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There is a general expectation that the laws of classical physics must apply to biology, particularly the
neural system. The evoked cycle represents the brain’s energy/information exchange with the physical
environment through stimulus. Therefore, the thermodynamics of emotions might elucidate the neuro-
logical origin of intellectual evolution, and explain the psychological and health consequences of positive
and negative emotional states based on their energy profiles. We utilized the Carnot cycle and Landauer’s
principle to analyze the energetic consequences of the brain’s resting and evoked states during and after
various cognitive states. Namely, positive emotional states can be represented by the reversed Carnot
cycle, whereas negative emotional reactions trigger the Carnot cycle. The two conditions have contrasting
energetic and entropic aftereffects with consequences for mental energy. The mathematics of the Carnot
and reversed Carnot cycles, which can explain recent findings in human psychology, might be construc-
tive in the scientific endeavor in turning psychology into hard science.
Crown Copyright � 2021 Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
1. Definitions used in the test

1.1. Mental energy (intrinsic motivation)

Cognitive and physical effort is associated with different cost
functions [77]. Mental energy entails metacognitive monitoring,
related to intrinsic motivation, which predicts enhanced perfor-
mance, learning, and creativity, and it plays a vital role in person-
ality development and wellness across the lifespan [130,131]. It is
a long-term ability based on mental fluidity that allows trust,
belief, and confidence [38]. Intrinsic motivation allows a consistent
exertion of mental effort toward achievement by increasing future
freedom of action.
1.2. Emotional temperature (social temperature)

Temperature is the manifestation of thermal energy in physics,
and its social analog is emotional temperature. As particles’ kinetic
energy form temperature, the persistence of opinion enhances the
willingness for interaction and forms social temperature [34,35].
Supply abundance ensures low social temperature, with a ten-
dency for cooperation and generosity [161]. When access to sup-
plies reaches a critical level, competition for resources replaces
cooperation [159]. On a high social temperature, high-frequency
information transfer through synaptic connections promotes
deterministic actions.
2. Introduction

Rudolf Clausius introduced the concept of entropy to measure
the amount of energy in a system that cannot produce work. Fur-
ther developments in statistical mechanics and gas dynamics in
the ensuing years by Boltzmann, Gibbs, and others [102] led to a
reinterpretation of the concept. For example, information entropy
(Shannon’s entropy) is the stochastic data information production
rate [145]. More recent investigations explored information and
entropy as one of the critical entities of biological systems such
as the living brain [80]. Entropic considerations of the neuronal
system opened new vistas in understanding brain function and
may even offer new ways for diagnosis and therapeutic purposes
in psychology and cognitive sciences [10,52,63,139,154].

Extensive studies in physics, chemistry, and biology have
focused on the relationship between information and energy
[16,125,42,33]. Neuroscience, psychology, psychiatry, and behav-
ioral sciences aim to understand the relationships and exchange
between information and energy in the brain and cognition
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[33,24]. Neurophenomenology addresses the hard problem of con-
sciousness via scientific research. A growing literature combines
neuroscience with phenomenology in studying experience, mind,
and consciousness [8,66,116].

Network harmonics arising from the interplay between excita-
tion and inhibition can describe the large-scale cortical activity
during sensory processing, and this critical relation fits the spatial,
temporal, and neurophysiological changes associated with differ-
ent mental states. As the primary source of regular interaction,
the sensory system places the brain within the environment’s ther-
modynamic cycle. In the absence of stimuli, which is commonly
called the resting state, mind-wandering, autobiographical mem-
ory, future thinking, and introspection [55] are supposed to inte-
grate motor and sensory information into an abstract model of
the world [111]. Thus, resting-state networks (RSNs) represent
the brain’s internal model [43] based on the organism’s past and
present [155]. Following this, the recovery of the resting state
ensures the gradual evolution and temporal stability of the self
and permits the evoked cycle’s thermodynamic considerations.

A critical level of energy turnover and organization sustains
consciousness and via distinguishes it from unconscious states
[119]. Entropy in several brain areas correlates with intelligence
in verbal and performance measures [138,153] and creativity
[146]. In contrast, dementia, such as Alzheimer’s, was associated
with reduced complexity [175]. Additionally, the entropy of occip-
ital, frontal, and temporal lobes’ clusters was significantly posi-
tively correlated with the Mental State Examination scores and
significantly negatively correlated with Functional Assessment
Questionnaire scores and Dementia Rating scores. More severe
cognitive impairment and daily function disability were related
to catastrophic brain entropy reduction [174]. According to
resting-state entropy measures, an almost equal likelihood occur-
rence of oscillatory neural activity detected in field potential and
EEG recordings as ripples represent high resting entropy. More-
over, multiscale entropy (MSE) and functional connectivity (FC)
show higher associations in regional fMRI signals at lower tempo-
ral frequencies [173].

