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Introduction
Adenosine kinase (AK) is an evolutionary, ancient, and highly 
conserved enzyme, which is directly related to bacterial 
ribokinases and fructokinases .1,2 AK has emerged as a ratio-
nal therapeutic target for many diseases and pathological 
conditions.3,4 Two types of AK inhibitors, nucleosides and 
non-nucleosides are known to bind in closed and open confor-
mation respectively.5 Nucleoside inhibitors resemble the ade-
nosine (substrate) molecule in shape. Nucleosides have failed to 
undergo successful clinical development due to dose-limiting 
side effects.6,7 Thus, there is a demand for designing novel scaf-
folds other than nucleosides. We designed this study to iden-
tify novel scaffolds that could function as AK inhibitors.

In an effort to identify eligible inhibitors, a new protocol 
for VS was evolved in this study. Here, an important issue 
of inclusion of the constraints imposed by the binding site is 
discussed and addressed. With the objective of finding new 
scaffolds, docking and pharamacophore analyses were carried 
out. Docking is an important strategy in VS that involves the 
prediction of ligand conformation using electrostatic, hydro-
phobic, and shape complementarities.8,9 Numerous VS studies 
have been carried out using docking methodologies.10,11 
Although most of the docking programs reproduce correct 
binding modes for crystallographic ligands, docking scores do 
not give reliable rankings.12,13 Because of some target-specific 

peculiarities, the VS method needs to be made specific for a 
particular target. Previous studies have successfully introduced 
the shape of the molecule in VS. It has been proved that shape 
can be considered to measure the performance of VS, as it can 
provide more specificity than simply docking scores.14–17

In this study, we proposed a novel protocol for VS using 
shape descriptor-based models. This study was conducted to 
know the requirement that inhibitors should bear and what 
will happen if very diverse molecules were selected as hits in 
VS. We proposed that molecular shape analysis (MSA) can be 
considered to measure the performance of VS. The utility of 
using simple shape descriptors was extrapolated in a novel way 
for the extraction of newer scaffolds from the database. First, 
GOLD-based scores have been introduced in order to mea-
sure the discriminatory power and then compared with that 
of MSA descriptors. Finally, a combination of scoring and 
MSA descriptor-based screening technique for the improve-
ment of VS was investigated. A rational quest is proposed as 
to whether the compounds adopt a conformation consistent 
with some reasonable commonality with adenosine (ADO); if 
the answer is yes, the compounds are reported in the output as 
actives. This study reflects the importance of shape parameters 
in context to the requirement of a specific volume of ligands 
in the binding site. Overall, it has been demonstrated that the 
VS for identifying new leads call for forced requirement of 
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a characteristic shape or spatial properties. Molecule cannot 
bind and have activity if devoid of such shape requirements.

The above methodology was based on its ability to dis-
card the inactives from the set of molecular candidates. This 
composite method seems efficient in that it is able to avoid 
any false positives before conducting expensive synthesis and 
activity studies. For example, if a molecule does not fit into 
the active site of an enzyme because of its size and shape para-
meters, it should not be considered further, and even no other 
computed scores of the molecule are needed to make this deci-
sion. This finding was considered for better evaluation of hits 
with new scaffolds for this system. Further, as finding novel 
active scaffolds is often a more important success criterion 
than hit rates of virtual screens, emphasis should be given to 
novel scaffolds. In VS, such hits with even weaker activities 
can also be considered to be those that can be improved by 
iterative lead optimization. We believe that this novel protocol 
can be extrapolated to other enzyme systems also.

