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1 | INTRODUCTION

Alzheimer’s disease (AD) dementia affects ~57.4 million individuals
globally, with numbers continuing to rise to an estimated 152.8 million
by 2050.1 AD pathologies begin in the brain up to two decades before

Jefferson W.Kinney | JeffreyL.Cummings

Abstract

Biomarkers are vital to Alzheimer’s disease (AD) drug development and clinical trials,
and will have an increasing role in clinical care. In this narrative review, we demon-
strate the use of the National Institutes on Aging/Alzheimer’s Association (NIA/AA)
Common Alzheimer’s Disease Research Ontology (CADRO) system for the categoriza-
tion of biomarkers based on the primary mechanism on which they report. We show
that biomarkers are available (in various levels of validation) for all CADRO processes.
Application of the CADRO system demonstrates gaps in the field where novel biomark-
ers are needed for specific aspects of the disease, and assays to detect and measure
biological changes, in individuals with symptomatic or preclinical AD. We demonstrate
the CADRO system as a means of categorizing established and candidate AD biomark-
ers, showing the feasibility and practicality of the system. CADRO can assist with
biomarker selection for AD clinical trials and drug development, and may eventually

be applied to implementing biomarkers in patient care.
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Highlights

* The Common Alzheimer’s Disease Research Ontology (CADRO) system can be used
to categorize biomarkers for drug development.

» We demonstrate the use of CADRO with Alzheimer’s disease (AD) biomarkers.

* We identified AD biomarkers in each of the CADRO categories.

* CADRO can be incorporated into current AD drug development and clinical trial

systems.

the onset of clinical symptoms, supporting the plausibility of early
detection and intervention in the disease.?® There are currently three
disease-modifying therapies (DMTs) approved by the U.S. Food and
Drug Administration (FDA; aducanumab, lecanemab, and donanemab),
all anti-amyloid monoclonal antibodies (mAbs) used for the treatment
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of early AD.* Biomarkers have become increasingly important to clin-
ical trials and drug development and were critical to the approval of
these new therapies. Biomarkers will also assist in the development of
therapies that may be used clinically in combination with or instead of
mAbs.>

The FDA requires that when biomarkers are used as drug develop-
ment tools (DDTs) in a clinical trial, the biomarker has a well-defined
context of use (COU). The COU is a concise description of the
biomarker’s specified use in drug development.®’ The role of the
biomarker will be categorized using the FDA/National Institutes of
Health (NIH) Biomarker Working Group Biomarkers, Endpoints, and
other Tools (BEST) classification. This system categorizes biomarkers
as indicators for risk/susceptibility, diagnosis, monitoring, pharma-
codynamic/response, predictive, prognostic, or safety. To choose a
biomarker for a COU in drug development, the biological process on
which the drug reports must be known.

Canonical biomarkers of amyloid beta (AB) and tau protein have
been used extensively to inform clinical trials. They are embedded in
the amyloid/tau/neurodegeneration (A/T/N) framework for the diag-
nosis and staging of AD.8? Seventy-five percent of drugs currently
in the AD drug development pipeline do not target canonical amy-
loid and tau pathways, and biomarkers representing a larger array
of mechanisms are needed.!®!! The Common Alzheimer’s Disease
Research Ontology (CADRO) classification system, developed by the
NIA and Alzheimer’s Association (NIA/AA) collaboration of the Interna-
tional Alzheimer’s and Related Dementia Research Portfolio (IADRP),
was developed to organize and compare basic, translational, and clin-
ical AD/ADRD (Alzheimer’s disease and related dementias) research
projects across multiple funding organizations using a common ter-
minology (Figure 1).12 Published in 2012, CADRO was designed to
aid in the evaluation of public and private investments across the
AD landscape, identifying redundancies and gaps; inform future deci-
sions in investment; and identify potential collaborations around AD
research.’? The CADRO system offers a methodology to catalog the
primary mechanisms involved in AD as a means of classifying targets
for drug development.® Integration of CADRO with FDA BEST and
COU practices allows researchers to choose biomarkers needed to
advance drug development and clinical trials. Here we demonstrate the
feasibility of implementing CADRO to classify candidate biomarkers
and their potential COU.

2 | METHODS

The aim of this narrative review is to demonstrate how established and
candidate biomarkers for AD can be categorized using the CADRO sys-
tem. The biomarkers and references chosen were identified through
databases using search terms including “biomarkers for Alzheimer’s
disease,” biomarkers for each CADRO category, and related words
and phrases. Our goal is not to provide an exhaustive review of the
biomarkers, but rather to demonstrate how existing biomarkers can be

organized according to CADRO categories. The biomarkers were cat-
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FIGURE 1 The Common Alzheimer’s and Related Dementias
Research Ontology (CADRO) categorization system (© J Cummings; M
de la Flor, PhD, illustrator).

egorized manually using the CADRO classification as available on the
IADRP website and defined in Figure 2.1°

In this perspective, we focus on neuroimaging and biofluids. Digital
biomarkers were not included in our searches. The markers described
can be used for predicting, diagnosing, monitoring, prognosticating,
and determining treatment eligibility; markers derived at postmortem
examination are not included. There is extensive information regard-
ing genetic risk factors for AD; these trait markers are described
elsewhere.'® There is an emerging area of environmental biomark-
ers in which robust biomarkers have not yet emerged; we excluded
these from our review and anticipate that they will be added in the
future. Several viral infections have been implicated as risks for devel-
oping AD; this body of information is evolving, and specific biomarkers
associated with viral infections in AD have not been identified. These

infections are not included in the review.
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pharmacological interventions” [12].

Website: https://iadrp.nia.nih.gov/about/cadro

IADRP Definition for CADRO Category C: Translational Research and Clinical Interventions (for

Early-stage Clinical Drug Development (Phase | and Phase Il Clinical Trials))

“This category aims to capture projects focused on the identification, validation, and
development of potential targets (including small molecule, natural products, and biologics) for
AD and Related Dementias (ADRDs) from early therapeutic discovery through late-stage
preclinical development and all stages of clinical testing. Also, included are projects focused on

repurposing pharmacological agents already in use for other conditions as well as non-

FIGURE 2

International Alzheimer’s and Related Dementia Research Portfolio (IADRP) definition for Common Alzheimer’s Disease Research

Ontology (CADRO) Category C: Translational Research and Clinical Interventions (for Early-stage Clinical Drug Development (Phase | and Phase Il

Clinical Trials).

3 | CADRO system and biomarkers

Several established and candidate biomarkers for AD have been iden-
tified in each of the CADRO categories and presented in Table 1.
Details regarding AD imaging biomarkers are provided in Table 2. A
subset of biomarkers is discussed in the following sections to demon-
strate the use of the CADRO system to assist with biomarker selection
for AD clinical trials and drug development research, and in future

implementation of biomarkers in clinical practice.

