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ABSTRACT Bulliform cells comprise specialized cell types that develop on the adaxial (upper) surface of
grass leaves, and are patterned to form linear rows along the proximodistal axis of the adult leaf blade.
Bulliform cell patterning affects leaf angle and is presumed to function during leaf rolling, thereby reducing
water loss during temperature extremes and drought. In this study, epidermal leaf impressions were
collected from a genetically and anatomically diverse population of maize inbred lines. Subsequently,
convolutional neural networks were employed to measure microscopic, bulliform cell-patterning pheno-
types in high-throughput. A genome-wide association study, combined with RNAseq analyses of the
bulliform cell ontogenic zone, identified candidate regulatory genes affecting bulliform cell column number
and cell width. This study is the first to combine machine learning approaches, transcriptomics, and
genomics to study bulliform cell patterning, and the first to utilize natural variation to investigate the genetic
architecture of this microscopic trait. In addition, this study provides insight toward the improvement of
macroscopic traits such as drought resistance and plant architecture in an agronomically important crop plant.
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Drought stress remains a serious challenge to agronomic production
(Ort and Long 2014); land plants have evolved multiple mechanisms
for water conservation since their invasion of the terrestrial environ-
mentmore than 450million years ago (Kenrick and Crane 1997; Raven
and Edwards 2004). Grasses are staple crops for human subsistence and
have evolved specific epidermal cell types (i.e., bulliform cells) to reduce
water loss during heat and drought (Hsiao et al. 1984; Price et al. 1997;
Kadioglu and Terzi 2007; Hu et al. 2010). Bulliform cells are enlarged
parenchymatous structures arranged in tandem clusters that form lin-
ear columns along the proximodistal leaf axis (Becraft et al. 2002;

Bennetzen and Hake 2008). During heat and/or water stress, bulliform
cells are proposed to shrink dramatically in size along the adaxial
(top) leaf surface. This asymmetric decrease in leaf surface area is a
proposed mechanism for leaf rolling, consequently reducing water
loss from the leaf epidermis (Hsiao et al. 1984; Price et al. 1997; Dai
et al. 2007; Kadioglu and Terzi 2007; Hu et al. 2010). Some bulliform
cell number and density mutants also have leaf angle phenotypes,
thus impacting plant architecture. Rice bulliform cell patterning mu-
tants such as RICE OUTERMOST CELL-SPECIFIC GENE5 (Roc5)
over-produce bulliform cells, have more upright leaves, which is
a desirable agronomic trait enabling dense planting (Zou et al. 2011).

Despite the inherent interest in bulliform cell patterning to both
plant developmental biologists and breeders, previous studies have
focused on either the cell-specific transcriptomes or reverse genetics
analyses of mature-staged bulliform cells. For example, a study in
rice showed that bulliform cells express around 16,000 genes, far
more than the median of 8,831 genes identified in RNAseq analyses
of over 40 distinct cell types (Jiao et al. 2009). Coincidentally, re-
verse genetic studies reveal that mutations in genes implicated in a
diverse array of biological processes can condition bulliform cell phe-
notypes. For example, the brassinosteroid phytohormones, gibberellin
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and auxin, both function during bulliform cell patterning in rice (Dai
et al. 2007; Fujino et al. 2008; Chen et al. 2015), whereas some leaf-
rolling mutants have supernumerary bulliform cells and others develop
ectopic bulliform cells on the abaxial (bottom) side of the leaf (Itoh et al.
2008; Hibara et al., 2009: Zhang et al. 2009; Li et al. 2010). Aside from
defects in adaxial/abaxial patterning, some leaf rolling mutants are also
impaired in water transport (Fang et al. 2012), or in the production
of a vacuolar ATPase (Xiang et al. 2012). Despite these genetic
analyses of bulliform development, no studies have been performed
on the natural variation of bulliform cell patterning in a staple crop
plant such as maize.

