be
comparable to the result of the IPD variant analysis pipeline,
with identical hotspot mutations. In addition, we identified 449

novel variants (listed in Supplementary Table S4 available online
at https://academic.oup.com/bib) in the IPD variant analysis of
1500 samples, which were not found in the GISAID viral isolate
sequences.

Using the variants generated by analysis of NGS samples
using IPD, we further performed phylogenetic clade assignment.
From the analyzed 1500 samples, we chose the paired-end
high-coverage (N = 100) samples to test the clade assignment
in SARS-CoV-2 analysis module. Total data yield for the selected
samples ranged from 88 000 to 1.4 million reads. Phylogenetic
clade analysis identified 86% of the samples to be of clade
B, of which 62 samples have closest SARS-CoV-2 isolate in B.1
branch. When we checked for the source (country/region) of the
analyzed samples, we found that 62% of the samples assigned
to B1 clade were from the USA and Australia. The predominance
of B1 clade has already been reported as one of the most active
virus lineages in Europe and North America [73], making our
variant-based clade assessment consistent with the literature.
Detailed report of the phylogenetic clade assignment for the
100 selected samples is shown in Supplementary Table S5
available online at https://academic.oup.com/bib. This result
showcases the utility of IPD in tracing the genome isolates by
inferring the phylogenetic information from the genomic data.

Validation of the IPD results using orthologous
technique and benchmarking against other tools

The IPD pathogen quantification revealed the presence of
F. nucleatum, a commensal microbe in the oral cavity and an
opportunistic pathogen, across 68 in-house primary tumor
samples [74]. Presence of the Fusobacterium was confirmed
using qPCR-based quantification, and extended validations
were also performed in 24 human cell lines. As anticipated, all
the cell lines were negative for F. nucleatum, as they undergo
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Figure 4. IPD benchmarking (A) F-score plot for short-read quantification for SARS-CoV-2 (N = 71), F. nucleatum (N = 17) and HPV (N = 88) truth set, (B) correlation matrix

of the normalized qPCR load of F. nucleatum with the quantification using IPD, PathoScope2, Kraken2 and GATK-PathSeq. Negative correlation between the qPCR data

and the quantification by all the tools has been multiplied with minus one for representation of (C) F1-score, sensitivity and precision of different variant calling

tools/pipelines on the SARS-CoV-2–simulated short-read dataset (N = 36), (D) accuracy of SARS-CoV-2 lineage prediction by IPD SARS-CoV-2 module, based on the variants

derived from short- and long-read samples (N = 53). The X-axis denotes the random background mutation rate introduced in the simulated dataset.

antibiotic treatment as a part of a routine maintenance
procedure. Overall, of all the samples called positive (n = 29)
by qPCR (CT value <30), IPD could identify all 29 samples to
be positive and 0 false negatives. However, IPD did classify
three borderlines (Ct-value 30.4–30.5) samples to be positive
for Fusobacterium, whereas all the negative cell-line samples
(n = 4) were detected to be negative by the IPD. This accounts
for sensitivity of 100% and specificity of 90%. The qPCR
results for all the in-house tumor samples and cell lines have
been tabulated in Supplementary Table S2 available online at
https://academic.oup.com/bib.

We rigorously evaluated the quantification, variant calling
and phylogenetic clade assignment (in case of SARS-CoV-2)
ability of IPD and benchmarked against tools/pipelines in the
respective segment. As described in Materials and methods,
the F-score metric was used to assess the accuracy of each
tool. To evaluate the accuracy of IPD to detect different types
of pathogens (RNA/DNA virus and bacteria) from NGS data, we
analyzed publicly available SARS-CoV-2 transcriptome samples
from COVID-19 patients, HPV samples from head and neck
tumor transcriptome and in-house oral tumor exome and
transcriptome samples with the varying burden of F. nucleatum.
All the tools performed with 100% precision and 100% sensitivity
(F-score = 1), for the SARS-CoV-2 dataset (Figure 4A). To further
assess the quantitative coherence of IPD with the qPCR results,
we performed a Spearman correlation between IPD normalized
pathogen counts with the normalized Ct values (delta Ct) for

F. nucleatum. We observed that IPD showed highest (inverse)
correlation with the delta Ct (r = −0.7, P-value < 0.05), followed
by PathSeq (r = −0.53, P-value < 0.05) and Kraken2 (r = −0.31,
P-value < 0.05) (Figure 4B). In case of long-read quantification
pipeline, IPD along with other tools gives the ideal F-score of 1,
even with varying genome coverage (10–1000×) and read lengths
(1000–4000 bp) (Supplementary Figure S6 available online at
https://academic.oup.com/bib).