Methods
dataset for derivation of the protocol. Our aim was 

to construct a test dataset with the known active and diverse 
decoy molecules. Active compounds contain moderate to high 
affinity binders. It is known that many large compounds may 
not bind in a similar manner5 and our previous results dem-
onstrated that larger compounds bind to semi-open confor-
mation of AK.18 Therefore, we decided to take lighter-weight 
AK inhibitors, which are similar in size to the adenosine 
molecule.19–22 Finally, 22 active compounds were selected in 
the test set (Supplementary Table 1). For preparation of the 
decoy set, the thymidine kinase (TK) decoy set from the direc-
tory of useful decoys (DUD) was taken and further processed 
to make it suitable for this system. This decoy set was selected, 
as thymidine and adenosine are structurally similar. A set of 
topologically diverse compounds, having similar molecular 
weights to that of adenosine, was selected from this dataset. 
For this purpose, topological descriptors were calculated and 
principal component analysis (PCA) was used to evaluate the 
molecular diversity in the dataset. PCA reduces the data set 
from many variables to a few components with loadings. The 
purpose is to express the main information of the variables 
using a lower number of variables called the principal compo-
nents. Topological descriptors were calculated using Cerius2 
and PCA was carried out using Minitab.23,24 The full set of 
decoy molecules and descriptors was analyzed by means of 
PCA. Three principal components PC1, PC2, and PC3 con-
tributed 34.845%, 15.273%, and 10.681% to the total compo-
nents, respectively. In fact, PC1 and PC2 have made more than 
50% of the variances and, therefore, play a major role in the 
importance of the descriptors. The first and second resulting 
components (PC) were used to plot the decoy molecules in 
a three-dimensional space (Supplementary Fig. 1). Finally, 
218 diverse molecules (Supplementary Table 2) than the 
adenosine were selected as the decoy set.

Preparation of the protein model, definition of active 
site, and docking. Protein coordinates used for docking were 
taken from the X-ray structure of AK in complex with adenos-
ine (PDB ID: 1BX4). Usually, water molecules are removed 
from the active site, except the molecules that are known to 
bind very tightly to the protein or are known to be essential 
for the interaction with the drug (ligand). Here, we kept two 
bound water molecules (W1 and W2) in the protein active site 
(Fig. 1) as also described in our earlier work.18 Bound ligand 
and other water molecules were removed. Hydrogen atoms 
were added and minimized using Chemistry at Harvard Mac-
romolecular Mechanics force field. The active site was defined 
as the collection of amino acids enclosed at least within a 7 Å 
radius from each atom of the bound ligand. All the compounds 
were then docked and scored using GOLD using Goldscore 
(GS) and a modified form of Chemscore (CS for kinases) 
as previously described.18,25 Docking strategy was tested by 
assessing the ability to reproduce the experimental binding 
orientation of ADO and correct water (W2) displacement by 
5-Iodotubercidin in AK complex (Fig. 1) as also described 
previously.18 The outcome of the VS was assessed by the ROC 
curve analysis. The area under the ROC curve (AUC) is an 
important indicator of the VS performance and can be calcu-
lated as the sum of all rectangles formed by the sensiti vity and 
1 − specificity values for the different thresholds. VS work-
flows that perform better than a random discrimination of 
actives and decoys retrieve an AUC value between 0.5and 1, 
whereas an AUC value lower than 0.5 represents the unfavor-
able case of a method that has a higher probability to assign 
higher scores to decoys than to actives. The closer the AUC 
to 1, the better is the performance of the classification.

Molecular shape analysis in recursive partitioning 
(rP)-based classification for Vs. In this study, we have 
derived a novel method for the classification of active and 

figure 1. docked poses of natural substrate ado (purple) and inhibitor 
5-iodotubercidin (green) in the aK-binding site. 
notes: W1 and W2 are water molecules; W2 is displaced by 
5-iodotubercidin.
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inactive molecules using molecular shape analysis (MSA), 
implemented in Cerius2.23,26 MSA descriptors, difference 
volume (DIFFV), common overlap steric volume (COSV), 
common overlap volume ratio (Fo), and non-common over-
lap steric volume (NCOSV) belong to an interesting class of 
molecular descriptors that have been proposed for a number 
of QSAR type tasks.27,28 These descriptors represent the com-
monality and differences of considered molecules in terms of 
shapes with the reference ligand. The steps involved the selec-
tion of shape reference compound (bound ligand from 1BX4) 
and measuring molecular spatial properties of docked confor-
mations, using MSA descriptors. The MSA descriptors were 
used to devise the scheme to discriminate active and inactive 
molecules by the recursive partitioning algorithm in MOE.29

This algorithm led to a model called classification tree. 
The prediction accuracy of this classification tree was evalu-
ated by means of a twofold cross-validation methodology. 
The final selection of the tree was made by comparison of the 
misclassification rate R(T). It measures the proportion of cases 
that are incorrectly classified by a tree. R(T) can be defined 
as Nmissclassified/Ntotal, where Nmissclassified is the total number of 
misclassified cases and Ntotal is the total number of cases in the 
training set.

