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Abstract

Biomarkers are vital to Alzheimer’s disease (AD) drug development and clinical trials,

and will have an increasing role in clinical care. In this narrative review, we demon-

strate the use of the National Institutes on Aging/Alzheimer’s Association (NIA/AA)

CommonAlzheimer’s Disease ResearchOntology (CADRO) system for the categoriza-

tion of biomarkers based on the primary mechanism on which they report. We show

that biomarkers are available (in various levels of validation) for all CADRO processes.

Applicationof theCADROsystemdemonstrates gaps in the fieldwherenovel biomark-

ers are needed for specific aspects of the disease, and assays to detect and measure

biological changes, in individuals with symptomatic or preclinical AD.We demonstrate

the CADRO system as ameans of categorizing established and candidate AD biomark-

ers, showing the feasibility and practicality of the system. CADRO can assist with

biomarker selection for AD clinical trials and drug development, and may eventually

be applied to implementing biomarkers in patient care.
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Highlights

∙ The CommonAlzheimer’s Disease ResearchOntology (CADRO) system can be used

to categorize biomarkers for drug development.

∙ Wedemonstrate the use of CADROwith Alzheimer’s disease (AD) biomarkers.

∙ We identified AD biomarkers in each of the CADRO categories.

∙ CADRO can be incorporated into current AD drug development and clinical trial

systems.

1 INTRODUCTION

Alzheimer’s disease (AD) dementia affects ≈57.4 million individuals

globally, with numbers continuing to rise to an estimated 152.8 million

by 2050.1 AD pathologies begin in the brain up to two decades before
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the onset of clinical symptoms, supporting the plausibility of early

detection and intervention in the disease.2,3 There are currently three

disease-modifying therapies (DMTs) approved by the U.S. Food and

Drug Administration (FDA; aducanumab, lecanemab, and donanemab),

all anti-amyloid monoclonal antibodies (mAbs) used for the treatment
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of early AD.4 Biomarkers have become increasingly important to clin-

ical trials and drug development and were critical to the approval of

these new therapies. Biomarkers will also assist in the development of

therapies that may be used clinically in combination with or instead of

mAbs.5

The FDA requires that when biomarkers are used as drug develop-

ment tools (DDTs) in a clinical trial, the biomarker has a well-defined

context of use (COU). The COU is a concise description of the

biomarker’s specified use in drug development.6,7 The role of the

biomarker will be categorized using the FDA/National Institutes of

Health (NIH) Biomarker Working Group Biomarkers, Endpoints, and

other Tools (BEST) classification. This system categorizes biomarkers

as indicators for risk/susceptibility, diagnosis, monitoring, pharma-

codynamic/response, predictive, prognostic, or safety. To choose a

biomarker for a COU in drug development, the biological process on

which the drug reports must be known.

Canonical biomarkers of amyloid beta (Aβ) and tau protein have

been used extensively to inform clinical trials. They are embedded in

the amyloid/tau/neurodegeneration (A/T/N) framework for the diag-

nosis and staging of AD.8,9 Seventy-five percent of drugs currently

in the AD drug development pipeline do not target canonical amy-

loid and tau pathways, and biomarkers representing a larger array

of mechanisms are needed.10,11 The Common Alzheimer’s Disease

Research Ontology (CADRO) classification system, developed by the

NIAandAlzheimer’sAssociation (NIA/AA) collaborationof the Interna-

tional Alzheimer’s and Related Dementia Research Portfolio (IADRP),

was developed to organize and compare basic, translational, and clin-

ical AD/ADRD (Alzheimer’s disease and related dementias) research

projects across multiple funding organizations using a common ter-

minology (Figure 1).12 Published in 2012, CADRO was designed to

aid in the evaluation of public and private investments across the

AD landscape, identifying redundancies and gaps; inform future deci-

sions in investment; and identify potential collaborations around AD

research.12 The CADRO system offers a methodology to catalog the

primary mechanisms involved in AD as a means of classifying targets

for drug development.5 Integration of CADRO with FDA BEST and

COU practices allows researchers to choose biomarkers needed to

advancedrugdevelopment and clinical trials. Herewedemonstrate the

feasibility of implementing CADRO to classify candidate biomarkers

and their potential COU.