3.1 | Amyloid beta
AD is defined by the presence of AS pathology, and biomarkers for Aj
are central to the diagnosis of the disease. Advances in positron emis-
sion tomography (PET) neuroimaging now allow clinicians to determine
the presence, abundance, and location of AS pathology in the brain. In
clinical trials on mAbs, AB imaging is used as a diagnostic biomarker
of disease presence and a pharmacodynamic marker of effective-
ness of therapies. Pittsburgh compound B (PiB) was the first amyloid
radiotracer developed for human use.'”%172 Currently, the fluorinated
radiotracers florbetapir, flutemetamol, and florbetaben are approved
ligands for amyloid PET, receiving FDA approval in 2012, 2013, and
2014, respectively.’’® The quantitative evaluation of Ag via PET uses
standardized uptake value ratios (SUVRs) or centiloids for measure-
ment standardization. Visually read as AB-positive or AB-negative,
SUVR or Centiloid threshold values can be used to qualify patients for
clinical trials. In clinical trials using mAbs, when a threshold of 15-25
Centiloids is achieved, there is a corresponding slowing of cognitive
and functional decline.'” Trials that were unsuccessful in reaching that
threshold did not show cognitive benefit.174

Fluid biomarkers for A are commonly used as eligibility criteria or
outcome measures in clinical trials. Levels of AB42 and the AB42/40

ratio in cerebrospinal fluid (CSF) and blood have demonstrated validity,

accuracy, sensitivity, and specificity. AB40 and AB42 are amyloid iso-
forms. In patients with AD, AB40 is the primary isoform present in the
brain; AB plaques have elevated levels of A42.17>17¢ A lower concen-
tration of AB42, or ratio of AB42/40,in CSF and blood is associated with
higher levels of A plaques in the brain. 116

Soluble forms of tau measured in CSF and blood relate more to
the onset and progression of A3 pathology than insoluble forms of
tau observed via PET (described in 3.2). In the Revised Framework
Criteria for the Diagnosis and Staging of AD, tau biomarkers are cat-
egorized as T1 and T2; T1 biomarkers consist of phosphorylated and
secreted tau related to AB pathology, whereas T2 represents AD tau
proteinopathy.’ Herein we discuss the T1 biomarkers and their rela-
tionship with AB, including candidate markers phosphorylated tau-181
(p-tau181), p-tau217, and p-tau231.34177

Investigations into T1 biomarkers are providing insight into the
accuracy and timing of AB pathology. CSF p-tau217 has a higher cor-
relation with AB-PET when compared to p-taul81, more accurately
distinguishing AD dementia from non-AD dementia patients.>> Fur-
thermore, investigations into CSF p-tau231 revealed earlier sensitivity
to detect AB in specific brain regions, compared to p-taul81 and p-
tau217, prior to global AB-PET positivity.1’¢ Studies have shown that
p-tau231 has the ability to discriminate stages of AD, with higher
concentrations through the disease progression; however, p-tau217
demonstrates greater dynamic change, with greater increases in AD
patients compared to p-tau231 and p-tau181.17817? Additional p-tau
epitopes are being investigated in CSF, including p-tau202, 205, 299,
354, and 368, as independent measures, or in combination with total
tau (t-tau) or AB as a ratio. 180181

The need for accessible, affordable, and less invasive biomarkers
for patients and researchers has spurred investigations into blood-
based biomarkers for soluble tau. As in CSF, p-tau181, p-tau217,
and p-tau231 have been the most investigated tau targets in blood,
demonstrating positive relationships with AB and tau pathologies. In

preclinical AD patients, plasma p-tau217 and p-tau231 have a pos-
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TABLE 1 Established and candidate biomarkers organized by CADRO classification (made with BioRender).

Amyloid beta (AB) AB42/40 ratio ApB42/40 [15, 16]

'
N

Amyloid-related imaging ARIA [4,17]
abnormalities

Beta-site amyloid precursor BACE1 [18,19]
protein cleaving enzyme 1 } }

Stable isotope labeling SILK [20,21]
kinetics ,'{ ,L

Standardized uptake value SUVR/CL ’ [17,22]
ratio/Centiloids

Soluble amyloid precursor sAPP [23,24]
protein I

Oligomeric AB 0AB [25]

NN NN N N

APOE, lipids, and Apolipoprotein A1l ApoA1l [39,40]
lipoprotein receptors Lo

Apolipoprotein C3 ApoC3 ‘ [41]
Fatty acid-binding protein 3 FABP3 I [42]

Myelin ’ [43, 44]

(Continues)
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TABLE 1 (Continued)
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TABLE 1 (Continued)

Oxidative stress

Cooper
Glucose-6-phosphate
dehydrogenase

Isoaspartate

Sirtuin
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N
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A S
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(Continues)
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TABLE 1 (Continued)

Unfolded p53 [89, 90]

[91]

Uric acid

R IS

ab
W

A\

A\

Alpha-synuclein a-Syn [102]

Proteostasis/proteinopathies

F IS

P RN Vi

Vasculature Albumin [113]
Arterial spin labelling ASL [114]
Cerebrovascular carbon CVRCO2 [115]
dioxide reactivity
Fibrinogen FGN [116,117]

(Continues)
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TABLE 1 (Continued)

Matrix metalloproteinase-9

Placental growth factor

Platelet-derived growth
factor receptor beta

Vascular cell adhesion
molecule 1

Water extraction with phase
contrast arterial spin tagging

Synaptic plastic- Electrical activity/brain
ity/neuroprotection signal alterations

Blood oxygen
level-dependent signal

Event-related potential

Evoked potentials
(somatosensory, brainstem
auditory, visual, auditory
event-related)

Functional network
connectivity

Fluorodeoxyglucose PET

MMP-9

PIGF

PDGFRg

VCAM-1

WEPCAST

BOLD

ERP

FDG

N

NN NININ NN ININ N s N N N

R AR EEE

N

N

[118,119]

[120,121]

[122]

[123]

[124]

[134]

[135,136]

[137,138]

[139]

[140]

[141, 142,
143]

(Continues)
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TABLE 1 (Continued)

Growth associated protein GAP-43 [144, 145]
43

Metabotropic glutamate mGIuR5 [146]
receptor subtype 5

Neural oscillations [147]
Neuregulin 1 NRG1 [148]
Neurogranin NRGN [145, 149]
Neuronal pentraxin receptor NPTXR [150]
Synaptic vesicle glycoprotein SV2A [151]

2A

Synaptosomal-associated SNAP-25 [145,152]
protein 25

Synaptotagmin-1 SYT1 [145]

LS N S N S AN W

Circadian rhythm Orexin [161]
Sleep patterns [162]
Wake/sleep cortical activity [163]

SORNE NN 8 8N

Other Sclerostin [ [168]

V4

h !
Abbreviations: Abbr., abbreviation; APOE, apolipoprotein E; ’ imaging/device biomarker; , , CSF biomarker; , , blood-based biomarker; ‘ other.
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TABLE 2 Neuroimaging biomarkers by CADRO classification.

CADRO category Outcome measure Abbr. Biomarker Ligand References
Amyloid beta Amyloid-related imaging abnormalities ARIA MRI [4,17]
Standardized uptake value ratio/Centiloids SUVR/CL  PET florbetaben; florbetapir; [17,22]
flutemetamol; Pittsburgh
compound B
Tau Standardized uptake value ratio SUVR PET 18F-flortaucipir; [F18]-T808; [36, 37, 38]
18F-MK6240;
APOE, lipids, and lipoprotein Myelin PET: 18F-florbetapir (43, 44]
receptors MRI
Neurotransmitter receptors Acetylcholinesterase AChE PET [11CIMP4A [46]
Nicotinic acetylcholine receptor nAChRs PET 18F_ASEM; [48,49]
11C-(R)-MeQAA
Serotonin transporters SERT PET (11)C-DASB [50]
Serotonin 1A receptors 5-HT1A  PET [11C]WAY 100635 [51]
Serotonin 2A receptors 5-HT2A  PET [*8F]altanserin [52,53]
Sigma 1 receptor olR PET [*1C]SA4503 [54]
Vesicular acetylcholine transporters VAChT PET 18F-FEOBV [55]
Neurogenesis Brain volume and cortical thickness MRI [11]
Inflammation Ferritin MRI [65]
Translocator protein TSPO PET [18F]GE-180;[11C]PK11195 [79, 169]
Cell death Brain volume and cortical thickness MRI [82,93]
Metabolism and Glucose metabolism PET [18F]FDG [106, 107,
bioenergetics 108]
Mitochondrial complex 1 MC1 PET [*8F]BCPP-EF [54,111]
Vasculature Blood-brain barrier MRI Water extraction with phase [124]
contrast arterial spin tagging
(WEPCAST)
Cerebral blood flow MRI Arterial spin labelling (ASL) [114]
Cerebrovascular carbon dioxide reactivity = CVRCO, MRI [114]
Synaptic Blood oxygen fMRI Blood oxygen [135, 136]
plasticity/neuroprotection level-dependent signal
(BOLD)
Electrical activity/brain signal alterations; EEG [134]
Event-related potential
Event-related potential EEG/ERP [137,138]
Evoked potentials (somatosensory, EEG/ERP [139]

brainstem auditory, visual, auditory
event-related)