Elucidating the genetic architecture controlling natural variation
ofmaize bulliform cell patterning is fraught with challenges. Although
bulliform cells influence a wide range of macroscopic traits such as
leaf rolling and leaf angle, bulliform cell patterning is a microscopic
phenotype. Historically, epidermal cells are typically analyzed by
scanning electron microscopy (SEM) (Becraft et al. 2002), or light-
imaging of epidermal glue-impressions (Bennetzen and Hake 2008).
Although SEM is not amenable to high-throughput phenotyping
of large plant populations, epidermal glue-impressions are relative-
ly easy to generate in high volume and can be stored for extended
periods, thereby preserving cellular structures in great detail
(Bennetzen and Hake 2008).

Another bottleneck to high-throughput phenotyping of micro-
scopic epidermal traits is the quantification of cell profiles after image
acquisition. Machine learning strategies such as convolutional neural
networks (CNNs) are widely used for image processing; advances in
modern technology have enabled the optimization of complex ma-
chine learning models comprising millions of parameters (LeCun
and Bengio 1995; LeCun et al., 1998: Krizhevsky et al. 2012; Simonyan
and Zisserman 2014; Zeiler and Fergus 2014; Szegedy et al. 2015; He
et al. 2016). Semantic segmentation of microscopic images via CNNs
can significantly decrease the labor and time required to manually
score such phenotypes in large-scale genetic studies. Special CNN
algorithms such as U-net enable the efficient use of context infor-
mation of image pixels, thereby reducing the otherwise daunting
workload of manually tracing cell anatomical patterns into a matter
of seconds (Ronneberger et al. 2015).

In this study, leaf epidermal glue-impressions were collected
from a genetically diverse panel of nearly 500maize inbred lines, and
U-nets were utilized to quantify bulliform cell patterning phenotypes
from over 60,000 leaf images within this population. A genome-wide
association study (GWAS) (Yu et al. 2006; Lipka et al. 2012) was then
performed to identify loci associated with bulliform cell column num-
ber and width. In addition, the ontogeny of bulliform cell develop-
ment in the expanding maize leaf was analyzed, which informed the
stage-specific isolation of mRNA from the region of bulliform cell
initiation and differentiation in the developing maize leaf. Consider-
ing both these GWAS and transcriptomic data, we propose candidate
genes responsible for bulliform cell patterning in maize.

MATERIALS AND METHODS

Bulliform cell ontogeny and RNA sequencing
Seeds of maize inbred line B73 (accession number: PI 550473) were
obtained from the Maize Genetics Cooperation Stock Center. Three
replicates of B73 plants were grown in Percival A100 growth chambers
with 10-hour day length at temperatures 25� day, 20� night, and relative
humidity of 60%. Plants were grown for 33 days, when the partially
elongated leaf eight was 50-55 cm long. Leaf eight was dissected out
of the whorl and EXAFLEX Vinyl Polysiloxane Impression Material

(Injectable) was applied onto the basal 5 cm of the blade to make
epidermal glue-impressions.

Total RNAwas isolated from the 0 – 2mm region distal to the ligule
of the expanding leaf 8 using the TRIzol Reagent in three replicates. The
NEBNext Ultra RNA Library Prep Kit for Illumina was used to con-
struct sequencing libraries. The Illumina HiSEQ 2500 instrument was
used for 150 bp paired-end sequencing. After sequencing, reads were
aligned to B73 version 4 genome with HiSAT2 (Kim et al. 2015) and
counted with HTSeq (Anders et al. 2015).

Differential gene expression analysis
Differential gene expression analysis was performed in R with the
edgeR 3.3.2 package (Robinson et al. 2010; McCarthy et al. 2012)
comparing the transcriptomes of the 2 mm and 15 - 35 mm regions
distal to the ligule. Gene expression levels were normalized against
library sizes. The default generalized linear model was used to call
differential expressions. Genes with false discovery rate (FDR) less
than 0.10 were declared as being significantly differentially expressed.