2 METHODS

The aim of this narrative review is to demonstrate how established and

candidate biomarkers for ADcan be categorized using theCADROsys-

tem. The biomarkers and references chosen were identified through

databases using search terms including “biomarkers for Alzheimer’s

disease,” biomarkers for each CADRO category, and related words

and phrases. Our goal is not to provide an exhaustive review of the

biomarkers, but rather to demonstrate how existing biomarkers can be

organized according to CADRO categories. The biomarkers were cat-

F IGURE 1 The CommonAlzheimer’s and Related Dementias
ResearchOntology (CADRO) categorization system (© J Cummings; M
de la Flor, PhD, illustrator).

egorized manually using the CADRO classification as available on the

IADRPwebsite and defined in Figure 2.13

In this perspective, we focus on neuroimaging and biofluids. Digital

biomarkers were not included in our searches. The markers described

can be used for predicting, diagnosing, monitoring, prognosticating,

and determining treatment eligibility; markers derived at postmortem

examination are not included. There is extensive information regard-

ing genetic risk factors for AD; these trait markers are described

elsewhere.14 There is an emerging area of environmental biomark-

ers in which robust biomarkers have not yet emerged; we excluded

these from our review and anticipate that they will be added in the

future. Several viral infections have been implicated as risks for devel-

oping AD; this body of information is evolving, and specific biomarkers

associated with viral infections in AD have not been identified. These

infections are not included in the review.
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F IGURE 2 International Alzheimer’s and Related Dementia Research Portfolio (IADRP) definition for Common Alzheimer’s Disease Research
Ontology (CADRO) Category C: Translational Research and Clinical Interventions (for Early-stage Clinical Drug Development (Phase I and Phase II
Clinical Trials).

3 CADRO system and biomarkers

Several established and candidate biomarkers for AD have been iden-

tified in each of the CADRO categories and presented in Table 1.

Details regarding AD imaging biomarkers are provided in Table 2. A

subset of biomarkers is discussed in the following sections to demon-

strate the use of the CADRO system to assist with biomarker selection

for AD clinical trials and drug development research, and in future

implementation of biomarkers in clinical practice.

3.1 Amyloid beta

AD is defined by the presence of Aβ pathology, and biomarkers for Aβ
are central to the diagnosis of the disease. Advances in positron emis-

sion tomography (PET) neuroimaging nowallowclinicians todetermine

the presence, abundance, and location of Aβ pathology in the brain. In
clinical trials on mAbs, Aβ imaging is used as a diagnostic biomarker

of disease presence and a pharmacodynamic marker of effective-

ness of therapies. Pittsburgh compound B (PiB) was the first amyloid

radiotracer developed for human use.171,172 Currently, the fluorinated

radiotracers florbetapir, flutemetamol, and florbetaben are approved

ligands for amyloid PET, receiving FDA approval in 2012, 2013, and

2014, respectively.173 The quantitative evaluation of Aβ via PET uses

standardized uptake value ratios (SUVRs) or centiloids for measure-

ment standardization. Visually read as Aβ-positive or Aβ-negative,
SUVR or Centiloid threshold values can be used to qualify patients for

clinical trials. In clinical trials using mAbs, when a threshold of 15–25

Centiloids is achieved, there is a corresponding slowing of cognitive

and functional decline.174 Trials thatwereunsuccessful in reaching that

threshold did not show cognitive benefit.174

Fluid biomarkers for Aβ are commonly used as eligibility criteria or

outcome measures in clinical trials. Levels of Aβ42 and the Aβ42/40
ratio in cerebrospinal fluid (CSF) and blood have demonstrated validity,

accuracy, sensitivity, and specificity. Aβ40 and Aβ42 are amyloid iso-

forms. In patients with AD, Aβ40 is the primary isoform present in the

brain; Aβ plaques have elevated levels of Aβ42.175,176 A lower concen-

trationofAβ42, or ratio ofAβ42/40, inCSFandblood is associatedwith
higher levels of Aβ plaques in the brain.15,16