Functional network connectivity fMRI [140]
Metabotropic glutamate receptor subtype 5 mGIuR5  PET [*8F]FPEB [146]
Neural oscillations MEG [170]
Neuronal activity through glucose PET [18F]FDG [141,142,
metabolism 143]
Neuronal oscillations MEG [147]
Synaptic vesicle glycoprotein 2A SV2A PET [**C]ucB-J [151]
Circadian rhythm Sleep patterns PSG [162]
Wake/sleep cortical activity EEG [163]

Abbreviations: Abbr., abbreviation; EEG, electroencephalography; fMRI, functional magnetic resonance imaging; MEG, magnetoencephalography; PET,
positron emission tomography; PSG, polysomnography.
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itive relationship with Centiloid levels of AB-PET.3* Evaluations of
plasma p-tau217 and p-tau231 show the strongest relationship with
AB-PET when compared to p-taul81, AB42/40, glial fibrillary acidic
protein (GFAP), and neurofilament light chain (NfL).%* Plasma p-tau181
increases across the AD continuum, with the highest levels in mild
cognitive impairment (MCI) and AD dementia patients with AS pos-
itivity; p-tau181 levels are associated with tau-PET (area under the
curve [AUC] 83.08-93.11) and AB-PET (AUC 76.14-88.09).177182,183
Comparisons demonstrate that plasma p-tau217 measured by mass
spectrometry detects Ag status with the highest accuracy (AUC 0.947),
compared to other p-tau markers, including p-tau181 and p-tau231
evaluated on different platforms.184

PrecivityAD2 is a test developed by C,N Diagnostics (Missouri,
USA) to measure plasma AB42/40 ratio and p-tau217 by mass spec-
trometry and calculates a score to aid in AD diagnosis and selection
for clinical trials.’® The PrecivityAD2 test results in a numerical value
representing brain amyloidosis. Patients with scores from O to 35.5 are
considered negative, and patients with scores 57.5 and higher are posi-
tive; thereis anintermediate range for patients that have scores 35.6 to
57.4, in which the test cannot predict the outcome with high certainty
and additional testing is suggested.18>

Other candidate biomarkers subsumed in the amyloid CADRO cat-
egory are those involved in the processing and production of AB.
Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is an
enzyme responsible for the cleavage of the amyloid precursor protein
(APP), resulting in amyloidogenic AB peptides.18¢ Elevated levels of
BACE1 in CSF are observed in patients with MCI compared to controls,
and correlate with AB40, t-tau, and p-tau181, representing a prognos-
tic biomarker for AD.17187 |n patients with MCI due to AD and AD
dementia, there are increases in serum BACE 1, with a proposed thresh-
old concentration of 11.04 kU/L used to differentiate controls from
individuals with AD pathology.18:188

Soluble amyloid precursor protein-beta (sAPPpB) is one of the
byproducts of APP processing.’®? In patients with AD, there are
increased levels of SAPPgS in CSF and plasma, and these correlate sig-
nificantly with Clinical Dementia Rating (CDR) and Mini-Mental State
Examination (MMSE) scores.?>24 There are currently no candidate
biomarkers for oligomeric A3 or oligomeric tau species, representing

agapinthe field.

32 | Tau

Neurofibrillary tangles (NFTs), attributed to aggregation of p-tau into
paired helical filaments, are a core pathology of AD. As described
above, the Revised Framework Criteria for the Diagnosis and Stag-
ing of AD divides tau biomarkers as T1 and T2. T1 biomarkers include
forms of soluble tau, which have strong relationships with Ag pathol-
ogy (discussed in 3.1); however, it is important to note that they show
a relationship with tau PET as well.? In patients with mild to moder-
ate AD, plasma p-taul81 levels correlate positively with tau-PET in
the inferior temporal and meta-temporal regions, and globally.1?° In

patients with MCl or AD dementia positive for AS, there is strong

Clinical Interventions

association between plasma p-tau217 and tau-PET, especially in the
temporoparietal and dorsolateral frontal cortices.171192

T2 biomarkers are measures of AD tau proteinopathy, such as insol-
uble tau. The gold standard biomarker method for measurement of
NFTs is tau-PET, allowing clinicians and researchers to observe the
presence, abundance, and location of the pathology. Currently, the only
FDA-approved tau tracer for PET is [18F]flortaucipir ([18 F]JAV1451),
approved in 2020.180 Other tracers being used in clinical trials
and research include derivative [F18]-T808 and 6-(fluoro-18F)-3-(1H-
pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]-MK6240). Tau-
PET with [*® FJAV1451 is able to successfully discriminate between
patients that are AS positive and AS negative with an AUC of 0.92-
0.94.193

Microtubule binding region (MTBR)-tau243 and N-terminal con-
taining tau fragments (NTA-tau) demonstrate utility as biomarkers with
higher specificity to tau pathology.28:194 CSF MTBR-tau243 correlates
with insoluble tau aggregates and shows the strongest association
with tau-PET compared to p-tau181, p-tau217, and p-tau231.28 Fur-
thermore, MTBR-tau243 shows the lowest association with A/%’—PET.28
NTA-tau levels in CSF and plasma increase significantly through AD
progression, with a relationship to tau accumulation (tau-PET), brain
atrophy, and cognitive decline.2%192

Additional biomarkers in the tau CADRO category include those
associated with the formation, accumulation, and byproducts of tau
pathology. For example, dual specificity tyrosine-phosphorylation-
regulated kinase 1A (DYRK1A) is involved in the phosphorylation of
tau, and patients with AD dementia have significant reductions com-
pared to cognitively normal controls (CNCs).2” Furthermore, DYRK1A
concentrations are correlated with CSF t-tau and p-taul81 levels,
but show no association with CSF AB42 and AB-PET.? Additional
biomarkers and novel assays are being investigated to accurately mea-
sure tau-related targets in AD patients as risk/susceptibility, diagnosis,
monitoring, and pharmacodynamic/responsiveness biomarkers.

3.3 | APOE, lipids, and lipoprotein receptors
After age, the most influential risk factor for late-onset AD (LOAD) is
the apolipoprotein E (APOE) 4 allele(s).