Emotions instigate suicide, crime, or inspire creative genius.
Historically, philosophers, artists, writers, and composers under-
stood emotions better than scientists. Sigmund Freud’s attempts
to penetrate the hidden structure and personality processes paved
the way for scientific analysis of the psyche. He produced a reliable
description of the inner life and noted the consequences of emo-
tions for motivational, psychological, and physical problems. Sen-
sory perception creates the belief in self-agency; the belief in
free will, which obscure the real origins of motivation.

Although most emotions underlying the innate mechanism of
perception, knowledge-acquisition, and decision-making occur
below the consciousness threshold, they represent the brain’s fun-
damental motivation [9,34,35], which makes them essential tools
of advertisements, for example [124]. Distinct emotions motivate
automatically guiding physiological, cognitive, and behavioral
responses, which can even contradict conscious intentions. The
energy need for emotions and conscious focus involves a broad
range of energy utilization based on glucose metabolism and ATP
production. Indeed, various mental states, such as mental effort
(focus), display corresponding variations in energy use
[69,136,135,134,167]. Therefore, part of the energy-requirement
of conscious states [19,100,83,119,158], Inzlicht et al., 2018
[184]) might be to drive oscillations beyond the spatial constraints
of the connection map.

Physical principles have been increasingly used in the study of
cognition [54,75,137,142,150,158]. Recent efforts in consciousness
science have studied the thermodynamic consequences of signal
processing for single neurons [51,158] and the whole neural sys-
tem [36,37,147]. In line with the above efforts, the estimated ener-
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getic cost of emotions on the brain’s energy cycle awaits
resolution. In the following, we worked out the mathematical
treatment of the thermodynamic consequences of basic emotions
posited by the fermionic mind hypothesis (FMH) [34,35]. We will
study the energy cost of neural computation by considering the
evoked cycle as the Carnot engine. The thermodynamic analysis
of emotions can considerably extend our collective understanding
of motivation and human behavior.
3. Discussion

3.1. The role of temporal orientation in perception

Current neuroscience recognizes that cognition and thoughts
are strongly tied to neural activity. The order associations in learn-
ing, speech, thinking, and muscle coordination dictate our psychol-
ogy’s temporal organization [1]. A stimulus representing spatial
relationships arrives in the brain, where the sensory organs trans-
form signals into a temporal projection [147]. Neuroimaging stud-
ies indicate that cognitive processes within Cartesian coordinates
[19,38] differentiate remembered past, perceived present, and
imagined future [43,2].

One of the benefits of temporal orientation is distilling experi-
ences into memory and learning. In this regard, cognitive ‘‘mem-
ory” boosts the ability to control the future. Information
compressing reduces processing error (such as Laplace transform)
in representing experience and memory retrieval [41,166]. Simi-
larly, in the different phases of deep learning, representation
depends on entropic effects that compress data [53,151].

Therefore, a predictive mind must be a holographic system [17],
where information compression and orthogonal transformations
generate a high fidelity manifold [132]. Because the principle of
least action guides objects’ movement when moving in space,
experience appears to give rise to predictive processing. Intelligent
systems optimize their action repertoire between the past and the
future [13,37]. Cognition represents the stationary temporal trajec-
tory on the synaptic complexity map, representing a potential,
the so-called ‘‘mental energy” [29,32,40], Schwartz et al., 2005
[185]).

According to emotion theories, emotions have adaptive pur-
poses in human motivation [3,149,148,162,163]. The quality of
emotions, such as courage, trust, belief, is an integral part of the
neural landscape and represents real, measurable intellectual abil-
ities. Athletes having the same diet, fitness, and coaching regimens
produce widely different achievements. The recipe for winning
requires a unique personal quality. Emotional intelligence appears
to be the primary predictor of runners’ finish time [31,114,127].
Emotional intelligence, the ability to identify and manage emo-
tions, is fed by mental energy, which supplies people with the abil-
ity to mitigate the consequences of fatigue [94] and negative affect
[78]. Rather than personal intention, specific behavior correlates
better with peers’ decisions [56]!