Soluble forms of tau measured in CSF and blood relate more to

the onset and progression of Aβ pathology than insoluble forms of

tau observed via PET (described in 3.2). In the Revised Framework

Criteria for the Diagnosis and Staging of AD, tau biomarkers are cat-

egorized as T1 and T2; T1 biomarkers consist of phosphorylated and

secreted tau related to Aβ pathology, whereas T2 represents AD tau

proteinopathy.9 Herein we discuss the T1 biomarkers and their rela-

tionship with Aβ, including candidatemarkers phosphorylated tau-181

(p-tau181), p-tau217, and p-tau231.34,177

Investigations into T1 biomarkers are providing insight into the

accuracy and timing of Aβ pathology. CSF p-tau217 has a higher cor-

relation with Aβ-PET when compared to p-tau181, more accurately

distinguishing AD dementia from non-AD dementia patients.35 Fur-

thermore, investigations into CSF p-tau231 revealed earlier sensitivity

to detect Aβ in specific brain regions, compared to p-tau181 and p-

tau217, prior to global Aβ-PET positivity.178 Studies have shown that

p-tau231 has the ability to discriminate stages of AD, with higher

concentrations through the disease progression; however, p-tau217

demonstrates greater dynamic change, with greater increases in AD

patients compared to p-tau231 and p-tau181.178,179 Additional p-tau

epitopes are being investigated in CSF, including p-tau202, 205, 299,

354, and 368, as independent measures, or in combination with total

tau (t-tau) or Aβ as a ratio.180,181

The need for accessible, affordable, and less invasive biomarkers

for patients and researchers has spurred investigations into blood-

based biomarkers for soluble tau. As in CSF, p-tau181, p-tau217,

and p-tau231 have been the most investigated tau targets in blood,

demonstrating positive relationships with Aβ and tau pathologies. In

preclinical AD patients, plasma p-tau217 and p-tau231 have a pos-
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TABLE 1 Established and candidate biomarkers organized by CADRO classification (madewith BioRender).

CADRO category Biomarker Abbr. Marker type References

Amyloid beta (Aβ) Aβ42/40 ratio Aβ42/40 [15, 16]

Amyloid-related imaging

abnormalities

ARIA [4, 17]

Beta-site amyloid precursor

protein cleaving enzyme 1

BACE1 [18, 19]

Stable isotope labeling

kinetics

SILK [20, 21]

Standardized uptake value

ratio/Centiloids

SUVR/CL [17, 22]

Soluble amyloid precursor

protein

sAPP [23, 24]

Oligomeric Aβ oAβ [25]

Tau Brain-derived tau [26]

Dual specificity tyrosine-

phosphorylation-regulated

kinase 1A

DYRK1A [27]

Microtubule binding region MTBR [28]

N-terminal containing tau

fragments

NTA-tau [29]

Phosphorylated tau-181 p-tau 181 [30, 31, 32]

Phosphorylated tau-205 p-tau 205 [33]

Phosphorylated tau-217 p-tau 217 [34, 35]

Phosphorylated tau-231 p-tau 231 [34]

Standardized uptake value

ratio

SUVR [36, 37, 38]

APOE, lipids, and
lipoprotein receptors

Apolipoprotein A1 ApoA1 [39, 40]

Apolipoprotein C3 ApoC3 [41]

Fatty acid-binding protein 3 FABP3 [42]

Myelin [43, 44]

(Continues)



LEISGANGOSSE ET AL. 5 of 26

TABLE 1 (Continued)

CADRO category Biomarker Abbr. Marker type References

Neurotransmitter

receptors

Acetylcholinesterase AChE [45, 46, 47]

Nicotinic acetylcholine

receptors

nAChRs [48, 49]

Serotonin transporters SERT [50]

Serotonin 1A receptors 5-HT1A [51]

Serotonin 2A receptors 5-HT2A [52, 53]

Sigma 1 receptor [54]

Vesicular acetylcholine

transporters

VAChT [55]

Neurogenesis Brain volume [11]

Inflammation Alpha-1-antichymotrypsin AACT [56, 57]

Alpha-1-antitrypsin AAT [57]

Alpha-2macroglobulin α2M [58]

CC chemokine ligand 23 CCL23 [59]

Ceramide (sphingolipid

metabolism)

[60]

Chitinase 3-like 1 YKL-40

/CHI3L1

[61, 62]

C-reactive protein CRP [63]

Cyclooxygenases COX-1/2 [64]

C4b-binding protein alpha

chain

C4BPα [56]

Ferritin [65]

Fractalkine CX3CL1 [66]

Glial fibrillary acidic protein GFAP [67, 68]

(Continues)



6 of 26 LEISGANGOSSE ET AL.