derivation of the Vs scheme. The classification schemes 
were utilized for identification of active (defined as 1) or inac-
tive (defined as 0) conformations and its utilization in scor-
ing of molecules. A consensus prediction score was devised 
as follows:

Consensus Prediction Score (CPS)  
= Prediction by classification tree × CS/GS

If the conformations are predicted as 0 in classification 
tree, the CPS will give output as zero or inactive. The purpose of 
using this classification is to have prediction for binding proba-
bility with the hope to eliminate structures, which will not bind 
to the binding site of AK. To improve the accuracy in prediction 
of active and inactive molecules, a consensus-ranking approach 
was devised. The ranks of all the molecules were assigned on 
the basis of CPS-GS and CPS-CS scores separately. Consensus 
ranking is based on the average ranks obtained from the above 
two ranks for each molecule. The strategy is illustrated for the 
consensus prediction score as follows:

Consensus rank = (Molecule’s rank by CPS-GS 
+ Molecule’s rank by CPS-CS)/2

structure-based pharmacophore modeling. The crystal 
structure of AK in complex with 5-iodotubercidin (PDB ID: 
2I6A) served as a starting point for structure-based inhibi-
tor design by the program catalyst.30 The amino acids aspar-
tic acid (Asp), asparagine (Asn), glycine (Gly), serine (Ser), 
phenylalanine (Phe), and leucine (Leu) interact with the ligand. 
Asp seeks a hydrogen bond, while Asn acts as an H-bond 
donor as well as an H-bond acceptor. Ser acts as an H-bond 

donor. Phe and Leu are responsible for hydrophobic interaction 
with the ligand (Supplementary Figure 2). We selected only 
a single vector originating from a particular point, as a single 
point cannot be represented by two vectors in a catalyst. 
A Glycine–Glycine switch is responsible for a conformational 
change in AK triggered by the interaction of sugar-like back-
bone with these glycine residues.31,32 The specific requirement 
of the backbone of sugar-like moiety will increase the prob-
ability of that scaffold for being active. By giving a shape con-
straint, the obtained hits would represent a complementary 
shape of the adenosine-binding site, which includes the infor-
mation about the shape (position of atoms) of the sugar moiety 
as well. This pharmacophore query was used as the fast tool for 
identifying novel hits from the Maybridge database.

results and discussion
Virtual screening using ligand docking and Molecular 

shape analysis. All the dataset compounds were docked using 
GOLD and scored GS and CS. To assess the ability of scores 
to discriminate active compounds from decoys, ROC curves 
were calculated. In both the cases, whether CS or GS, the 
ROC curves indicated significantly good performance sug-
gesting that docking scores are able to classify the best ranked 
conformation of known actives and decoy molecules. Inspec-
tion of the result evinces that the discrimination obtained with 
Goldscore surpass those with Chemscore (Fig. 2). In addition, 
the MSA descriptors were calculated to plot the ROC curves 
for highest ranked conformations of all the molecules of this 
dataset (Fig. 2A and 2B). MSA descriptors, especially COSV 
and DIFFV, are able to differentiate the actives and inactives 
effectively. The COSV parameter gives ROC curves, compa-
rable to that of Goldscore. The results suggest the importance 
of these shape-based MSA descriptors, COSV and DIFFV, in 
discriminating active and inactive molecules.

Some clear trends were apparent from the areas under 
the respective ROC curves. Analysis of ROC curves in 
Figure 2 suggested that DIFFV and COSV are two impor-
tant parameters in the classification of actives and inactives. 
Comparison with respect to descriptor NCOSV allows us to 
gain more insight in the information content. ROC curve sug-
gests that the deviation of NCOSV for the known actives and 
decoys from that of bound ligand (ADO) does not show any 
trend in distinguishing the actives from inactives. NCOSV 
can be low or high for inactives, but COSV should be high for 
actives. Actives also have non-common overlap with ADO, 
but at the same time they have adequate common overlap with 
ADO, which makes them active. It was also observed that 
the decoy molecules, which did not possess a similar shape as 
that of ADO, showed remarkable difference in their values of 
descriptors (COSV and DIFFV) than those of ADO or active 
inhibitors [Supplementary Tables 1 and 2]. This indicated that 
the molecules should resemble the ADO in terms of shape for 
being an inhibitor, which again strengthens the fact that the 
shape of the molecule has some bias toward this protein.
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rule-based classification model/scheme. As the first 
objective in any VS is the identification of binders or non-
binders, rules were formulated for selecting the conformations, 
which would fulfill the criteria for successful binders. Recursive 
partitioning (RP) was done using MSA descriptors as the pool 
of potential splitting (active or inactive; Table 1) to understand 
whether these fit or do not fit the criteria for binding.