The often-used term, mental energy, is a consistent and long-
term ability [32,40], Schwartz et al., 2005), arising from real, for-
midable abilities, such as persistence and determination.
Decision-making, empathy (Cameron et al., 2017 [186]), focus,
and vigilance [19,100], Zohar et al., 2003 [187]) represent substan-
tial energy needs, making their availability a personal privilege. For
example, fatigue and negative states can compromise performance
(Loy et al., 2018 [190]; [106], whereas motivation, such as the
expectation of reward or goal-enhancing events, mitigates fatigue
and can push performance beyond past limitations [100], Zohar
et al., 2003). Depression is an inability to act or even pay construc-
tive attention [73]. For example, individuals with depression may
want to stop themselves from ruminating but are often unable to
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do so because the negative thought pattern is primarily automatic
[157].

It has recently been shown that near orthogonality of large
dimensional random vectors can produce holographic projection
[97]. Sensory perception translates spatial relationships into tem-
poral rhythms, an orthogonal organization, by the hippocampus’s
place cells [169]. The holographic projection integrates temporally
distant identities in perception and decision-making to form and
orient the self [34,35,37]. Scale-free activations provide a ‘‘tempo-
ral integration” with the faster frequencies nested within the more
powerful slower ones. Therefore, temporal manifestations of con-
sciousness arise from the synchrony of psychological and neuronal
qualities. The temporal activities of the resting state correlate with
self-consciousness [179]. The evoked states organize around the
resting state’s fundamental constancy (reviewed by [155], allowing
the thermodynamic consideration of the evoked activities.
4. Thermodynamic considerations of brain activities

Physical processes can be dissipative, reconstructing the past,
and intelligent, those that anticipate the future [28]. The first kind,
exothermic processes dumps entropy, and energy into its environ-
ment, whereas the latter endothermic actions absorb entropy
while requiring energy to operate. The thermodynamic computa-
tion of the cortical neuron provides an example of the second pos-
sibility. Fry analyzed the thermodynamics of action potentials
generated by one neuron [51]. The quasi-hierarchical nature of
the brain allows us to generalize his conclusions for the energy-
information exchange of stimulus. Extending the thermodynamic
considerations onto the whole brain delineates the crucial role of
energy in cognition [36,37,147].

The Carnot engine is a theoretical thermodynamic cycle first
proposed by the French engineer Sadi Carnot [144]. It defines the
maximum possible efficiency of a heat engine during converting
heat into work when working between two reservoirs. It has been
shown that cognitive or computational effort, such as thinking,
focus, and even meditation, is taxing [77,101]. Conscious control
drains mental resources in proportion to task difficulty
[176,170,103], indicating their connection to energy consumption
and thermodynamics (Cameron et al., 2017; Zohar et al., 2003;
[19,100,147].

The maximum amount of work a thermodynamic process on a
constant volume can perform is equal to the negative of the change
in the free energy [171]. In the brain, this leads to the cognitive cost
of mental effort. Demanding cognitive tasks, such as mental arith-
metic, lead to a subjective feeling of mental exertion [68]. Strenu-
ous tasks lead to cognitive fatigue, characterized by a subjective
dimension – i.e., feeling of exhaustion, a decreased willingness to
engage in mental activities [19,100,64], Loy et al., 2018; [106],
Zohar et al., 2003).

The brain’s regulation of its complex electrical activities satis-
fies the laws of thermodynamic [25]. The brain’s frequency-
dependent energy consumption maintains its self-organizing
activities and fuels the modification of synaptic maps and corre-
sponding mental change [29]. Excitation produces an intricate play
of sharply changing, the so-called evoked potential [160]. As a
computing object [51,36,158,93], evoked activities reflect an
enhanced ‘‘temperature.” Early consideration of brain temperature
measured disequilibrium and heterogeneity at various spatial and
temporal scales [117]. However, emotional temperature relates to
the degree of information transmission ability. The ability to trans-
mit information increases with the frequencies (higher frequencies
transmit more information than lower oscillations per unit time).

The sensory system is a spontaneous information transmitter,
governed by a stimulus. Potentials and electric flows between
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the cortex and the limbic brain formulate automatic and involun-
tary energy-information exchange with the environment. The
resulting brain frequencies depend on the environmental entropy.
It is generally accepted that order, beauty triggers calm, happy
states with lower frequencies than the stressful states originating
in environmental disorder. Therefore, the brain ‘‘pays” from the
sensory information by the elevated brain oscillations. Sensory
perception can be considered a thermodynamic cycle [36,51].