TABLE 1 (Continued)

CADRO category Biomarker Abbr. Marker type References

Intercellular adhesion

molecule 1

ICAM-1 [69]

Interleukin 1 beta IL-1β [70]

Interleukin 6 IL-6 [57, 70, 71]

Interleukin 8 IL-8 [72]

Interleukin 10 IL-10 [73]

Interleukin 12/interleukin 23

p40 subunit

IL-12/

23p40

[73]

Lipopolysaccharides LPS [64]

Monocyte chemoattractant

protein 1

MCP-1 [57, 74]

Myostatin [75]

Oxidized low-density

lipoprotein

oxLDL [57]

Regulated upon activation,

normal T cell expressed and

presumably secreted

RANTES [76]

SerpinA1 [77]

Siglec-3 CD33 [78]

Translocator protein TSPO [79]

Triggering receptor

expressed onmyeloid cells 2

TREM2 [80, 81, 82]

Tumor necrosis factor alpha TNF-α [83, 84]

Tumor necrosis

factor-related

apoptosis-inducing ligand

TRAIL [85]

Oxidative stress Cooper [72]

Glucose-6-phosphate

dehydrogenase

G6PD [86]

Isoaspartate isoAsp [87]

Sirtuin SIRT [88]

(Continues)
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TABLE 1 (Continued)

CADRO category Biomarker Abbr. Marker type References

Unfolded p53 [89, 90]

Uric acid [91]

Cell death Alzheimer-associated

neuronal thread protein

AD7c-NTP [92]

Brain volume and cortical

thickness

[82, 93]

Formic acid [94]

Neurofilament light NfL [95, 96]

Neuron-specific enolase NSE [97]

Total tau t-tau [98, 99, 100]

Visinin-like protein 1 VILIP-1 [101]

Proteostasis/proteinopathies

Alpha-synuclein α-Syn [102]

Metabolism and

bioenergetics

Beta-alanine [103]

Clusterin [104]

D-serine level and D-/total

serine ratio

[105]

Fludeoxyglucose (glucose

metabolism)

FDG-PET [106, 107,

108]

Glycogen synthase kinase-3

beta

GSK-3β [109]

Kynurenic acid [110]

Mitochondrial complex 1 MC1 [54, 111]

P3-alcadein α p3-Alcα [112]

Vasculature Albumin [113]

Arterial spin labelling ASL [114]

Cerebrovascular carbon

dioxide reactivity

CVRCO2 [115]

Fibrinogen FGN [116, 117]

(Continues)
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TABLE 1 (Continued)

CADRO category Biomarker Abbr. Marker type References

Matrix metalloproteinase-9 MMP-9 [118, 119]

Placental growth factor PlGF [120, 121]

Platelet-derived growth

factor receptor beta

PDGFRβ [122]

Vascular cell adhesion

molecule 1

VCAM-1 [123]

Water extraction with phase

contrast arterial spin tagging

WEPCAST [124]

Growth factors and

hormones

Brain-derived neurotrophic

factor

BDNF [125, 126]

Follicle-stimulating hormone FSH [127]

Irisin [125]

Luteinizing hormone LH [127]

Nerve growth factor NGF [128]

Secretogranin-2 [129]

Sex hormone-binding protein SHBG [130]

Testosterone [131]

Thyroid hormone TH [132]

Urinary free cortisol and

creatinine ratio

UFC/Cr [133]

VGF nerve growth factor VGF [129]

Synaptic plastic-

ity/neuroprotection

Electrical activity/brain

signal alterations

[134]

Blood oxygen

level–dependent signal

BOLD [135, 136]

Event-related potential ERP [137, 138]

Evoked potentials

(somatosensory, brainstem

auditory, visual, auditory

event-related)

[139]

Functional network

connectivity

[140]

Fluorodeoxyglucose PET FDG [141, 142,

143]

(Continues)
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TABLE 1 (Continued)

CADRO category Biomarker Abbr. Marker type References

Growth associated protein

43

GAP-43 [144, 145]

Metabotropic glutamate

receptor subtype 5

mGluR5 [146]

Neural oscillations [147]

Neuregulin 1 NRG1 [148]

Neurogranin NRGN [145, 149]

Neuronal pentraxin receptor NPTXR [150]

Synaptic vesicle glycoprotein

2A

SV2A [151]

Synaptosomal-associated

protein 25

SNAP-25 [145, 152]

Synaptotagmin-1 SYT1 [145]

Gut–brain axis Branched-chain amino acids

(valine, leucine, isoleucine)

BCAA [153]

Calprotectin [154]

Lithocholic acid (bile acids) LCA [155]

Microbiome composition [156, 157]

Short chain fatty acids SCFAs [158, 159]

Zonulin [160]

Circadian rhythm Orexin [161]

Sleep patterns [162]

Wake/sleep cortical activity [163]

Multi-target Allostatic load [164]

Phosphorylated

tau-181/amyloid beta 42

ratio

p-

tau181/Aβ42
[165]

Phosphorylated

tau-368/total tau ratio

p-tau368/t-

tau

[166]

Salivary proteomics [167]

Total tau/amyloid beta 42

ratio

t-tau/Aβ [32]

Other Sclerostin [168]

Abbreviations: Abbr., abbreviation; APOE, apolipoprotein E; , imaging/device biomarker; , CSF biomarker; , blood-based biomarker; , other.
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TABLE 2 Neuroimaging biomarkers by CADRO classification.