Investigations into apolipoproteins (Apo) in biofluids comprise
important biomarkers, including ApoA1 and ApoC3 protein. ApoAl
is the second most abundant Apo protein in the CSF and is essen-
tial to cholesterol homeostasis.3? Significant increases in CSF ApoA1,
and significant decreases in plasma levels, have been associated with
progressive cognitive decline in APOE &4 positive individuals.3%17% In
addition, decreases in plasma ApoA1 have been reported in patients
with symptomatic AD compared to CNCs.*® ApoC3 is detectable in
urine, and research using enzyme-linked immunosorbent assay (ELISA)
demonstrates mixed results in two cohorts of patients with AD demen-
tia; whereas ApoC3 may be a potential urinary biomarker for AD,
further research is necessary to validate the initial observations.*!
Additional Apo biomarkers being evaluated include ApoA2, ApoB,

ApoH, and ApoJ.17°
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Dysregulation of lipids has been proposed as a key factor in AD
pathogenesis. Fatty-acid binding protein 3 (FABP) is associated with
lipid metabolism and is shown to be significantly increased in the
CSF of patients with AD dementia, compared to MCI due to AD
and CNCs.*? FABP correlates negatively with MMSE scores and CSF
AB42/40 ratios.*? Myelin is composed primarily of lipids and is respon-
sible for insulating neurons, fundamental to neuron signaling. White
matter, a proxy to measure myelin, is significantly altered in patients
with AD.17¢-198 Although this is typically measured by magnetic res-
onance imaging (MRI), new developments in PET radiotracers aim to
assess myelin and myelin-related proteins to provide a measure with
greater sensitivity.** Biomarkers associated with APOE, lipids, and
lipoprotein receptors can be used for the COU of risk, monitoring, or

pharmacodynamic/response.

3.4 | Neurotransmitter receptors
Alterations of neurotransmitter systems in AD are well docu-
mented, including changes in serotonin and acetylcholine signaling

pathways.1??

In patients with probable AD dementia, there is
decreased binding of serotonin 1A receptor (5-HT1A) observed
through PET with radioligand [carbonyl-11C]Desmethyl-WAY-100635
(11 C]WAY100635), compared to CNCs.’! Decreases in serotonin
2A receptor (5-HT2A) binding is observed in patients with MCI
using  3-[2-[4-(4-[18F]Fluorobenzoyl)-1-piperidyl]lethyl]-2-sulfanyl-
3H-quinazolin-4-one ([*® Flaltanserin) PET, compared to CNCs,
demonstrating it as an early biomarker for AD.>? Using the same
radiotracer, an ~30% decrease in 5-HT2A binding was reported in
several brain regions, including the anterior cingulate, prefrontal
cortex, and sensorimotor cortex of patients with symptomatic AD
dementia compared to CNCs.>3 Serotonin transporters (SERTs) are
decreased significantly in patients with AD dementia, compared
to CNCs, evaluated by [11C]-3-amino-4-(2-dimethylaminomethyl-
phenylsulfanyl)benzonitrile ([11C]JDASB) PET.°° AD patients with
depressive symptoms have greater reductions in SERT binding
compared to AD patients without depressive symptoms; there is a
reduction of SERT in nondepressed AD dementia patients, suggesting
that alterations in serotonergic signaling precede the onset of depres-
sive symptoms and may provide an early biomarker for mood disorders
in AD.>0

Disruption of the cholinergic system is observed in AD with
degeneration of cholinergic neurons and acetylcholine deficiency.2°
In patients with AD dementia, there is a reduction in a7 sub-
type of the nicotinic acetylcholine receptor (a«7-nAChR) compared to
CNCs using (R)-2-methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-
3-yl ester (11C-(R)-MeQAA) PET.*? A negative correlation between
a7-nAChR binding and A8 PET has been reported.*’ Patients with
AD dementia have normal dopamine transporter scans (DaT scans);
abnormal DaT scans are observed in dementia with Lewy bodies (DLB),
with 78% sensitivity for probable DLB, and 90% specificity for exclud-
ing non-DLB dementia, representing a diagnosis biomarker for the

differentiation of the diseases.?0?

Acetylcholinesterase (AChE) is an enzyme involved in the degra-
dation of acetylcholine. In patients with early cognitive impairment,
enzymatic activity of AchE is significantly higher in those who have
increased levels of CSF t-tau, p-tau181, and inflammatory markers
$100 calcium-binding protein B (5100B) and chitinase-3-like protein 1
(YKL-40).4”

Overall, biomarkers of neurotransmitter receptor dysregulation
have emerged utilizing primarily PET imaging. Studies are underway
investigating not only potential biomarkers, but also the most sensitive
and reliable PET radiotracers for the targets being evaluated.

Very few biomarkers of neurotransmitter receptors have been
recognized in fluid samples, CSF and blood. With 29% of DMTs cur-
rently in the drug development pipeline targeting neurotransmitters,
biomarkers to measure these processes are vital for the progres-
sion of AD treatment development. These markers could be used
as risk/susceptibility, monitoring, and pharmacodynamic/response in
terms of COU.

3.5 | Neurogenesis
Biomarkers of neurogenesis would be useful as new treatments for
AD continue to develop; however, no robust biomarkers specific to

neurogenesis have emerged.

3.6 | Inflammation
Neuroinflammation is observed in several neurodegenerative diseases
(NDDs), including AD, Parkinson’s disease (PD), Huntington’s disease
(HD), and amyotrophic lateral sclerosis (ALS).202203 |n AD, neuroin-
flammation exacerbates disease pathology, including A8 and NFTs,
making it a target for novel therapeutics.!! Drugs aimed at inflamma-
tory mechanisms comprise a substantial aspect of the current AD drug
development pipeline.’°

Microglia are the resident immune cells of the central nervous sys-
tem (CNS). These cells maintain an inactive profile unless activated by
neuronal damage or the presence of a threat, including Ag and NFTs.
Microglia activation can be measured via PET scan using mitochon-
drial 18kDa translocator protein (TSPO) as a biomarker. With TSPO
radiotracers 11C-[1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-
3-isoquinolinecarboxamide ([11C]PK11195), AD patients have a sig-
nificantly higher SUVR in the hippocampus, negatively correlated with
CSF AB levels and predicting further cognitive decline.”? Although
TSPO is recognized as a marker of activated microglia, it can be found
on other cells types, including astrocytes and endothelial cells. PET
biomarkers more specific to inflammation are being sought.2%%

Investigations into relationships between microglia and AD identi-
fied loss-of-function variants in the triggering receptor expressed on
myeloid cells 2 (TREM2) gene through genome-wide association studies
(GWAS), indicating that patients with these variants are more suscep-
tible to AD.82205 This led to research evaluating the TREM2 protein

in biofluids—CSF and blood. TREM2 is involved in several microglia
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processes including proliferation, migration, phagocytosis, lysosomal
degradation, and metabolism, emphasizing the role of TREM2 alter-
ations as biomarkers of microglia dysfunction.2%¢ In patients with AD
dementia, significantly higher levels of CSF soluble TREM2 (sTREM2)
are observed compared to CNCs.8? In patients with autosomal dom-
inant AD, there are elevated levels of sSTREM2 in the CSF, associated
with the decrease of CSF Ag; relationships between CSF sTREM2 and
t-tau, p-tau$199, and NfL have also been reported.81:82207 Some stud-
ies have investigated sSTREM2 in blood with little consensus, meriting
further investigation.8%.205.208,209

Astrocytes are the most abundant glial cell in the CNS and are
involved in neuroinflammation; they are responsible for different
aspects of the immune response compared to microglia, making them
another biomarker target for AD.210 Glial fibrillary acidic protein
(GFAP) plays arole in astrocytic mobility, proliferation, autophagy, and
cellular communication, indicating astrocytic activation.?'! In cogni-
tively unimpaired individuals positive for A pathology, plasma GFAP
is elevated compared to those negative for AB. A meta-analysis reveals
elevated levels of plasma GFAP in individuals with MCI and AD
dementia.®® Research demonstrates GFAP as a biomarker for distin-
guishing AD from other diseases, particularly frontotemporal dementia
(FTD) and progressive supranuclear palsy, with higher accuracy in
plasma compared to CSF (plasma GFAP AUC = 0.703; CSF GFAP AUC
=0.584).57

Overall, chronic neuroinflammation has been demonstrated in
AD patients and attributed to the imbalance of numerous pro-
and anti-inflammatory cytokines, released by activated glia cells.2%3
Cytokines, tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6),
and interleukin-1 beta (IL-1B) are a few of the exploratory inflam-
matory biomarkers being investigated in AD. These pro-inflammatory
cytokines have been shown to be altered in CSF and serum samples
from MCI and AD patients.”%83212213 |nconsistent results demon-
strate the need for further research into the role of cytokines as AD
biomarkers.21* Biomarkers of inflammation and the immune response
are being investigated in fluid samples primarily as risk/susceptibility,
monitoring, pharmacodynamic/response, and prognostic biomarkers
for AD COU.