The recurring resting-state ensures the particle-like stability of
the mind, according to FMH [34,35]. Electromagnetic gradients
form highly fluid, wave-like activation patterns on the cortical sur-
face, positively correlated among spatially distributed cortical
areas (reviewed by [110]). The brain’s harmonic modes, defined
as connectome harmonics, display self-organization of frequency-
specific building blocks [43,5]. We shall investigate how thermody-
namic principles ascribe correlated brain activity, i.e., the thermo-
dynamic cost of neural computation. Recent studies have shown
examples of the proposed loops, such as specialized learning. Here,
the increasing synaptic strength forms an attractive loop, reducing
the degrees of freedom. However, the second phase of learning
enhances the degrees of freedom by integrating the learned infor-
mation via the reversed Carnot cycle. The synaptic flexibility corre-
sponds to self-confidence due to greater oversight of concepts and
understanding [181].
4.1. Negative emotional states

Despite their varied typical cultural and brain activity profiles
[74,90,105,112,164,182], and novel relationship between task
and resting-state brain activity [57], emotions represent only pos-
itive or negative energy conditions [62,71]. The activity patterns
elicited by different tasks from the Human Connectome Project
can also be reconstructed from a minimal subset of functional har-
monics, indicating the interrelated relationship between task and
resting-state brain activities.

Network harmonics are sufficient to track large-scale cortical
activity during stimuli processing [58]. Conscious states are related
to different connectome-harmonic repertoires [6,92]. Recent stud-
ies corroborated the connection of slower oscillations with positive
emotions and enhanced brain frequencies with negative mental
states [12,143]. The central tenet here is that by considering the
brain’s energy state (mental energy) as an analog to potential
energy in physics, the Carnot cycle can model the brain’s operation
(Fig. 1).

Negative emotional states have more significant energy
requirements than positive emotional or neutral mental states
[69,71,136,135,134]. In negative states, the detailed oscillations
dissipate energy, narrow focus (deterministic), and reduce tempo-
ral dimensionality [165] and forming a temporal pressure.
Enhanced brain frequencies may trigger long-term potentiation
[14], which increases the likelihood of activating the same synaptic
path [61]. Repetitive activations give rise to regret, remorse, and
aggravation [27]. Stress and anxiety reduce the degrees of freedom
(Rowe and Fitness, 2018 [188]), blinding people for the possibili-
ties open to them (Lupien et al., 2007 [189]). In anxious individuals
[108], decreased theta band synchrony typically produces task-
irrelevant signals and inferior post-error behavior [68].

Therefore, managing emotions is like managing a car’s engine;
operating the air-conditioning, for example, causes the fuel econ-
omy to deteriorate. Likewise, attention determines the outcome
of mental effort [87]. For example, children’s views about abilities
and intelligence can set them on different trajectories of motiva-
tion and learning (see [18] for review) toward self-regulation and
motivation [60] or failure. Therefore, attention and focus is the
most precious resource to waste.



Fig. 1. The consequences of intelligent computation. The neural system uses
substantial resources to recover the resting state during the evoked cycle. However,
neural computation changes the synaptic complexity, which has consequences to
the organism’s ability to respond to future challenges. The reversed Carnot cycle
accumulates energy and entropy (the entropy at the end of the cycle is A0 where S
(A0) > S (A)). In contrast, the entropy at the end of the Carnot cycle is A, 0 where S
(A0) < S (A).
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After having received a signal containing DI bits of information,
a system of the brain can perform at most

W ¼ �kBT DT

units of work on its surroundings using that information.W the sys-
tem’s performance of work kB is Boltzmann’s constant, and T is the
temperature of the system in Kelvin.

The reduction of entropy in negative emotions is an exothermic
condition, which damages emotional regulation and intellect
through deterministic oscillations. Exothermic brain states radiate
out energy via aggravation, critical tendency, or physical violence.
Another facet of mental damage concerning information entropy is
that it might occur due to the unsustainable accumulation of infor-
mation. In other words, the extended effort to process information
overwhelms the neural system and deteriorates into immune and
mental problems [72,79].

Negative affect was associated with increased medial PFC posi-
tive reappraisal activation and decreased positive reappraisal acti-
vation in the left insula and cognitive flexibility regions (putamen
and cerebellum) [67]. The increase of the entropy of the environ-
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ment, on the one hand, parallels with a loss of synaptic complexity
and resting entropy, on the other hand (Rowe and Fitness, 2018).
Thus, mental energy degradation might be the first symptom of
mental, hormonal, and immune problems. Although the adverse
effects are hard to notice, mental degradation accumulates over
time.