CADRO category Outcomemeasure Abbr. Biomarker Ligand References

Amyloid beta Amyloid-related imaging abnormalities ARIA MRI [4, 17]

Standardized uptake value ratio/Centiloids SUVR/CL PET florbetaben; florbetapir;

flutemetamol; Pittsburgh

compound B

[17, 22]

Tau Standardized uptake value ratio SUVR PET 18F-flortaucipir; [F18]-T808;

18F-MK6240;

[36, 37, 38]

APOE, lipids, and lipoprotein
receptors

Myelin PET;

MRI

18F-florbetapir [43, 44]

Neurotransmitter receptors Acetylcholinesterase AChE PET [11C]MP4A [46]

Nicotinic acetylcholine receptor nAChRs PET 18F-ASEM;
11C-(R)-MeQAA

[48, 49]

Serotonin transporters SERT PET (11)C-DASB [50]

Serotonin 1A receptors 5-HT1A PET [11C]WAY100635 [51]

Serotonin 2A receptors 5-HT2A PET [18F]altanserin [52, 53]

Sigma 1 receptor σ1R PET [11C]SA4503 [54]

Vesicular acetylcholine transporters VAChT PET 18F-FEOBV [55]

Neurogenesis Brain volume and cortical thickness MRI [11]

Inflammation Ferritin MRI [65]

Translocator protein TSPO PET [18F]GE-180; [11C]PK11195 [79, 169]

Cell death Brain volume and cortical thickness MRI [82, 93]

Metabolism and

bioenergetics

Glucosemetabolism PET [18F]FDG [106, 107,

108]

Mitochondrial complex 1 MC1 PET [18F]BCPP-EF [54, 111]

Vasculature Blood-brain barrier MRI Water extraction with phase

contrast arterial spin tagging

(WEPCAST)

[124]

Cerebral blood flow MRI Arterial spin labelling (ASL) [114]

Cerebrovascular carbon dioxide reactivity CVRCO2 MRI [114]

Synaptic

plasticity/neuroprotection

Blood oxygen fMRI Blood oxygen

level-dependent signal

(BOLD)

[135, 136]

Electrical activity/brain signal alterations;

Event-related potential

EEG [134]

Event-related potential EEG/ERP [137, 138]

Evoked potentials (somatosensory,

brainstem auditory, visual, auditory

event-related)

EEG/ERP [139]

Functional network connectivity fMRI [140]

Metabotropic glutamate receptor subtype 5 mGluR5 PET [18F]FPEB [146]

Neural oscillations MEG [170]

Neuronal activity through glucose

metabolism

PET [18F]FDG [141, 142,

143]

Neuronal oscillations MEG [147]

Synaptic vesicle glycoprotein 2A SV2A PET [11C]UCB-J [151]

Circadian rhythm Sleep patterns PSG [162]

Wake/sleep cortical activity EEG [163]

Abbreviations: Abbr., abbreviation; EEG, electroencephalography; fMRI, functional magnetic resonance imaging; MEG, magnetoencephalography; PET,

positron emission tomography; PSG, polysomnography.
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itive relationship with Centiloid levels of Aβ-PET.34 Evaluations of