Experimental design
A set of 468 maize inbred lines sampled from the Wisconsin Diver-
sity (WiDiv) panel (Hirsch et al. 2014) (Table S1) were evaluated for
bulliform cell patterning traits in adult leaves. The inbred lines were
planted at the Maricopa Agricultural Center, Maricopa, AZ, and the
University of California San Diego, San Diego, CA in 2017. The
layout of the experiment in each location was arranged as an 18 · 26
incomplete block design (Table S2 – S3). Each incomplete block of
18 experimental lines was augmented by the random positioning of
two check inbred lines (N28HT and Mo17). The entire experiment
of 468 unique inbred lines plus checks was grown as a single rep-
licate in each location. Edge effects were reduced by planting border
maize plants around the perimeter of each replicate. Experimental
units were one-row plots of 3.05 m (Maricopa) and 4.88 m (San
Diego) in length with 1.02 m inter-row space. At the end of each
plot there was a 0.91 m alley. Twelve kernels were planted in each plot,
which were later thinned as needed.

Leaf epidermal phenotypic data collection
Plants were grown in two environments under standard agronomic
practices during the summer of 2017: San Diego, CA andMaricopa,
AZ. To help control for differential rates of plant development, we
scored flowering time (days to anthesis) as the total number of days
from planting to the start of pollen shed for 50% of plants/plot. Leaf
samples were taken from five plants per inbred line (plot), when at
least half of the plants in that plot were at anthesis. Each leaf sample
was taken midway between the ligule and the tip of the blade of the
primary ear node leaf, or from one leaf younger.Midrib andmargins
were removed from the leaf sample to ensure that all samples were
derived from themid-blade. After harvesting, leaf samples were stored
in Ziploc bags filled with water overnight at 4�, to ensure full hy-
dration of epidermal cells and to capture an accurate representation
of bulliform cell patterning under hydrated conditions. Following
hydration, leaf samples were pressed onto slides with Loctite Super
Glue Liquid Professional to generate leaf epidermal glue-impressions.
Leaf glue-impressions were air-dried for at least 10 min, and removed
from the leaf surfaces. Leaf epidermal glue-impressions were stored
on slides at room temperature for future imaging. For each glue
impression, three RGB images sampling different areas of the im-
pression were taken with a Zeiss Z1/ApoTome stereo-microscope
in bright field using a 1X objective lens.
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Neural networks in the quantification of
phenotypic data
Convolutional neural networks (CNNs) were employed to quantify
bulliformcell patterning traits in leaf epidermal glue-impression images.
Each imagewasfirst resized to a 968· 1292 grayscale image using Python
module skimage 0.14.2 and cropped to the shape of 960 · 960 with
Pythonmodule numpy 1.16.3. Each image was further split into four
480 · 480 images for faster computation. A training and validation
set of 120 randomly sampled images and a test set of 20 randomly
sampled images were created by manually annotating the pixels that
are bulliform cells with Python module OpenCV 3.3.0 and skimage
0.14.2. Five U-nets were trained on 120 training images in Python
with modules Keras 2.2.4 and TensorFlow 1.10.0.

In the U-nets, a contracting phase and expanding phase were
included as described (Ronneberger et al. 2015). The contracting
phase comprised repeated units of two convolution layers and one
maxpooling layer, and the expanding phase included repeated units
of two convolution layers and one up-convolution layer, after which
the input dimensions were eventually restored.

The output of five U-nets was aggregated as the finalized output
segmentation map by taking the average of the model output for each
pixel. After segmentation, every four 480 · 480 images were put back to
their original 960 · 960 images to quantify the bulliform patterning
phenotypes.