For example, failure of emotional management can lead to the
explosive ’boomerang’ effect through violence towards others
and the self—following emotional suppression [85,129]. Suppres-
sion cannot easily be separated from subsequent discharge. Emo-
tional suppression also lower authenticity, emotional well-being,
relationship quality, and responsiveness to loved ones [86]. Sig-
mund Freud has pointed out the role of sexual inhibition in dis-
abling maladjustments and emotional inhibition in developing
chronic conditions, such as cancer [70]. Emotion suppression has
been associated with a range of adverse health outcomes, causing
especially damaging outcomes in the long-term [85,129].

Shame is another difficult emotion to deal with, leading to two
general strategies: attacking the self or attacking others [172].
Directing the accumulated energy inward triggers a cascade of
events, such as the production of stress hormones [7] and immune
suppression (reviewed by [109,105]).

Anxiety and depression represent mental energy-poor states
[140,177]. Studies in psychology have found that insecure and
guilty people perceive themselves as heavier and their chores more
burdensome [30]. In recent rodent’s experiments, repeated stress
exposure, which reduced plasticity by corrupting connectivity
within the medial PFC, drove depressive behavior [89,180]. It
should also be noted that depression is associated with the stagna-
tion of vital processes and an incapacitating slackening of the flow
of time [157]. Depressive symptoms and depression-related nega-
tive cognitions were negatively correlated with emotional flexibil-
ity [11] and reduced synaptic complexity [175]. The severity of
cognitive impairment was positively related to brain entropy
reduction [174].

Both the slower oscillations (positive emotions) and enhanced
brain frequencies (negative mental states) expand time perception
[113,126]. Their contrasting physiologies arise from the fact that
low frequencies form negative, whereas high frequencies form pos-
itive temporal curvatures [165].

Recent studies have confirmed the topological nature of sensory
representation. Cognitive states warp spatial representations
throughout the brain [76]. The slowing of time perception in both
positive and negative emotional states and their contrasting phys-
iological consequences has not been addressed in neuroscience. For
this purpose, highly sensitive temporal methods, such as cortico-
electrogram, would be useful. The dimensionality transformations
of time caused by brain frequencies permit the possibility that
mental energy changes might represent differences in mental
volume.

A closed system can exchange energy (as heat or work) in ther-
modynamics, but not matter, with its surroundings. Biological
organisms are open systems. They exchange energy with their sur-
roundings, and they consume energy-storing molecules, do work,
and release metabolites. The above description does not apply to
the brain. Although the blood supplies the brain with oxygen and
energy source, sensory perception forms a closed cycle
[65,91,115]. Energy-information exchange with the environment
exclusively occurs via the sensory organs. The sensory system is
a vehicle for information exchange.

Steady-state thermodynamic engine processes formulate a
closed loop with a vanishing integral. Thus, integration of the dif-
ferential energy balance dE = dQ � dW over the full cycle yields

W ¼
I

dW ¼
I

dQ ¼ Qin � Qout
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where W and Q are the total work, and net heat exchanged for the
cycle. Moreover, Qin > 0 is the total heat transferred into the cycle,
and Qout < 0 is the total heat transferred out. The network and net
heat are positive for a clockwise process—a heat engine— and are
negative for a counter-clockwise process—a heat pump.

In the following, we examined the thermodynamic conse-
quences of negative emotions. The amount of thermal energy
transferred in the Carnot cycle is the following:

Q ¼
I B

A
TdS

The area inside the cycle will then be the amount of work done
by the system over the cycle.

W¼ H
PdV ¼ H ðdQ � dUÞ ¼ H ðTdS� dUÞ ¼ H

TdS� H
dU ¼ H

TdS
Since dU is an exact differential, its integral over any closed loop

is zero: it follows that the area inside the loop on a T-S diagram is
equal to the total work performed

The amount of energy transferred as work is

W ¼
I

PdV ¼
I

TdS ¼ ðTH � TcÞðSB � SCÞ

The total amount of thermal energy transferred from the hot
reservoir to the system will be

QH ¼ THðSB � SAÞ
The efficiency ƞ is defined to be:

g ¼ W
QH

¼ 1� TC

TH

For the reversed Carnot cycle, the efficiency is defined to be:

greversed ¼
TH

TH� TL
¼ 1= 1� TC

TH

� �

where

W is the work done by the system (energy exiting the system as
work),
TC is the heat taken from the system (heat energy leaving the
system),
QHis the heat put into the system (heat energy entering the
system),
TC is the absolute temperature of the cold reservoir, and
THis the absolute temperature of the hot reservoir.
SBis the maximum system entropy
SAis the minimum system entropy
P is the pressure, V is volume
dU is the change in internal energy U of the system