plasma p-tau217 and p-tau231 show the strongest relationship with

Aβ-PET when compared to p-tau181, Aβ42/40, glial fibrillary acidic

protein (GFAP), andneurofilament light chain (NfL).34 Plasmap-tau181

increases across the AD continuum, with the highest levels in mild

cognitive impairment (MCI) and AD dementia patients with Aβ pos-

itivity; p-tau181 levels are associated with tau-PET (area under the

curve [AUC] 83.08–93.11) and Aβ-PET (AUC 76.14–88.09).177,182,183

Comparisons demonstrate that plasma p-tau217 measured by mass

spectrometry detects Aβ statuswith the highest accuracy (AUC0.947),

compared to other p-tau markers, including p-tau181 and p-tau231

evaluated on different platforms.184

PrecivityAD2 is a test developed by C2N Diagnostics (Missouri,

USA) to measure plasma Aβ42/40 ratio and p-tau217 by mass spec-

trometry and calculates a score to aid in AD diagnosis and selection

for clinical trials.185 The PrecivityAD2 test results in a numerical value

representing brain amyloidosis. Patients with scores from 0 to 35.5 are

considered negative, and patientswith scores 57.5 and higher are posi-

tive; there is an intermediate range for patients that have scores35.6 to

57.4, in which the test cannot predict the outcome with high certainty

and additional testing is suggested.185

Other candidate biomarkers subsumed in the amyloid CADRO cat-

egory are those involved in the processing and production of Aβ.
Beta-site amyloid precursor protein cleaving enzyme 1 (BACE1) is an

enzyme responsible for the cleavage of the amyloid precursor protein

(APP), resulting in amyloidogenic Aβ peptides.186 Elevated levels of

BACE1 inCSF are observed in patientswithMCI compared to controls,

and correlate with Aβ40, t-tau, and p-tau181, representing a prognos-
tic biomarker for AD.19,187 In patients with MCI due to AD and AD

dementia, there are increases in serumBACE1,with aproposed thresh-

old concentration of 11.04 kU/L used to differentiate controls from

individuals with AD pathology.18,188

Soluble amyloid precursor protein-beta (sAPPβ) is one of the

byproducts of APP processing.189 In patients with AD, there are

increased levels of sAPPβ in CSF and plasma, and these correlate sig-

nificantly with Clinical Dementia Rating (CDR) and Mini-Mental State

Examination (MMSE) scores.23,24 There are currently no candidate

biomarkers for oligomeric Aβ or oligomeric tau species, representing

a gap in the field.

3.2 Tau

Neurofibrillary tangles (NFTs), attributed to aggregation of p-tau into

paired helical filaments, are a core pathology of AD. As described

above, the Revised Framework Criteria for the Diagnosis and Stag-

ing of AD divides tau biomarkers as T1 and T2. T1 biomarkers include

forms of soluble tau, which have strong relationships with Aβ pathol-
ogy (discussed in 3.1); however, it is important to note that they show

a relationship with tau PET as well.9 In patients with mild to moder-

ate AD, plasma p-tau181 levels correlate positively with tau-PET in

the inferior temporal and meta-temporal regions, and globally.190 In

patients with MCI or AD dementia positive for Aβ, there is strong

association between plasma p-tau217 and tau-PET, especially in the

temporoparietal and dorsolateral frontal cortices.191,192

T2 biomarkers aremeasures of AD tau proteinopathy, such as insol-

uble tau. The gold standard biomarker method for measurement of

NFTs is tau-PET, allowing clinicians and researchers to observe the

presence, abundance, and location of the pathology. Currently, the only

FDA-approved tau tracer for PET is [18F]flortaucipir ([18 F]AV1451),

approved in 2020.180 Other tracers being used in clinical trials

and research include derivative [F18]-T808 and 6-(fluoro-18F)-3-(1H-

pyrrolo[2,3-c]pyridin-1-yl)isoquinolin-5-amine ([18F]-MK6240). Tau-

PET with [18 F]AV1451 is able to successfully discriminate between

patients that are Aβ positive and Aβ negative with an AUC of 0.92–

0.94.193

Microtubule binding region (MTBR)-tau243 and N-terminal con-

taining tau fragments (NTA-tau) demonstrateutility asbiomarkerswith

higher specificity to tau pathology.28,194 CSFMTBR-tau243 correlates

with insoluble tau aggregates and shows the strongest association

with tau-PET compared to p-tau181, p-tau217, and p-tau231.28 Fur-

thermore, MTBR-tau243 shows the lowest association with Aβ-PET.28

NTA-tau levels in CSF and plasma increase significantly through AD

progression, with a relationship to tau accumulation (tau-PET), brain

atrophy, and cognitive decline.29,192

Additional biomarkers in the tau CADRO category include those

associated with the formation, accumulation, and byproducts of tau

pathology. For example, dual specificity tyrosine-phosphorylation-

regulated kinase 1A (DYRK1A) is involved in the phosphorylation of

tau, and patients with AD dementia have significant reductions com-

pared to cognitively normal controls (CNCs).27 Furthermore, DYRK1A

concentrations are correlated with CSF t-tau and p-tau181 levels,

but show no association with CSF Aβ42 and Aβ-PET.27 Additional

biomarkers and novel assays are being investigated to accurately mea-

sure tau-related targets in AD patients as risk/susceptibility, diagnosis,

monitoring, and pharmacodynamic/responsiveness biomarkers.