Among the various variant calling pipelines benchmarked
against the SARS-CoV-2 simulated samples, Snippy performs the
best with a median F-score of 1 and IPD performed moderately
well with a median F-score of 0.86 (Figure 4C). In the long-
read variant calling of simulated data, Longshot performed the
best with median F-score of 0.88. In comparison to other tools,
IPD performed second best; however, the median F-score was
found to be 0.36. Although IPD showed ∼100% precision across
all the samples, the sensitivity was very low (∼20%), which
resulted in this reduction of F-score. This low sensitivity of
the pipeline can be attributed to the stringent variant selec-
tion based on consensus and further filtration in IPD. Using
the variants called from both short- and long-read simulated
data, we assessed the phylogenetic clade (lineage) assignment
accuracy of the IPD. We surprisingly observed that even at vary-
ing background mutation rate (0, 0.01, 0.03 and 0.05% muta-
tions per SARS-CoV-2 genome), the accuracy of lineage predic-
tion of IPD does not alter and is ranged between 0.77 and 0.83
(Figure 4D).
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We also compared the features of IPD with the pathogen
detection tools used for benchmarking (summarized in
Supplementary Table S6 available online at https://academic.
oup.com/bib). Overall, IPD is a tool that performs both on
pathogen quantification and variant calling/annotation from
the diverse advanced sequencing dataset and the only tool
to our knowledge that can perform both on the short- and
long-read data. In addition, IPD has useful features, such as a
graphical interface for analysis, an in-built data filtration step,
a SARS-CoV-2–specific analysis module that mainly performs
the genome variation–based phylogenetic clade assignment
and automated report generation. Software runtime and
memory usage comparisons show that it performs relatively
slower and consumes slightly higher memory as compared
to other tools/pipelines (Supplementary Figures S7 and S8
available online at https://academic.oup.com/bib), evidently as
it performs both quantification and variant calling in the same
run, on the genomic data.

IPD SARS-CoV-2 automated report generation

Summarization and visualization of the results is an impor-
tant aspect of any genomic analysis. We have implemented an
automated report generation, for the SARS-CoV-2 pathogen. By
providing the custom information for any genome, the same
module can be adopted for the generation of reports for other
infectious pathogens. A fixed HTML report is generated sum-
marizing the SARS-CoV-2–specific outputs from the different
modules of IPD (Figure 5). The automated report includes the
following sections: (a) sequencing statistics—which details the
number of reads, aligned reads to human/pathogen reference in
IPD, % aligned reads and mean read length in the sample; (b) cov-
erage plot section provides the genomic coverage of SARS-CoV-2
genome at a base resolution for a sample; (c) relative abundance
section provides the plot for normalized quantification of SARS-
CoV-2 and the composition of sequences attributable to human,
other pathogens or SARS-CoV-2 in a sample; (d) finally, the report
contains information about the novel variants (if any) in a sam-
ple, as compared to the database of the reference variants in
IPD for SARS-CoV-2. Using the clade assignment algorithm in IPD
(Figure 2), we also report the closely related strain from GISAID
database and its clade.

Discussion
We present IPD, a GUI-enabled pathogen detection and analysis
pipeline that can perform uniform processing of heterogeneous
datasets generated from advanced sequencing experiments. IPD
works on both short- and long-read sequencing data and con-
tains three distinct modules, namely the heterogeneous data
filtration/alignment module, integrated pathogen quantification
and variant calling and a specialized SARS-CoV-2 analysis mod-
ule to analyze and visualize the SARS-CoV-2 sequencing data.
IPD is also available as a server-based web application, mak-
ing its usage suitable for the researchers without any infor-
matics background. We performed extensive benchmarking of
IPD with real and simulated datasets to establish the validity
of the analytical pipeline presented. Pathogen validation using
orthologous techniques revealed that IPD shows the highest
coherence with orthologous pathogen validation methods. With
the different datasets used in the benchmarking experiments,
we demonstrate the ability of IPD to perform analysis on data
generated not only from different technologies but also from
diverse pathogens, which represent bacterial, RNA and DNA