Intellect is known to be related to the production of an expan-
sive range of emotions—the smaller the temperature difference,
the smaller the efficiency. Because emotions represent the brain’s
operating temperature, they represent the mind’s intellectual lim-
itations. The greying of emotions during aging (smaller tempera-
ture difference) might explain the learning difficulty of older
people. The greying of emotions also appears to be one of the first
symptoms of many mental diseases [4,104], such as dementia
(FTD) and AD [22] and Alzheimer’s [4,15,175]. Mental decline (loss
of mental energy) correlates with mental and emotional
limitations.

The loss of signal complexity is also proportional to the degree
of cognitive decline [55,89]. Mental and emotional rigidity in
presymptomatic patients might result from hyperconnectivity.
Enhanced structural connectomics (loss of complexity) may relate
to problems of emotional regulation [45,152] and corruption of
cognitive functioning [15,133]. Therefore, entropy parallels
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degrees of freedom in the resting brain. The presymptomatic struc-
tural changes listed above are possible precursors of emotional
problems.

Next, we will examine the synergy between the brain state and
the environment.

A topological view of this synergy between the brain and the
environmental energy cycles exhibits strong proximity both spa-
tially and descriptively. The spatial strong proximity [120] of the
brain and environment is in the form of temporally overlapping
cerebral energy and environmental energy readings (e.g., the
occurrence energy highs and lows of the one set of readings over-
laps with the occurrence similar readings of highs and lows in the
other during the same timeframe). For example, let A and B repre-
sent nonempty sets of recordings of brain and environmental
energy recordings that are temporally concomitant in situ. The spa-
tial form of strong proximity is denoted by From the strong prox-
imity axiom ([121], p. 16), we have

A d
w
B implies A \ B ¼ £;

i.e., the two sets of energy readings overlap. There is a also a
descriptively strong proximity between the two sets of energy
readings. The descriptive form of strong proximity is denoted by

d
w

#
The subscript # refers to a mapping #: A ? Kn on the set of read-

ings A into an n-dimensional feature space Kn defined by # xð Þ (a
feature vector in Kn) that is a feature value of a reading x 2 A. Sim-
ilarly, there is a mapping #: A ? Kn on the readings in B into the
feature space Kn The two sets of energy readings with common
descriptions give rise to a descriptive intersection (denoted by
\#) of the two sets:

A\#B ¼ x 2 A [ B : #ð Þ xð Þ 2 # Að Þ& xð Þ 2 # Bð Þf g;
i. i.e., there is at least one cortical energy reading (e.g., cortical

energy amplitude) in A that has the same description as an envi-
ronmental energy reading (e.g., environmental energy amplitude)
in B. From these structures, we can elicit a strong descriptive prox-
imity between A and B ([121], p. 28-29) in terms of

A \ B ¼ £ implies A\
#
B–£:

i.e., overlapping energy readings implies an overlap between the
descriptions of the two sets of readings. This observation leads to
the following descriptive proximity property:

A d
w

#
B ¼ £ implies A\

#
B–£:

The importance of this pair of proximities lies in the fact it is
then possible to derive Leader uniform topologies on pairs of sets
of energy readings. This is done in the following manner. Start with
a collection of sets of cerebral energy readings [2Ai and a collection
of environmental energy readings [2Bi gathered within the same

timeframe. For each given subset 2 [2Ai , find all B 2 [2Bi such that

A d
w

#
B. Doing this for each given set of cerebral energy readings leads

to a collection of clusters of strongly near sets of readings. In effect,
we have topologized the collections of energy readings by intro-
ducing a Leader uniform topology [88,122] on the space of energy
readings. An essential outcome of topologized energy readings is
the introduction of a search space in which clusters of readings
exhibit spatial and descriptive proximities.

4.2. Consequences for intellect (positive emotions)

The system’s history and current state are just as crucial in
determining the quality of neuronal activation as the stimulus
itself [123]. Thus, the observer’s (i.e., the brain) state determines



Fig. 3. The effects of emotions on mental freedom. Positive emotions and meaning
expand the freedom (top). Aggravation and anxiety waste time and energy, causing
mental rigidity (bottom).
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the stimulus’s information value. The observer’s role in informa-
tion processing means that information processing is holographic;
the degree of comprehension or understanding (manifested as
increasing synaptic complexity) has a high subjective quality, the
observer effect. High performers in intelligence tasks showed
lower brain activations, arising from slower oscillations [12,143]
and indicating higher neural efficiency (Haier et al., 1988 [191];
Poldrack, 2015 [192]; [168]. Cognitive flexibility also predicted
intellectual humility and openness to new evidence [183].