3.3 APOE, lipids, and lipoprotein receptors

After age, the most influential risk factor for late-onset AD (LOAD) is

the apolipoprotein E (APOE) ε4 allele(s).
Investigations into apolipoproteins (Apo) in biofluids comprise

important biomarkers, including ApoA1 and ApoC3 protein. ApoA1

is the second most abundant Apo protein in the CSF and is essen-

tial to cholesterol homeostasis.39 Significant increases in CSF ApoA1,

and significant decreases in plasma levels, have been associated with

progressive cognitive decline in APOE ε4 positive individuals.39,195 In

addition, decreases in plasma ApoA1 have been reported in patients

with symptomatic AD compared to CNCs.40 ApoC3 is detectable in

urine, and research using enzyme-linked immunosorbent assay (ELISA)

demonstratesmixed results in two cohorts of patientswith ADdemen-

tia; whereas ApoC3 may be a potential urinary biomarker for AD,

further research is necessary to validate the initial observations.41

Additional Apo biomarkers being evaluated include ApoA2, ApoB,

ApoH, and ApoJ.195
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Dysregulation of lipids has been proposed as a key factor in AD

pathogenesis. Fatty-acid binding protein 3 (FABP) is associated with

lipid metabolism and is shown to be significantly increased in the

CSF of patients with AD dementia, compared to MCI due to AD

and CNCs.42 FABP correlates negatively with MMSE scores and CSF

Aβ42/40 ratios.42 Myelin is composed primarily of lipids and is respon-

sible for insulating neurons, fundamental to neuron signaling. White

matter, a proxy to measure myelin, is significantly altered in patients

with AD.196–198 Although this is typically measured by magnetic res-

onance imaging (MRI), new developments in PET radiotracers aim to

assess myelin and myelin-related proteins to provide a measure with

greater sensitivity.44 Biomarkers associated with APOE, lipids, and

lipoprotein receptors can be used for the COU of risk, monitoring, or

pharmacodynamic/response.

3.4 Neurotransmitter receptors

Alterations of neurotransmitter systems in AD are well docu-

mented, including changes in serotonin and acetylcholine signaling

pathways.199 In patients with probable AD dementia, there is

decreased binding of serotonin 1A receptor (5-HT1A) observed

through PET with radioligand [carbonyl-11C]Desmethyl-WAY-100635

([11 C]WAY100635), compared to CNCs.51 Decreases in serotonin

2A receptor (5-HT2A) binding is observed in patients with MCI

using 3-[2-[4-(4-[18F]Fluorobenzoyl)-1-piperidyl]ethyl]-2-sulfanyl-

3H-quinazolin-4-one ([18 F]altanserin) PET, compared to CNCs,

demonstrating it as an early biomarker for AD.52 Using the same

radiotracer, an ≈30% decrease in 5-HT2A binding was reported in

several brain regions, including the anterior cingulate, prefrontal

cortex, and sensorimotor cortex of patients with symptomatic AD

dementia compared to CNCs.53 Serotonin transporters (SERTs) are

decreased significantly in patients with AD dementia, compared

to CNCs, evaluated by [11C]-3-amino-4-(2-dimethylaminomethyl-

phenylsulfanyl)benzonitrile ([11C]DASB) PET.50 AD patients with

depressive symptoms have greater reductions in SERT binding

compared to AD patients without depressive symptoms; there is a

reduction of SERT in nondepressed AD dementia patients, suggesting

that alterations in serotonergic signaling precede the onset of depres-

sive symptoms andmay provide an early biomarker formood disorders

in AD.50

Disruption of the cholinergic system is observed in AD with

degeneration of cholinergic neurons and acetylcholine deficiency.200

In patients with AD dementia, there is a reduction in α7 sub-

type of the nicotinic acetylcholine receptor (α7-nAChR) compared to

CNCs using (R)-2-methylamino-benzoic acid 1-aza-bicyclo[2.2.2]oct-

3-yl ester (11C-(R)-MeQAA) PET.49 A negative correlation between

α7-nAChR binding and Aβ PET has been reported.49 Patients with

AD dementia have normal dopamine transporter scans (DaT scans);