3.7 | Oxidative stress

Through the process of metabolism, free radicals are released, with the
most important being reactive oxygen species (ROS) and reactive nitro-
gen species (RNS).21> The imbalance of free radicals results in oxidative
stress, with the brain being particularly prone to oxidative damage
due to its high metabolic activity.21> Oxidative stress is observed with

aging and inflammatory processes in several NDDs, including AD.%1¢

Oxidative changes have been reported early in AD pathogenesis.?1”
Products of lipid peroxidation, including isoprostanes and neuro-
prostanes, are biomarkers of oxidative stress. In plasma, markers of
lipid peroxidation are higher in CNCs and non-AD dementia patients,
compared to AD dementia, and are associated with cognition and tau

pathology.218.21? Recent data support the use of isoprostanes and neu-
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roprostanes in a biomarker panel to increase the accuracy for detecting
AD, although inconsistencies between plasma and CSF levels merit
further investigation.?20

Endogenous proteins with antioxidant properties, including uric
acid and sirtuins, are reduced in AD dementia patients and can be
used as biomarkers of oxidative stress. Serum uric acid is signifi-
cantly decreased in AD dementia patients compared to CNCs, with
a downward trend in patients with MC1.?* Serum from AD dementia
patients also shows reductions in multiple sirtuins, including SIRT1,
SIRT3, and SIRTé, compared to MCI and CNCs.88 Mechanisms of
sirtuins have been linked to AD pathology, although many of these
studies are in postmortem tissues and non-clinical models.?2! The
oxidative stress CADRO category consists primarily of blood-based
biomarkers, which could be used as a risk/susceptibility, monitoring,

pharmacodynamic/response, or prognostic marker of AD.

3.8 | Cell death

AD is characterized by neurodegeneration, as recognized in the A/T/N
system.” MRI allows visualization of brain atrophy as a biomarker
of cell density. Region-specific changes can assist with differentia-
tion of AD from other NDDs, as well as classification of disease
progression.?22 Atrophy in AD is manifested as decreased overall brain
volume, including shrinkage in cortical volume, cortical thickness, hip-
pocampal size, and ventricle expansion.223 Brain volume reductions are
~2.4% per year in AD dementia patients, with CNCs having an aver-
age of 0.4% loss.22* MRI atrophy is a nonspecific marker that may
detect cell loss, reduction in other space-occupying elements includ-
ing AB, and fluid shifts. MRI can be used in the COU of monitoring
and pharmacodynamic/response to assess the impact of therapy on
volume.

Fluid biomarkers of cell death are also being investigated. Total tau
(or t-tau) has been established as a marker of neurodegeneration and
injury in several diseases including AD, traumatic brain injury (TBI), and
stroke. In patients with AD dementia, elevated levels of plasma tau are
detected compared to patients with MCI and CNCs, with and without
AB pathology.”? In patients with mild to moderate AD dementia, high
levels of t-tau in CSF were associated with greater cognitive decline
in individuals who were APOE &4 carriers.'%° Furthermore, in patients
who are cognitively normal with positivity for Ag, there is a significantly
higher level of plasma t-tau, compared to Ag-negative CNCs.”8

Neurofilament light chain (or NfL) is another biomarker that is
increased in relation to neuronal damage and cell death and can be
measured in CSF and blood.?> In plasma, NfL is elevated in patients
with MCI and AD dementia compared to those with subjective cogni-
tive decline; this elevation is dependent on AS status and age.”225

Although t-tau and NfL are indicative of cell death in NDDs,
they are not specific biomarkers for AD, but rather markers of dis-
ease progression and neurodegeneration. Markers of cell death and
their relationships to biomarkers in other CADRO categories may
offer a more accurate and reliable combination diagnostic marker,
such as t-tau/AB (Roche), which received FDA 510(k) clearance in
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2023, facilitating diagnosis of symptomatic AD.32 Biomarkers of cell
death are important to AD research for COU of monitoring and
pharmacodynamic/response.3?

3.9 | Proteostasis/proteinopathies

Proteostasis is the process of regulating proper folding of proteins
after synthesis. If misfolding occurs, it results in unfolding, refold-
ing, and/or abnormal degradation and aggregation of the protein.
NDDs, including AD, PD, and ALS, are characterized by dysfunction
of proteostasis and the presence and accumulation of protein aggre-
gates. In AD, misfolding of AS leads to self-assembly and aggregation
into oligomers, fibrils, and plaques; p-tau aggregates to form NFTs.
Within the CADRO classification system, biomarkers for these pro-
teinopathies are organized into specific categories of their own: amy-
loid and tau. We do not include biomarkers of these processes in the
proteostasis/proteinopathies category, as they are discussed above.
Alpha-synuclein (a-syn) and TAR DNA-binding protein 43 kDa (TDP-
43) are other protein aggregation disturbances commonly present in
the AD brain that we discuss.

Accumulation of a-syn to form Lewy bodies is a predominant fea-
ture in PD and DLB; a-syn is also present in AD.102 Recently, a-syn
has been measured using a-synuclein seed amplification assays (aSyn-
SAA). The aSyn-SAA method relies on in vitro replication of protein
from a template, or seed, acquired through a patient fluid sample.
The cyclical process makes protein copies resulting in higher levels
for detection and determination of a-syn presence.?26227 Novel tech-
nology is emerging for digital quantification of aSyn-SAA.228 Through
meta-analysis, a-syn was determined to be highest in patients with
MClI, especially in those who progress rapidly to AD demential®?; a-syn
correlates with AS levels in asymptomatic individuals, demonstrating
it to be an early detection marker for AD.192 a-Syn is detectable in
the skin biopsies of patients with PD, DLB, multiple system atrophy
(MSA), and pure autonomic failure (PAF); a-syn from skin biopsies of
AD patients have not yet been reported.22?

TDP-43 is involved in RNA processing and gene expression reg-
ulation; however, mislocalization of TDP-43 results in multiple post-
translational modifications and ultimately insoluble aggregation of
TDP-43.230 TDP-43 aggregation is a key pathology of ALS and FTD and
has been observed in postmortem tissues from AD patients as well.231

Quantification of plasma extracellular vesicle TDP-43 is signifi-
cantly increased in patients with ALS and behavioral variant FTD
(bvFTD), correlating with disease severity. Complete plasma TDP-43
levels do not differ between diagnostic groups, demonstrating the
importance of evaluating extracellular vesicles.232 Recent studies have
proposed a novel method: measuring TDP-43-dependent cryptic exon
hepatoma-derived growth factor-like protein 2 (HDGFL2) in the CSF
of patients with ALS.233 This method was verified as detecting TDP-
43 loss of cryptic splicing and demonstrated significant increases in
HDGFL2 in the CSF of patients with familial ALS-FTD and sporadic ALS
compared to CNCs.233 Furthermore, HDGFL2 was present in patients

with presymptomatic ALS-FTD who were positive for the C%orf72

gene mutation associated with the disease.?%? If substantiated in fur-
ther studies, this novel method could be employed in AD research,
advancing the understanding of TDP-43 in AD. Biomarkers of pro-
teostasis/proteinopathies are used as risk/susceptibility, monitoring, or
pharmacodynamic/response COU markers.