Research has shown that positive emotions play a pivotal role in
coping, adjusting to life changes, making friends, engage in proac-
tive social relationships with others [39,118], self-reliance, and
flexibility thinking [96]. For example, students’ study-related pos-
itive emotions were related to better academic performance
through positive relationships with their levels of psychological
capital (i.e., efficacy, hope, optimism, and resilience) [20]. Improv-
ing self-regulation and motivation is possible even in early child-
hood [60].

Because the temporal dimensionality [165] is inversely propor-
tional to stress, the temporal expansion permits patience via self-
control. A mental slowing down affords ‘‘time” for a balanced
response. Therefore, self-control is part of emotional intelligence,
and it is often associated with mental energy and even intellect
[44]. It has been proposed that these endothermic processes may
control the future by enhancing Intellect [51,178], see Fig. 2.

The enthusiasm and energy that characterize awe and other
positive emotions reflect an information-free state. Because low
frequencies lack details (Fig. 3, top) and engage broader cortical
areas, they inspire associative representations [82,95]. The slower
oscillations can access a high number of microstates to produce
almost any thought. Positive emotions, such as joy, interest, con-
tentment, and love, broaden the thought-action repertoire,
increasing the degrees of freedom [46]. In line with the aforemen-
tioned slow oscillations, the temporal variability of the resting-
state connectivity, i.e., high entropy correlates with fluid intelli-
gence [181].

In psychology, mental energy fuels intellectual qualities. The
transformation of incoming sensory information into neural com-
plexity might be the source of increasing personal intellect. The
reversed Carnot cycle increases the mental energy and, conse-
quently, the neural system’s resting entropy (Figs. 2 and 3). The
synaptic map represents an energy potential for future action.
Mathematically, Landauer’s principle might explain how the infor-
mation value of stimulus transforms into synaptic complexity, i.e.,
mental energy [84].

E = kB T ln 2

Entropy in a physical system is the number of existing micro-
states, but in the brain, it is the number of possible neural config-
urations of synchronized or connected brain networks. Access to a
Fig. 2. The evolution of mental energy. The loops of energy turnover centered on
the resting state provides the basis of mental changes and intellectual development.
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significant number of neural states predicts complex behavioral
performance (mental energy). Therefore, in contrast to the disorder
of the physical world’s information-rich condition, resting entropy
represents the brain’s energy potential. The difference might arise
from the temporal, holographic nature of neural computation.

The efficiency of the Carnot cycle determines the outcome of
interaction (and the resulting emotions). It is important to note
that the working fluid absorbs heat from the boiler in the Carnot
engine and releases heat to the cooling water in the ‘‘condenser.”
The limited work produced by one cycle turns work production
into a gradual stepwise process. The same requirement applies to
the brain. The limited synaptic organization achieved in one cycle
means that the mental changes accumulate over time. Learning,
mental transformation takes repeated practice over time.

Our calculations support findings in psychology and social
sciences that psychological change and mental evolution occurs
in close synchrony with the environment. Beginning with the
famous studies by Selye [141], many have shown the role of the
environment in behavior. Spontaneous brain activities (intrinsic),
and those triggered by a stimulus (extrinsic), represent the neural
underpinning of reasoning [50]. The environment’s role in trigger-
ing mental changes limits free will for determining the Carnot cycle’s
direction, which entails the attitude.

The thermodynamic considerations of emotions can explain the
compounded nature of attitude in long-term well-being. In agree-
ment with famous studies in psychology, attitude, and acceptance
have an immense role in coping with personal and professional
challenges [21]. The above mental characteristics lend emotional
stability, resilience, and persistence.

Our argument might explain the long-term contrasting conse-
quences of mental changes [107] due to positive and negative psy-
chologies (Fig. 3). Therefore, learning and spiritual practices can
overturn the adverse circumstances; inversely, cynicism can neu-
tralize outside support. Our investigations explain that mental
energy, being an essential consideration in psychology, is the
brain’s structural quality [29,32,40], Schwartz et al., 2005).
4.3. Social consequences

Our analysis attempts to connect basic research in neuroscience
with psychobiology, clinical diagnostic and therapeutic insights.
We show how the temporal orientation of cognition creates a bal-
ance between the mind’s (top-down) processing of information
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(mental energy) and cognition as sensible (bottom-up) reception of
information (sensory processing).