Ten percent of the 120 training images were used as the validation
set to determine the optimal learning rate of 5 · 1025 (different learn-
ing rates and their associated losses are shown in Figure S1). Binary
cross entropy was used as the loss function for the training, validation,
and test set. Trained models are included in File S1. The output of five
U-nets was aggregated as the finalized output segmentation map. After
segmentation, every four 480 · 480 images were put back to their
original 960 · 960 images to quantify the bulliform patterning
phenotypes.

Each segmentation map is a two-dimensional array with binary
elements. The two bulliform cell patterning phenotypes: bulliform cell
column number and width, were quantified as below. In cases where
thereweremore than threecontinuouspixels classifiedasbulliformcells,
one column of bulliform cells was counted. The ratio between the total
number of pixels annotated as bulliform cells and the number of
bulliform cell columns is the average bulliform cell width of the image.
To acquire model accuracies in regard to the bulliform cell patterning
traits, a separate set of 30 images were manually annotated and model
accuracies were derived by comparing the CNN-generated segmen-
tation map and the manual annotation.

Statistical data analysis
To screen the phenotypic data (bulliform column width, bulliform
column number, or flowering time) for significant outliers, univariate
mixed linear models were fitted as follows: (1) each single environ-
ment; and (2) both environments. The model terms included grand
mean and check as fixed effects and environment, genotype, genotype-
by-environment (G·E) interaction (only for models ii), incomplete
block within environment, and column within environment as ran-
dom effects. The Studentized deleted residuals (Kutner et al. 2005)
generated from these mixed linear models were assessed and signif-
icant (a = 0.05) outliers removed. For each outlier screened pheno-
type, an iterative mixed linear model fitting procedure was conducted
for each of the two full models in ASReml-R version 3.0 (Butler et al.
2009). All random terms that were not significant at a = 0.05 in a
likelihood ratio test were removed from the model, allowing a final
best-fit model to be obtained for each phenotype. These final models

were used to generate a best linear unbiased predictor (BLUP) for
each line (Table S4 – S10).

Variance component estimates from the fitted mixed linear
models (Tables S11 – S16) were used for the estimation of herita-
bility (Holland et al. 2003; Hung et al. 2012) for each phenotype
within (plot basis) and across (line-mean basis) environments.
Standard errors of the heritability estimates were calculated with
the delta method (Holland et al. 2003; Lynch and Walsh 1998).

DNA extraction, genotyping and SNP identification
For each of the 468 inbred lines in the WiDiv panel, total genomic
DNAwas extracted fromabulkof young leaves fromasingle plant.The
leaf tissue samples were lyophilized and ground using a GenoGrinder
(Spex SamplePrep,Metuchen, NJ, USA), followed by the isolation of
genomicDNAusing theDNeasy 96 Plant Kit (Qiagen Inc., Valencia,
CA, USA). DNA samples were sent for genotyping-by-sequencing
(GBS) (Elshire et al. 2011) at the Cornell Biotechnology Resource
Center (Cornell University, Ithaca, NY, USA) with restriction enzyme
ApeKI. GBS libraries were constructed and multiplexed 192-fold for
sequencing on an Illumina NextSeq 500 instrument.

Genotypes at 955,690 high-confidence single-nucleotide poly-
morphism (SNP) loci were called with B73 RefGen_v2 coordinates
as described (Baseggio et al. 2019). The raw SNP genotype calls were
filtered to discard singleton and doubleton SNPs (a minor allele ob-
served in a single line), and only biallelic SNPs with call rates greater
than 40% and minimum inbreeding coefficient of 0.8 were retained.
Missing SNP genotypes were partially imputed using FILLIN (Swarts
et al. 2014) with a set of maize haplotype donor files with a 4 kb
window size (AllZeaGBSv2.7impV5_AnonDonors4k.tar.gz, available
at panzea.org). Physical coordinates of the SNP loci were uplifted
to B73 RefGen_AGPv4. To uplift physical coordinates of the SNP
loci to B73 RefGen_AGPv4, a 101 bp flanking sequence for each
SNP (+/2 50 bp from a SNP) was aligned to B73 RefGen_AGPv4
using Vmatch (Kurtz 2003) to obtain the uplifted SNP coordinates.
SNPs with flanking sequences that could not be uniquely and per-
fectly aligned to the reference genome were removed from the data-
set. The final complete set contained 258,690 SNP markers.