3.10 | Metabolism and bioenergetics

Metabolic dysfunction is well documented in NDDs, such AD, PD,
ALS, and HD. Using fluorodeoxyglucose (FDG)-PET, progression from
MCI to dementia can be determined with reductions in the medial
temporal lobe metabolism (94.7% sensitivity; 80.5% specificity).108
These alterations can be detected up to 8 years prior to progres-
sion to dementia.1%8 In patients with lower levels of FDG-PET activity,
there is a faster rate of cognitive decline and greater shrinkage of the
middle temporal lobe, compared to individuals with higher FDG-PET
activity.197 FDG-PET provides a COU biomarker for risk/susceptibility,
monitoring, and pharmacodynamic/response.

Mitochondria are responsible for cellular bioenergetics, cal-
cium signaling, and apoptosis.23* In AD, mitochondrial dysfunction,
including imbalance of fission and fusion, reduction of adenosine
triphosphate (ATP) generation, defects in mitophagy, increased
ROS, and mitochondrial fragmentation, have all been reported and
proposed as contributors to AD pathogenesis.2®> As mitochondria
use the electron transport chain to produce ATP, mitochondrial
complex 1 (MC-1) is the rate-limiting enzyme for this process
and a step involved in ROS production.!’* Using PET tracer
2-tert-butyl-4-chloro-5-{6-[2-(2[ 18F]fluoroethoxy)-ethoxy]-pyridin-
([*8FIBCPP-EF), which binds
specifically to MC-1, there is a significant decrease in SUVR in the

3-ylmethoxy}-2H-pyridazin-3-one

medial temporal region in patients with AD dementia; mitochon-
drial PET has a significant negative correlation with tau-PET.11!
Additional biomarkers of mitochondrial dysfunction overlap with
markers of increased ROS (as described in Section 3.8). Biomarkers
measuring metabolism and bioenergetics are important as COU for
risk/susceptibility, monitoring, and pharmacodynamic/response.

3.11 | Vasculature
Cardiovascular disease (CVD) can lead to vascular dementia (VaD) and
vascular cognitive impairment (VCI), attributed to interrupted blood
flow to the brain leading to cognitive deficits. CVD is associated with
AD, although the relationship is complex, with many overlapping risk
factors. Individuals at high risk for developing VaD and AD are patients
with metabolic disorders, including type 2 diabetes (DM2), and an
APOE ¢4 allele.23¢

Arterial spin labeling (ASL) MRI can be used to measure cere-
bral blood flow. In patients with AD dementia, there is a decrease in
cerebral blood flow in several brain regions, including the entorhinal,
hippocampus, inferior temporal, and posterior cingulate.!'* Indepen-

dent of diagnosis, patients who are AB positive have lower cerebral
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blood flow than patients who are Ag negative.!'* Single-photon emis-
sion computed tomography (SPECT) and oxygen-15-labeled water
(°0-H,O)PET are alternative measures of cerebral blood flow.237:238

The blood-brain barrier (BBB) is protective barrier between the
brain and the vascular system. Although biomarkers are being sought
to characterize the integrity of the BBB, there is no consensus on
whether the BBB is compromised in AD. Patients with MCI have
demonstrated BBB permeability through water extraction with phase
contrast arterial spin tagging (WEPCAST) MRI, suggesting a deterio-
ration of the BBB in these patients compared to CNCs.2* In relation
to AD pathology, the BBB shows higher water permeability in patients
with lower CSF AB42/40 ratio.'2* However, BBB permeability to
albumin is not associated with AD pathology, but rather hypercholes-
terolemia, demonstrating a potential biomarker for differentiation of
AD and VaD.1#*

Biomarkers of vascular health and BBB integrity are being investi-
gated in biofluids, including fibrinogen, platelet-derived growth factor
receptor-8 (PDGFRp), vascular cell adhesion molecule 1 (VCAM-1),
placental growth factor (PIGF), and matrix metalloproteinase-9 (MMP-
9). Fibrinogen is responsible for coagulation, inflammation, and repair
of vascular damage.’’” In the CNS, the presence of fibrinogen is a
marker of BBB dysfunction and mediates microglia processes.!!” In
patients with AD dementia, plasma fibrinogen correlates positively
with plasma AB40 and AB42, and negatively with CSF AB42; fibrino-
gen correlates positively with CSF t-tau and p-tau181.116 In CNCs,
there are no reported associations between fibrinogen and A8 and tau
pathology.11®

PDGFR§g is a protein involved in the development and maintenance
of the BBB.237 In patients with amnestic MCI who are positive for all
A/T/N biomarkers (CSF AB42, unspecified p-tau epitope, and t-tau),
CSF PDGFRg is significantly increased compared to amnestic MCI
patients with a negative A/T/N profile.122

VCAM-1 is found on endothelial and immune cells responsible for
interactions between the two cell types.24° In patients with AD, sig-
nificant increases were observed in CSF VCAM-1, associated with
Clinical Dementia Rating-Sum of Boxes (CDR-SB) scores, modified
by APOE ¢4 status; this was not observed in MCI.24! Furthermore,
plasma VCAM-1 levels are significantly increased in patients with AD
dementia, correlating with cognitive decline and brain atrophy.123

Placental growth factor (or PIGF) is part of the vascular endothe-
lial growth factor family involved in angiogenesis.!2° Patients with
AD dementia have elevated levels of PIGF in CSF and blood com-
pared to patients who are cognitively impaired with no dementia
and CNCs.120121 P|GF levels are associated with higher white mat-
ter hyperintensity burden and cerebral microbleeds in patients with
AD.129 Non-clinical data show PIGF messenger RNA (mRNA) levels
increase with the presence of AB.242 These findings indicate that PIGF
could be used as a biomarker for concomitant cerebrovascular diseases
in AD.

Matrix metalloproteinase-9 (or MMP-9) is a proteolytic enzyme,
capable of Ag degradation.2*® Patients with AD dementia who are
positive for A have elevated levels of CSF MMP-9 compared to AB-
positive MCI patients.2 18 High MMP-9 level is associated with greater
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decline in hippocampal volume and cognitive function.2*4 Elevated lev-
els of MMP-9 may affect AD pathology as well as cognition differently
in men and women.''8 The dual roles of MMP-9 in degradation and
promotion of AS, and the differences between sexes, require further
research.

Overall, the CADRO category of vasculature biomarkers includes
assessments of vascular inflammation, BBB dysfunction, and vascular
health associated with AD. Quantification of these markers could pro-
vide risk/susceptibility, monitoring, and pharmacodynamic/response
biomarkers in terms of COU.

3.12 | Growth factors and hormones

Sex influences AD prevalence, with two-thirds of patients being
women.2*> Although several factors may be involved, menopause is a
risk factor for dementia, with the onset of AD brain changes coinciding
with the time of menopausal transition.2*¢ Alterations in sex hor-
mones during menopause exacerbate AD pathologies. Postmenopausal
women have higher A deposition, tau burden, neuroinflammatory
responses, and reduced cerebral glucose metabolism compared to
premenopausal women.247:248.249 There are significant reductions in
estrogen and progesterone during the menopausal transition, and
depletions of these hormones are biomarkers of risk/susceptibility for
AD.250251 Elevated levels of gonadotropins, including follicle stimulat-
ing hormone (FSH) and luteinizing hormone (LH), have been reported
in patients with dementia; however, the findings are mixed, potentially
due to variables in the studies, including the type of dementia evalu-
ated, sex of the patients, hormonal replacement therapy (HRT) status,
and time since menopause.127:252.253

Through aging, men experience a gradual loss of testosterone,
impacting the risk for AD. A meta-analysis found that in elderly
men, lower levels of testosterone are associated with worse cog-
nitive function.?>* Decreased levels of testosterone correlate with
increases in CSF p-tau181 in men who are APOE ¢4 carriers.’3! Like
HRT in women, inconsistencies in studies involving testosterone ther-
apy in men may be attributed to differences in drug formulation,
administration, and study design.