Figure 5. Automated report generation in IPD. HTML report as generated by the

IPD SARS-CoV-2 module, containing sequencing statistics, pathogen quantifica-

tion and genome coverage and variant information, as three major sections.

viruses. We further applied IPD on 1500 (short- and long-read)
SARS-CoV-2–positive and negative sequencing data, resulting in
the detection of the virus specifically in the positive sample set.
The variant analysis on the same sample set further revealed the
mutation hotspots in the SARS-CoV-2 genome, which were then
compared with the recurring mutations resulting from analysis
of the publicly available genome isolates from GISAID database.

IPD consists of a specialized, SARS-CoV-2 analysis module
that is developed to primarily perform phylogenetic clade
assignment for the analyzed samples. Using this, we performed
a clade assignment for 100 samples using the variants obtained
from IPD analysis. The analyses revealed clade B to be the
dominant clade in the samples analyzed, wherein the majority
of the samples had ‘USA’ as their country of origin. This is
consistent with the previous reports, wherein clade B has been
designated as the dominant clade in North America [53]. Finally,
this specialized module also generates a user-friendly report
tabulating the sequencing statistics, SARS-CoV-2 quantification,
genome coverage plots for individual samples. The report
also lists the novel variants identified in the analysis, as well
as the clades assigned based on the known variants from
individual samples. The ability of IPD to perform the variant-
based phylogenetic clade assignment and sample-wise report

https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa437#supplementary-data
https://academic.oup.com/bib/article-lookup/doi/10.1093/bib/bbaa437#supplementary-data
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generation makes it a pertinent platform to analyze advanced
sequencing dataset derived from the SARS-CoV-2–positive
clinical samples.

Worldwide several efforts to perform genomic sequencing
of the novel coronavirus are underway. The massively paral-
lel sequencing provides detailed information about the viral
genome and its evolution at the resolution of a base. In addi-
tion to the quantification of the pathogen in clinical samples,
sequencing gives us additional insights into the biology of the
virus, such as non-canonical transcript identification [10] and
genome variations analysis [75]. The diversity in the sequenc-
ing methods and data type generated demands use of specific
analytical pipelines and tools to handle each data type. To meet
these requirements, the IPD is designed for both quantification
and variant calling on the heterogeneous dataset.

Overall, the ability of IPD to perform seamless, integrated
analysis of the SARS-CoV-2 genomic datasets will help to further
the understanding of the variation and evolution of the virus,
using the large sequencing datasets. IPD’s unified analytical
protocols for the viral genomic dataset are aimed to cater to
the vast amount of advanced sequencing data generated dur-
ing the unprecedented public health crisis. The understanding
of the genome variability and evolution of SARS-CoV-2 within
different populations will affect the efficacy of the therapeutic
and preventive interventions designed globally, with a universal
application beyond the COVID-19 pandemic.

Conclusion
NGS-empowered genomics has transformed our approaches to
infectious disease surveillance, providing insights into pathogen
evolution, host-pathogen interactions and antibiotic resistance
to help prevent epidemics and pandemics. We present IPD, a
converged analytical platform, to cater to the different types of
advanced sequencing data, which otherwise requires the use
of specialized tools and pipelines. It is designed to report the
occurrence and genomic variability among infectious pathogens
from the individual. We demonstrate the use of IPD on the
publicly available SARS-CoV-2 sequenced samples and show its
potential for direct utility in the COVID-19 pandemic and beyond
to help automate the sequencing-based pathogen analysis and
in responding to a public health crisis, efficaciously.

Key Points
• IPD: An automated computational pipeline to perform

pathogen quantification and variant calling/annota-
tion from short- and long-read sequencing datasets.

• IPD has a customized analytical module for the SARS-
CoV-2 virus to perform a genome variation–based
phylogenetic clade assignment and automated report
generation.

• IPD is available as both a GUI-enabled desktop applica-
tion and a web application, allowing researchers with-
out any prior computational know-how to generate an
automated report for individual or bulk samples.

• Utility of IPD is demonstrated by analyzing 1500 short-
and long-read NGS datasets from pre- and post-COVID
19-pandemic probands.

Supplementary data

Supplementary data are available online at Briefings in Bioin-
formatics.
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