Genome-wide association study
Identified SNPs withminimumminor allele counts of 40 (4.28%minor
allele frequency), minimum call rates of 60%,maximum heterozygosity
of 10%, and a minimal inbreeding coefficient of 0.8 were retained,
resulting in 258,308 high-quality GBS SNP markers (Table S18).
After the removal of low-quality images and outliers, 461 inbred
lines remained for use in GWAS in each environment and across
both environments. For each bulliform cell patterning trait, a univar-
iate mixed linear model was used with R package GAPIT 3.0 enabling
Population Parameters Previously Determined (P3D) to conduct the
GWAS (Zhang et al. 2010; Lipka et al. 2012). A subset of 41,259 SNPs
remaining after linkage disequilibrium (LD) pruning (r2# 0.2) of the
complete marker data set in PLINK version 1.09_beta5 (Purcell et al.
2007) was used to calculate the genomic relationship (kinship) ma-
trix. The kinship matrix was calculated with the VanRaden method
included in the GAPIT package with no compression used when
conducting GWAS. Flowering time BLUP values (Table S17) in-
cluded to reduce the confounding influence of flowering time when
detecting marker-trait associations and estimating allelic effects,
together with up to ten PCs calculated from the SNP genotype
matrix (Table S18) to control population structure, were tested as
covariates using the Bayesian information criterion in the GAPIT
package; only flowering time was selected for the GWAS models of
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both buliform traits, in all tested single andmultiple environments. In
GWAS, we found that our implemented univariate mixed linear
model to be superior to a multivariate mixed linear model that mod-
eled genotype-by-environment interactions (data not shown), thus
only results from the univariate GWAS are reported. To control for
the multiple testing problem, the false-discovery rate (FDR) was cal-
culated as described in the Benjamini-Hochberg method (Benjamini
and Hochberg 1995). Significant associations between the trait BLUPs
and SNPs were tested and reported at the 5% FDR level.

Linkage disequilibrium analysis
Linkage disequilibrium (LD) was estimated with squared allele
frequency correlations (r2) as described (Lewontin 1988). For each
top (i.e., most significant) SNP at a locus, r2 between all the other
SNPs on the same chromosome and the top SNP were calculated, and
genes that reside in a window spanned by SNPs in stronger than 0.5
LD with the top SNP were investigated as putative candidate genes.

Data availability
The raw GBS sequencing data were deposited at NCBI SRA with
accession number SRP160407 and in BioProject under accession
PRJNA489924. The raw RNAseq data were deposited at NCBI SRT
with SRA accession numbers PRJNA545465 and PRJNA400334.
Leaf epidermal glue-impression images can be found at https://

de.cyverse.org/dl/d/8CA8D72B-24AF-4887-8899-14460021887A/
resized.zip. The scripts including LD calculation, image processing,
U-net architecture, and running the GWAS are deposited in https://
github.com/pengfei-qiao/Bulliform-cell-deep-learning.git. TrainedU-net
models are deposited as File S1 under https://de.cyverse.org/dl/d/
B352A862-5B08-4373-87EB-9B48356028C6/FlieS1.zip. We request
that this manuscript be cited when using these data. Supplemental
material available at figshare: https://doi.org/10.25387/g3.9939623.