Growth factors, such as brain-derived neurotrophic factor (BDNF)
and nerve growth factor (NGF), represent biomarkers of AD. BDNF
promotes cell growth and is essential to learning and memory. Serum
BDNF in patients with MCI due to AD is significantly lower than
in CNCs, correlating with CSF AB42 levels and medial temporal
lobe atrophy.'2® CSF BDNF has associations with CSF AB42 and
MMSE scores in patients with AD dementia compared to CNCs.12°
NGF supports neuronal growth, development, and differentiation in
the brain and is increased in blood samples from patients with AD
dementia.2>>2%¢ Patients with Down syndrome, a population in which
individuals develop AD with age, demonstrate alterations in the NGF
pathway through CSF and plasma biomarkers, supporting the link
between NGF and AD.128 Hormone and growth factor biomarkers
are important for the COU of risk/susceptibility, monitoring, and

pharmacodynamic/response.
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3.13 | Synaptic plasticity/neuroprotection

Synaptic loss and dysfunction of synaptic plasticity are more closely
associated with cognitive decline than other pathological changes
in patients with AD dementia.?>’ Several neuroimaging techniques,
including fluorodeoxyglucose-positron emission tomography (FDG-
PET), electroencephalography (EEG), functional MRI (fMRI), and
synaptic vesicle glycoprotein 2A (SV2A) PET, are used to measure
synaptic plasticity. Synaptic function can be evaluated through EEG,
detecting electrophysiological changes in the brain primarily includ-
ing slowing of EEG signal and coherence of signals among brain
regions.13*137 The use of EEG to monitor event-related potentials
(ERPs) as a response to specific events or stimuli is another candi-
date biomarker for AD, predicting cognitive decline.'38258 Gradual
changes in delta activity from MCI to AD dementia on EEG may repre-
sent a biomarker of disease progression.¢3 EEG and polysomnography
(discussed further in 3.15) can serve the COU of monitoring or
pharmacodynamic/response characterization in drug development.

Evaluation of synaptic function using fMRI to measure blood oxy-
gen level-dependent (BOLD) signal demonstrates neuronal activity
through alterations in blood flow and oxygenation in the brain. Greater
variability in BOLD is observed in patients with AD dementia, com-
pared to CNCs.135136 Resting-state fMRI (rs-fMRI) detects changes
in neuronal networks, including the salience network and default
mode network (DMN), and in patients with MCI and AD, substan-
tial alterations in these networks have been observed in relation to
CNCs.2572€0 |n undiagnosed patients who later developed dementia,
changes in the DMN can be identified at an individual level, providing a
risk biomarker for AD.2%?

Radiotracers for PET allow detection of specific proteins related
to synaptic function and density. FDG is an analog of glucose, used
to demonstrate glucose metabolism levels in the brain. With glucose
necessary for neuronal activity, FDG-PET uptake reflects synaptic
function. Patients with MCI or AD dementia have significantly lower
FDG-PET SUVRs than CNCs, with hypometabolism severity being
associated with Braak staging of NFTs.141.143 FDG-PET SUVR is sig-
nificantly correlated with CSF t-tau, p-tau181, and AB42.142 However,
FDG-PET cannot distinguish AD from other NDDs; combinations of
FDG-PET with other biomarkers are being investigated to increase the
reliably of both markers for the diagnosis COU.

Synaptic vesicle glycoprotein 2A (or SV2A) is located in the synapse,
observed by radiotracer (R)-1-((3-([11C]methyl)pyridin-4-yl)methyl)-
4-(3,4,5-trifluorophenyl)pyrrolidin-2-one ([1CJUCB-J) as a marker of
synaptic density. Research shows reductions of SV2A in patients
with AD dementia compared to CNCs using this radiotracer.'>! Addi-
tional radiotracers for SV2A are being explored, including derivatives
[11C]UCB-A and [18F]UCB-H.257

CSF markers of synaptic damage and loss are promising fluid
biomarkers. Synaptosomal-associated protein 25 (SNAP-25) aa40
species, neurogranin (NRGN), growth associated protein 43 (GAP-
43), and synaptotagmin-1 (SYT1) all show a positive correlation with
ApB levels, determined by CSF AB42/40 and AB-PET imaging. These
biomarkers are associated with CSF p-tau181 and NfL in CNCs.144

Patients with MCI-AD and AD dementia have higher levels of GAP-43,
NRGN, SNAP-25 aa40, and SYT1, compared to CNCs and patients with
non-AD MCI or non-AD dementias.’> Blood-based biomarkers for
synaptic plasticity/neuroprotection are being investigated, although no
robust markers have emerged. Overall, biomarkers of synaptic plastic-
ity/neuroprotection have a COU for risk/susceptibility, monitoring, or
pharmacodynamic/response.

3.14 | Gut-brain axis
Gut microbiota includes bacteria, fungi, viruses, and helminths in the
gastrointestinal tract.2¢ Bi-directional communication between the
gut and the brain is termed the gut-brain axis (GBA). Gut microbes
have been shown to synthesize several neurotransmitters, including y-
aminobutyric acid (GABA), serotonin, dopamine, and acetylcholine.262
Dysbiosis is observed in NDDs including AD and PD.%é2 The composi-
tion of the microbiome may influence AD pathogenesis. In patients who
are AB positive, there are higher levels of fecal Escherichia/Shigella (pro-
inflammatory) and lower levels of E. rectale (anti-inflammatory).1>¢
Gut microbiota-related inflammatory processes could provide a link
between the gut and brain health. In patients with uncharacterized
dementia, significant increases in the inflammatory marker soluble
cluster of differentiation-14 levels (sCD14) and the gut permeabil-
ity marker, serum diamine oxidase (DAO), were observed in serum
and fecal samples, respectively, compared to CNCs.2>” Gut health
influences AD pathogenesis, with Ag detected in the gut.2% Through
intra-intestinal injection of fluorescence-labeled AS in transgenic mice,
ApB42 from the gut was observed being transported to the brain, sug-
gesting that peripheral AS may be contributing to the aggregation of
Agin the brain.?¢3

Metabolites of gut microbiota, specifically fecal volatile organic
compounds, are potential biomarkers for severity of AD, with early
stages having high levels of fecal short-chain fatty acids (SCFAs) and
bacteria Faecalibacterium and Lachnoclostridium; advanced stages of
AD show greater levels of fecal hexanoic acid, Ruminococcus, and
Blautia.'>? In patients with cognitive complaints, plasma levels of
the SCFAs acetate and valerate positively correlate with Ag-PET.1%8
Biomarkers of gut health are important to be used as COU markers of

risk/susceptibility, monitoring, or pharmacodynamic/response.