The statistical analysis of models showed similar trends 
of overall good accuracy. In the first case (GS-based con-
formations of actives and decoys), the misclassification rate 
of 0.017 was observed, while in the second case (CS-based 
conformations of actives and decoys) the misclassification 
rate was 0.038. It is interesting to look at the descriptors in 
the RP model and to extract the properties, which differenti-
ate actives and inactives in the data set. COSV was found in 
both the RP trees, again signifying the importance of shape 
similarity to adenosine. The comparison of volumes occu-
pied by ADO and a decoy molecule, ZINC03923460, illus-
trates this more clearly (Fig. 3). Although decoys occupy the 
ADO-binding site, they do not possess sufficient common 
overlap. The best-ranked conformation of this molecule has 
a COSV value of 118.04 (with GS-based best-ranked con-
formation) and 110.45 (with CS-based best-ranked conforma-
tion). These values are less than the required values obtained 
either by GS-or CS-based RP tree. Thus, this decoy molecule 

possesses lesser values than the required values for molecules 
to be classified as active. If we see the COSV values for active 
molecules (Supplementary Table 1), we find that they possess 
values that are higher than the minimum values required by 
the RP classification scheme.

Hence, from this analysis it was realized that the 
preliminary step is shape recognition. The molecules, which 
do not have similarity in shape, will not exhibit binding and 
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figure 2. roc curves for test set: (A) gs (b) cs. roc curve parameters are shown in a and B columns for goldscore (gs) and chemscore (cs) 
respectively.

figure 3. cosV occupied by a decoy set molecule (Zinc03923460) 
in comparison with ado in the adenosine-binding site, green mesh 
surface: ado (red), blue transparent surface: decoy compound (black).

table 1. Binary classification tree.

ModE of ConfoRMAtIonS RP tREE R(t) (MISClASSIfICAtIon RAtE)

gs root
,0. (0.005) diffV ,=29.1
diffV .29.1
,0. (0) cosV ,=141
,1. (0.13) cosV .141

0.017

cs root
,0. (0) cosV ,=147
,1. (0.3) cosV .147

0.038

note: Rule-based classification with MSA descriptors for selecting actives (1) and inactives (0). 
Abbreviations: gs, goldscore; cs, chemscore.
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thus there is no room for activity. The results reinforce that 
the MSA descriptors are able to correctly classify the dataset 
in active and inactive molecules against this target and thus 
certainly offer a useful set of descriptors for VS tasks. It is 
important to note that information of true binders and sub-
sequent scoring of the ligands can be recognized as a ranking 
tool for identifying true actives from virtual libraries.

Virtual screening. Pharmacophore perception and screen-
ing of hits. Based on all the desired interactions (Supplementary 
Fig. 1), a structure-based pharmacophore hypothesis was created 
with the help of catalyst. The pharmacophore model has three 
hydrogen bond acceptor (HBA) features, one hydrophobic, 
one hydrogen bond donor (HBD) feature, and a ring aromatic 
feature (Fig. 4). The model also includes the shape constraint 
feature, which provides an insight regarding the allowed topo-
graphy in the binding site and thus makes the pharmacophore 
more specific. The resulting pharmacophore model identified 
116 compounds as hits from the Maybridge database.

Hierarchical selection and scoring. The pharmacoph-
ore model picked many active hits and lots of them possess good 
docking scores (Supplementary Table 3). A question was raised 
whether all are probable inhibitors of AK. As the MSA descriptor-
based classification scheme was successful in differentiating the 
active and inactive molecules, we decided to use these RP models 
in identifying real hits. To predict real hits using the RP models, 
the MSA descriptors were computed for ten best conformations 
of all the screened molecules. The consensus prediction score was 
calculated for all the conformations of all the hits. The consensus-
ranking approach was then applied for identifying final hits with 
respective CPS scores (Table 2). Out of 116 compounds, only 
three compounds were screened, which are likely to represent 
the prospective lead candidates against AK.

binding mode analysis of hits. Molecules with lesser 
affinity than the expected (at the same time having a diverse 
structure) would be interesting leads, as they can be optimized 
further. Three compounds (SCR 00361, NRB 04489, and 

SCR 00980) are predicted as novel AK inhibitors. The hits 
have been further investigated through few validation mea-
sures such as visual examination of how well they dock into 
the binding groove and how the hits interact with the impor-
tant amino acid residues of the binding site. A scaffold should 
form the key interactions and the binding modes should be 
conserved. These hits represent very similar binding confor-
mations in both the docking methods (GS and CS), thus sub-
stantiating their candidature as an AK inhibitor (in a closed 
binding site; Fig. 5).