RESULTS AND DISCUSSION

Bulliform cell ontogeny
The strap-likemaize leaf is composed of the proximal sheath and the
distal blade, which are separated by the ligule/auricle blade-sheath
boundary (Figure 1). The sheath surrounds the stem and inserts at
the node, whereas the blade extends away from the stem and is the
major photosynthetic portion of the leaf. Bulliform cells are found
only on the adaxial leaf blade, forming clusters that are 4-5 cells
wide and arranged in linear columns that extend the length of the
blade, in parallel to the lateral veins (Figure 1). Macrohairs are spe-
cialized hairs that develop in the center of the bulliform cell rows
(Figure 1A).

The ontogeny of bulliform cells was investigated in order to gener-
ate an RNA sequencing (RNAseq) library from the site of bulliform cell
initiation, to be used as a crosscheck of our GWAS candidate genes for

Figure 1 Ontogeny of maize bulliform cell devel-
opment. (A) A mature bulliform cell cluster contain-
ing four morphologically distinct cells and a
macrohair on the adaxial surface of an adult leaf.
(B) No differences in cellular morphology are detect-
able in a 2 mm region of blade immediately distal to
the ligule (bounded by the dashed red line) of the
emerging adult leaf 8. (C) 15 mm region distal to the
ligule, showing differences in cell morphology in
files of cell columns, but no distinguishing bulliform
cell characteristics. (D) 30 mm region distal to the
ligule. The red arrow in (D) marks the same bulliform
cell column denoted by the red arrow in (C), which
indicates the cell column in (C) is an early stage of
bulliform cell ontogeny. Orange arrows denote
prickle hairs flanking bulliform cells. Scale bar
200 mm in (A), 2 mm in (B-D).

Figure 2 Grayscale images of leaf epidermal
glue-impressions from two maize inbred lines
showing extreme bulliform cell patterning phe-
notypes. (A) Inbred line MS153 shows 5 bulliform
cell columns in this image, with an average width
of 187.05 mm. (B) A374 has 11 bulliform cell col-
umns with an average width of 63.57 mm. Scale
bar 500 mm.
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bulliform cell patterning. At 33 days after planting, the maize B73 adult
leaf number 8 is still elongating fromameristematic regionnear the base
of the leaf blade, just distal to the ligule as shown in Figure 1B. Epidermal
impressions near the proximal end of the leaf blade, approximately
2 mm distal to the ligule of maize leaf eight, show no morphological
evidence of bulliform cell patterning (Figure 1B). Approximately
15 mm from the ligule, morphological differences in epidermal cells
are observed (Figure 1C), although bulliform cells are not yet distin-
guishable. Thirty mm beyond the ligule, however, cell types such as
prickle hairs and bulliform cells are identified by their distinctive mor-
phologies (Figure 1D). Thus, by proximally tracking bulliform cell rows
that are visible at 30mm from the ligule down to 15mm from the ligule
and lower, it is possible to identify immature bulliform cell rows before
they develop their distinctive morphology. These analyses of epidermal
cell development suggest that the bulliform cell ontogenic zone of the
expanding leaf 8, where developmental patterning of the bulliform cells
begins, is located approximately 2 mm above the ligule (Figure 1B).

RNAseq was performed on leaf tissue harvested from the bulliform
cell ontogenic zone (Figure 1B). A differential gene expression analysis
comparing the transcriptomes of the bulliform cell ontogenic zone
and that of a distal blade interval harvested from 15 -35mm above the
ligule of leaf 8 was conducted. Using an FDR of, 0.10, 15,081 out of
18,264 total transcripts were differentially expressed in the bulliform
cell ontogenic zone as compared to more the distal, differentiated leaf
tissues (Table S19). These data suggest that bulliform cell patterning
is regulated by a complex transcriptomic network. Importantly, this
tissue-specific dataset provides a unique resource toward the selection
of candidate genes contributing to bulliform cell patterning.