3.15 | Circadian rhythm

Sleep disturbances affect 25%-66% of patients with AD, including
alterations in sleep duration, fragmentation of sleep, breathing dis-
orders during sleep, changes in sleeping brain wave activities, and
reduction in rapid eye movement (REM).26* Sleep disorders have a
bidirectional relationship with A3 and tau pathology, and biomarkers
of circadian rhythms may indicate risk and progression of AD.26526¢
Polysomnography provides a biomarker that can be used to evalu-
ate sleep through several physiologic measures. Patients with mild to

moderate AD dementia, who spend more time in light sleep stages eval-
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uated via polysomnography, have a significant decrease in cognition
after 12 months.162 EEG studies report alterations in sleep brain wave
patterns, including increased sleep latency, and reduced slow-wave
sleep in patients with MCl and AD dementia.1¢3

Orexin (also known as hypocretin) is a neuropeptide involved in the
regulation of sleep and wakefulness. Increases in CSF orexin have been
reported in patients with MCI due to AD and patients with moderate
to severe AD dementia, compared to CNCs.2612¢7 |n CSF, there is a
positive correlation between orexin and t-tau, as well as orexin and p-
taul181, in patients with moderate to severe AD dementia compared
to CNCs.11 Nonclinical research through BV2 cell cultures demon-
strates that orexin inhibits the phagocytosis and degradation of A3 by
microglia cells, supporting this relationship between the orexin and AD
pathologies.28 Further research into the relationship between orexin
and AD is needed and may provide risk/susceptibility, monitoring, or

pharmacodynamic/response biomarkers for the disease.

3.16 | Multi-target, unknown target, and other

We defined multi-target biomarkers as single biomarkers that assess
more than one mechanism. This includes ratios and panels in which
the result is a numerical value from multiple different measures. Multi-
targeted biomarkers for AD have emerged frequently as ratios, with
one of the most widely used being CSF and plasma Aj342/40, associated
with amyloid PET.267-270 This ratio has been used in AD clinical trials,
including in trials investigating DMTs.1” Combinations of markers mea-
suring different mechanisms are being evaluated, especially between
the A/T/N categories. An example is plasma p-tau181/A342, which can
accurately distinguish AD patients (AB positive) from patients with
VaD (Ag negative), and is correlated with hippocampal atrophy.'%> This
biomarker was categorized as a multi-target marker.

As the investigation for novel biomarkers continues, and new tech-
nologies are emerging, proteomic panels evaluating large numbers of
proteins are being used to identify proteins of interest and develop
AD profile scores.?’1272.273 Through proteome studies, potential AD
biomarkers may emerge that are not yet associated with a specific
mechanism; these markers would also be included in this CADRO

category.

4 | DISCUSSION

We identify current and candidate biomarkers for AD and demon-
strate the feasibility and practicality of classifying them using the
CADRO system. Categorization of biomarkers by their biological pro-
cesses provides a tool for drug development. Researchers can select
an appropriate biomarker based on the target of the mechanism of the
intervention, routes of detection (neuroimaging, CSF, blood), and COU
for their trial or research program. Here we show that all categories
of CADRO addressing disease processes have at least preliminary

biomarkers measurable by imaging or biofluid analyses.
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We focus specifically on AD biomarkers; some of the markers
have been described in other NDDs, including dopaminergic mark-
ers, a-syn, and NfL.274275 A few of the biomarkers are associated
with multiple categories, and when determining the most appropriate
CADRO category, we classified them based on the primary mechanism
as it was related to AD. Decisions were also informed by consider-
ing the mechanism being measured. For example, the revised NIA/AA
Research Framework for Alzheimer’s Diagnosis classifies biomarkers
by the pathologic process endpoint and includes t-tau as a marker of
neurodegeneration.2 We applied this framework to the CADRO sys-
tem and included t-tau as a biomarker of cell death in the CADRO
system.827¢ As our knowledge and understanding of AD biomarkers
evolve, the CADRO system can be adapted to changes.

The biomarkers presented are in different states of validation.2””
Biomarkers including amyloid-PET, FDG-PET, and CSF AB42/40 are
well-established and commonly used in the diagnosis of AD. Can-
didates in advanced stages of validation include GFAP, some p-tau
epitopes, and markers of cell death, such as NfL. Many biomarkers are
not as well characterized, or the relationship to the associated biol-
ogy is less well established. Incorporation of the Strategic Biomarker
Roadmap (SBR) into the CADRO system could further denote the
biomarker validation status as fully achieved, partly achieved, or
supported by preliminary evidence.?””

There is a critical need for blood-based biomarkers to offer a
more cost-effective, non-invasive, and accessible test for AD. Although
blood-based markers are less proximate to the brain, a simple, low risk,
low-cost blood draw can be performed in rural and low-resource areas;
samples can be easily stored, collected longitudinally, and rendered
clinically useful.

Minority populations are at greater risk for developing AD. His-
panic/Latinos are at a 1.5 times greater risk for AD, whereas African
Americans are twice as likely than non-Hispanic White individuals to
manifest dementia.2’827? Several studies have demonstrated that AD
neurobiology differs among ethnoracial groups, with differences in
neuroimaging, CSF, and blood-based biomarkers for the disease.280-284
Racial disparities in clinical trials and research of AD biomarkers pre-
vents deeper understanding of how ethnicity and race influence AD
and affects the development of new tests and treatments for AD in
underrepresented populations. The CADRO system can be used to cat-
egorize biomarker findings by ethnoracial group, providing insights and
helping to decrease racial disparities in AD.

Expansion of the A/T/N system in the revised NIA/AA Research
Framework for Alzheimer’s Diagnosis introduced inflammation as a
biomarker of non-specific processes involved in AD pathophysiology,
and vascular and a-syn as biomarkers of non-AD co-pathology fre-
quently found in patients with AD.? As presented as ATX(N), amyloid-
beta (A), tau (T), and neurodegeneration (N), where X represents novel
canidate biomarkers, additional biomarkers can be added to the frame-
work to better characterize patients and provide therapies specificto a
patient profile, paving the way for precision medicine.28> The CADRO
system offers the structure for these biomarker categories to be inte-

grated into the framework, providing a patient profile in which several
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aspects of the disease can be captured for diagnosis and therapeutic
intervention.

Organization of AD biomarkers into the CADRO classification sys-
tem canreveal gaps in the field related to the types of markers available
for each of the biological processes. For example, new approaches to
measuring a-syn and TDP-43 are currently in the preliminary stages
of development, validation, and interpretation. Understanding of these
co-pathologies is a key next step for the field.

Limitations to the use of the CADRO system to classify biomarkers
include the focus of CADRO disproportionately on AD. The CADRO
system could be adapted to encompass biomarkers for other NDDs,
thereby strengthening this approach. There is overlap of some cat-
egories, making application ambiguous. For example, the CADRO
category on metabolism and bioenergetics could include some of the
biomarkers for oxidative stress. Similarly, whether a biomarker is opti-
mally seen as a marker of cell death or of neuroprotection can be
difficult to discern, as these categories involve similar processes. Addi-
tional complexity is added when specific biomarkers touch on more
than one CADRO category, presenting a challenge when evaluating

specific target engagement.

5 | CONCLUSION

We identified current and candidate biomarkers for AD and demon-
strated the CADRO system to be a practical approach to the orga-
nization of biomarkers as they relate to AD. We demonstrate that
CADRO is a comprehensive catalogue of AD-related processes and
that biomarkers exist or are in progress for all aspects of CADRO. Anal-
ysis of the biomarkers relevant to the CADRO system reveals gaps in
biomarker research allowing growth in the field toward more accurate,
reliable, and accessible biomarkers for AD. This system is adaptive to
changes as we expand our knowledge in this complex disease. CADRO
can be incorporated into several systems in use, including the COU,
FDA BEST classification, and A/T/N. The CADRO system will assist
researchers in choosing the most appropriate biomarkers and advance
drug development for AD.
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