The outcome interaction data show that the residues, 
Gly63, Gly64, Leu138, Leu141, Phe170, and Asn14, are criti-
cal for the binding of these inhibitors. In selected hits, these 
residues form a pocket between the inhibitor and AK frame-
work region. The selected hits represented the conserved inter-
actions with the active site residues, which are quite consistent 
with the adenosine interaction. The hits were found to inter-
act well with the critical residues, despite their modest scores. 
These inhibitors mimic two most important interactions of 
ADO, first with Gly63-64 switch (like sugar backbone) and 
with Phe170, (like nucleotide core), in addition to other inter-
actions. It is also noted that they have the potency associated 
with the removal of water molecules (Fig. 6). GOLD docking 
has the functionality to keep or displace water molecules from 
the binding site. All the three hits displaced the W2 molecule 
from the binding site and SCR00980 displaced W1 as well 
(Fig. 6). 5-Iodotubercidin is known to displace this water 
mole cule (W2) from the AK-binding site. Displacement of 
W2 from the AK-binding site increases the candidature of 
these hits as inhibitors. This again strengthens the possible 
success of this methodology in VS.

Because of the similar binding conformations of these 
scaffolds in both the docking runs and presence of crucial 
interactions with the binding site residues, further studies 
could be initiated to use such scaffolds as the new starting 
point for lead optimization. These scaffold interaction data 
can be used to design new inhibitors with increased affinity 
toward AK. The new actives contained different underlying 
chemical architecture than nucleosides, indicating successful 
scaffold-hopping. This study was dedicated for correctly 
identifying ligands or scaffolds that will act as binders, which 
is of primary interest in lead optimization. Furthermore, the 
application of such docking and MSA-based hierarchical 

figure 4. structure-based pharmacophore. 
notes: green: hBa, purple: hBd, brown: ring aromatic, blue: hydrophobic, 
gray: shape constraint.

table 2. selected hits with their compound id and their respective 
score as obtained from our virtual screening method.

ConSEnSuS 
RAnK

CoMPound 
nAME

CPS 
ChEMSCoRE

CPS 
GoldSCoRE

1 scr 00361 29.9776 57.1475

2 nrB 04489 25.3959 53.1071

3 scr 00980 19.743 50.1106
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selection scheme has the potential for rejecting false positives 
in VS at early stages of lead discovery for promising targets. 
Finally, the proposed methodology can be applied to any other 
protein ligand system with specific requirement of inhibitors. 
This will be particularly advantageous for those targets for 
which no, or only structurally similar, active molecules are 
known. Looking at it more broadly, the integration of this 
protocol will be extremely useful for therapeutic targets such 
as methylases and acetyltransferases, where the binding site is 
very specific for their substrates.

conclusions
One of the key steps in the early stage drug discovery is finding 
active compounds, which can be further optimized into poten-
tial drug candidates. VS is an excellent strategy for generating 
such compounds as hits. In this study, a new method for VS 
of AK inhibitors has been presented. It is known that the AK-
binding site poses some spatial constraints for the binding of 
inhibitors. We have devised a novel protocol to identify true 
binders from a database using MSA-guided hierarchical hit 
selection methodology. This strategy, as discussed, can be used 
to reduce the number of false positives. The MSA descriptors 
are particularly suited, as they can quickly calculate the neces-
sary information for the ligand’s volume, essential for binding 
in closed conformation of AK. This study of exploring VS with 

docking and shape-based descriptors has demonstrated its 
importance in identifying active conformations in the binding 
site. This knowledge is expected to be useful in the abstraction 
of novel inhibitors from compound libraries, before further 
investigations are implemented. This method could also be 
adapted to tackle similar protein ligand systems.
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