Phenotype variability and phenotyping accuracy
To survey the genetic diversity inmaize bulliform cell patterning, leaf
epidermal glue-impressions were obtained from the WiDiv panel,
comprising 461 maize inbred lines grown in Maricopa, AZ, and San
Diego, CA. Five glue-impressions per inbred line at each environ-
ment were sampled and three microscopic images were taken per
glue-impression, for a total of 15,195 images. As shown in Figure 2,
inbred lines comprising the WiDiv panel exhibit extreme variation
in both bulliform column number and cell width (Table 1, Table
S20). To enable faster computation, each image was then subdivided
into four segments. The resulting 60,780 sub-images were input to
CNNs (U-nets) for computational identification (segmentation) of
bulliform cells from the leaf epidermal glue-impressions. An output
segmentationmap, i.e., a binary grayscale image, was generated after
the U-net segmented the raw images (Figure 3). The U-net model
displayed an accuracy of 96.46% for bulliform column number, and
89.33% for bulliform column width.

Both bulliform cell patterning traits were highly heritable, in-
dicating that these bulliform cell patterning traits have a strong genetic
underpinning and are amenable to GWAS. Specifically, heritabilities
on a line-mean basis for columnnumber andwidthwere 0.76 and 0.71,
respectively, across both environments, with plot-level heritability
within each environment varying from 0.70 and 0.86 (Table 1).

GWAS of bulliform cell patterning traits
The genetic architecture of bulliform cell patterning traits was investi-
gatedwith theWiDiv panel. GWAS results individually fromMaricopa,
AZ, San Diego, CA, and combined results from both environments are
summarized in Figure 4 (full datasets shown in Tables S21 – S26).
A single SNP (located at 140,081,599 bp on chromosome 4, with raw
p-values of 1:77· 1027; 1:24· 1023; 3:52· 1026 in AZ, CA, and both
environments combined, respectively) is associated with bulliform n
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column number at the 5% FDR level in the Maricopa environment.
Although this same locus is also the top SNP (i.e., most significant)
associated with bulliform column number across environments, it is
not significant at the 5% FDR level. In addition, this locus is not
among the top SNPs for bulliform column number in San Diego, CA.

To search for candidate genes regulating bulliform column
number, we investigated LD of the top SNP with nearby SNPs on
chromosome 4; nine genes were identified within an 863.0 kb
window having an r2 greater than 0.5 with the top SNP (local LD
decay shown in Figure S2). However, just one of these candidate loci
(Zm00001d051057) is transcriptionally upregulated in the bulliform
ontogenic zone (Table 2), the predicted site of bulliform cell pattern-
ing. Zm00001d051057 is predicted to encode a HISTONE-LYSINE

N-METHYLTRANSFERASE and is homologous to the Arabidopsis
gene ASH1-RELATED3 (ASHR3). ASHR3 encodes a SET-domain
protein conferring histone H3 lysine-36 methylation, with impli-
cated functions during regulation of stem cell division in the root
apical meristem (Kumpf et al. 2014). We speculate that in maize,
this HISTONE-LYSINE N-METHYLTRANSFERASE homolog may
regulate cell division in bulliform column initial cells.

In the same 863.0 kb region near the bulliform column number
SNP, there are five genes downregulated in the bulliform ontogenic
zone (Table 2). These include Zm00001d051065, which encodes a
homolog of the Arabidopsis CAP-BINDING PROTEIN 20 that is
implicated in epidermal patterning (Jäger et al. 2011), and a putative
cell-cycle gene homolog (Zm00001d051061) (Gelsthorpe et al. 1997).

Figure 3 Segmentation output of U-nets from in-
bred line B79. (A) The raw image without annota-
tion. (B) The segmentation map of the U-net output
of the raw image in (A). In (B) white columns are
bulliform cell columns; all other cells in the epider-
mal background are black. Each axis labels the
pixels.

Figure 4 GWAS Manhattan plots for bulliform cell patterning traits. (A) Bulliform column number in Maricopa, AZ. The blue line indicates 0.05
FDR. (B) Bulliform column number in San Diego, CA. (C) Bulliform column number in both environments combined (Maricopa, AZ and San Diego,
CA). (D) Bulliform column width in Maricopa, AZ. (E) Bulliform column width in San Diego, CA. (F) Bulliform column width in both environments
combined (Maricopa, AZ and San Diego, CA).