The above argument shows the importance of analyzing emo-
tions based on valence and arousal [62]. Emotional valence
describes the extent to which an emotion is positive or negative,
whereas arousal refers to its intensity, i.e., the associated emo-
tional state [23] and reviewed by [128]. We have also shown
how mental energy evolution leads to Bayesian belief updating
and the Markov decision process [48,47,50,49].

The social environment is an excellent determinant of the
mindset of behavior in animals and people. Positive psychology
recognizes the close relationship between social climate and
resource availability. In the late nineteenth century, Peter Kropot-
kin found that species from bacteria and fish to mammals and
birds appear to lean toward generosity and cooperation when
faced with abundance. From ants and bees to falcons, swallows,
gazelles, and buffalos, as well as herds of wild horses, tribes of
dogs, wolf packs, and communities of people form cooperation
and generosity when faced with biological richness and supply
abundance [159,26,81]. Our results suggest that positive environ-
ments occur encourage the generosity and cooperation by support-
ing mental energy growth. Desirable population structures
promote cooperation [161].

When the reduction of supplies reaches a tipping point, gen-
erosity disappears [159]. After the tipping point, defections sweep
through the population (Hoek et al., 2016) [193], the lack of
resources inflicts a cognitive burden, which negatively affects IQ
[59], Makharia et al., 2016; [98]. The poor’s lack of generosity orig-
inates in mental exhaustion rather than personality defects. The
above considerations also might explain poverty’s role in negative
personality transformations. Conspiracy theories, terrorism, and
crime reflect the wide-spread distrust in governments, public insti-
tutions, and even science. We propose that the loss of degree of
freedom shown in our earlier discussion occurs through distrust.
Therefore, interventions to provide basic social safety are effective
to raise the human race’s overall cognitive performance.
5. Conclusions and future directions

We connected the thermodynamics of the brain’s evoked cycle
to the psychology of motivation. The connection of slower oscilla-
tions with positive emotions and enhanced brain frequencies with
negative mental states inspired our consideration of the brain’s
energy state (mental energy) as an analog to potential energy in
physics. Our analysis supplies a mathematical connection between
neuroscience and psychology by uncovering emotions, the forces
of motivation, as reflections of the brain’s energy balance. Recog-
nizing emotions as the energy states of the brain can provide more
effective tools in psychology.

We have shown that basic physical and information-theoretic
principles can describe intelligent computation; the endothermic
slowing of time perception might reflect information transforma-
tion into intellect. The reversed Carnot cycle enhances synaptic
flexibility, the ability to produce new thoughts and ideas. There-
fore, supportive environments and basic personal safety inspire
generosity, confidence, trust, and cooperation. Positive emotions
are conducive to success, by increasing future degrees of freedom.

The Carnot cycle equivalence indicates that lower resting
entropy leads to mental degradation via an exothermic process.
Although intermittent short time stress can be beneficial (preserve
mental energy accumulation), repeated or extended exposure to
stress, such as systemic adversity, such as poverty, cause of adverse
personality transformations. Aggravation, rumination, and critical
tendencies dump energy onto the environment and induce distrust
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through mental dysfunction. Attractive loops become the source of
repetitive thought patterns, the loss of the degrees of freedom.

Supporting mental growth can be instrumental in reversing the
predicted global acceleration of mental diseases. The above under-
standing is an essential piece for policy guidance for governments
in navigating the post-pandemic milieu. Verifying the thermody-
namic underpinning of mental changes could revolutionize psy-
chological and social sciences and support social and educational
reforms.

The ability to transform information into energy, i.e., intellect,
seems to be the brain’s essential quality (as shown by Landauer’s
principle). Gradual synaptic changes accumulate mental energy,
but the mind updates its beliefs in a discrete fashion. The energy
gain of the neuronal system is intellectual evolution, which is clo-
sely intertwined with the environment’s entropy. (The Carnot
engine’s working fluid absorbs heat from the boiler and releases
heat to the environment.)

The immense role of the environment in mental changes also
proves that free will is limited to choosing the Carnot cycle’s direc-
tion. Our calculations might contribute to the impetus for turning
psychology into hard science. The above considerations might
inspire answers to philosophical and scientific questions such as
the hard problem of consciousness, the relationship between brain
and mind, and even free will. The principle indicates that one-day
intellectual computation via AI can become significant in enhanc-
ing intellectual possibilities and cosmic order.
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