4240 | P. Qiao et al.



These comprise additional candidate genes regulating bulliform cell
patterning.

Our GWAS identified a single top locus (located at 50,129,023 bp
on chromosome 7, with raw p-values of 8:11· 1027; 7:77· 1027;
2:09· 1024 in AZ, CA, and both environments combined, respectively)
for bulliform cell column width (not significant at 5% FDR in any field
environment). The most significant SNP in Maricopa, AZ, and in both
environments combined, this SNP is also highly ranked in San Diego,
CA. Among the 16 genes found to reside in a 1.93 Mb region spanned
by SNPs having an r2greater than 0.5 with this top SNP (local LD
decay shown in Figure S3; high LDdue to proximity to the centromere),
four are transcriptionally upregulated in the bulliform ontogenic zone
when compared to the bulliform maturation zone (Table 2). Notably,
maize gene Zm00001d019696 is predicted to encode a CYCLIN10 ho-
molog, implicated to function during regulation of cell division. The
Arabidopsis homolog CYCD3;2 mediates response to cytokinin,
and regulates cell number in lateral organs (Dewitte et al. 2007).
Other candidate genes for bulliform cell width include a second
predicted cyclin (CYCLIN-LI-1), as well as Zm00001d019677 and
Zm00001d019688. Zm00001d019677 is predicted to encode a maize
homolog of the Arabidopsis F-box protein VIER F-BOX PROTEIN1,
whereas Zm00001d019688 is homologous to the Arabidopsis gene
DEFECTIVE IN MERISTEM SILENCING 5 (DMS5) that func-
tions in RNA-directed DNA methylation (López Sánchez et al.
2016; Choudury et al. 2019). Intriguingly, the maize ASHR3-like
gene, implicated above in our GWAS of bulliform row number,
functions in histone methylation (Kumpf et al. 2014). These data
suggest that bulliform cell patterning may be epigenetically
regulated.

Despite the high heritability of the bulliform cell patterning traits
described in this study, few statistically-associated GWAS hits are
identified. Several factors may contribute to this phenomenon. For
example, bulliform cell patterning may be conditioned by several to
many loci with relatively small effects, which our mapping pop-
ulationmay have insufficient statistical power to detect. In addition,
these phenotypes could also be controlled by rare alleles (,1% minor
allele frequency) in the population, which would likely not be in
strong LD with the more common in frequency SNPs tested in
GWAS. Lastly, extremely diverse environments may have dramatic
effects on bulliform cell patterning phenotypes, thus why the stron-
gest associations were mainly identified in the Maricopa environ-
ment. Plants grown in Maricopa, AZ, are predicted to undergo
extreme water conservation responses, as compared to the same
inbred lines cultivated in the milder climate of San Diego, CA. Spe-
cifically, the Pearson’s pairwise correlations between these two envi-
ronments for column number and width are 0.60 and 0.56,
respectively, which is suggestive of genotype-by-environment ef-
fects. Additional environmental replicates may help dissect the
genotype-by-environment effects of this potentially genetically
complex trait.

This study combines developmental analyses and stage-specific
transcriptomics with the high-throughput microscopic phenotyping
power enabled bymachine learning, together with quantitative genetics
and genomics, to investigate the genetic architecture of bulliform cell
patterning.Althoughamicroscopicphenotype, bulliformcellpatterning
is an important agronomic trait with implications in macroscopic
phenotypes such as plant architecture and drought resistance. We
identify five candidate genes in the regulation of bulliform column
number and width. Future reverse genetic analyses, and transcriptomic
studies of bulliform cell patterning mutants, can further investigate the
roles of these candidate genes in this important yet understudied trait.n
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