abnormal DaT scans are observed in dementiawith Lewy bodies (DLB),

with 78% sensitivity for probable DLB, and 90% specificity for exclud-

ing non-DLB dementia, representing a diagnosis biomarker for the

differentiation of the diseases.201

Acetylcholinesterase (AChE) is an enzyme involved in the degra-

dation of acetylcholine. In patients with early cognitive impairment,

enzymatic activity of AchE is significantly higher in those who have

increased levels of CSF t-tau, p-tau181, and inflammatory markers

S100 calcium-binding protein B (S100B) and chitinase-3-like protein 1

(YKL-40).47

Overall, biomarkers of neurotransmitter receptor dysregulation

have emerged utilizing primarily PET imaging. Studies are underway

investigating not only potential biomarkers, but also themost sensitive

and reliable PET radiotracers for the targets being evaluated.

Very few biomarkers of neurotransmitter receptors have been

recognized in fluid samples, CSF and blood. With 29% of DMTs cur-

rently in the drug development pipeline targeting neurotransmitters,

biomarkers to measure these processes are vital for the progres-

sion of AD treatment development. These markers could be used

as risk/susceptibility, monitoring, and pharmacodynamic/response in

terms of COU.

3.5 Neurogenesis

Biomarkers of neurogenesis would be useful as new treatments for

AD continue to develop; however, no robust biomarkers specific to

neurogenesis have emerged.

3.6 Inflammation

Neuroinflammation is observed in several neurodegenerative diseases

(NDDs), including AD, Parkinson’s disease (PD), Huntington’s disease

(HD), and amyotrophic lateral sclerosis (ALS).202,203 In AD, neuroin-

flammation exacerbates disease pathology, including Aβ and NFTs,

making it a target for novel therapeutics.11 Drugs aimed at inflamma-

tory mechanisms comprise a substantial aspect of the current AD drug

development pipeline.10

Microglia are the resident immune cells of the central nervous sys-

tem (CNS). These cells maintain an inactive profile unless activated by

neuronal damage or the presence of a threat, including Aβ and NFTs.

Microglia activation can be measured via PET scan using mitochon-

drial 18kDa translocator protein (TSPO) as a biomarker. With TSPO

radiotracers 11C-[1-(2-chlorophenyl)-N-methyl-N-(1-methyl-propyl)-

3-isoquinolinecarboxamide ([11C]PK11195), AD patients have a sig-

nificantly higher SUVR in the hippocampus, negatively correlated with

CSF Aβ levels and predicting further cognitive decline.79 Although

TSPO is recognized as a marker of activated microglia, it can be found

on other cells types, including astrocytes and endothelial cells. PET

biomarkers more specific to inflammation are being sought.204

Investigations into relationships between microglia and AD identi-

fied loss-of-function variants in the triggering receptor expressed on

myeloid cells 2 (TREM2) gene throughgenome-wideassociation studies

(GWAS), indicating that patients with these variants are more suscep-

tible to AD.82,205 This led to research evaluating the TREM2 protein

in biofluids—CSF and blood. TREM2 is involved in several microglia
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processes including proliferation, migration, phagocytosis, lysosomal

degradation, and metabolism, emphasizing the role of TREM2 alter-

ations as biomarkers of microglia dysfunction.206 In patients with AD

dementia, significantly higher levels of CSF soluble TREM2 (sTREM2)

are observed compared to CNCs.81 In patients with autosomal dom-

inant AD, there are elevated levels of sTREM2 in the CSF, associated

with the decrease of CSF Aβ; relationships between CSF sTREM2 and

t-tau, p-tauS199, and NfL have also been reported.81,82,207 Some stud-

ies have investigated sTREM2 in blood with little consensus, meriting

further investigation.80,205,208,209

Astrocytes are the most abundant glial cell in the CNS and are

involved in neuroinflammation; they are responsible for different

aspects of the immune response compared to microglia, making them

another biomarker target for AD.210 Glial fibrillary acidic protein

(GFAP) plays a role in astrocytic mobility, proliferation, autophagy, and

cellular communication, indicating astrocytic activation.211 In cogni-

tively unimpaired individuals positive for Aβ pathology, plasma GFAP

is elevated compared to those negative for Aβ. A meta-analysis reveals

elevated levels of plasma GFAP in individuals with MCI and AD

dementia.68 Research demonstrates GFAP as a biomarker for distin-

guishingAD fromotherdiseases, particularly frontotemporal dementia

(FTD) and progressive supranuclear palsy, with higher accuracy in

plasma compared to CSF (plasma GFAP AUC = 0.703; CSF GFAP AUC

= 0.584).67

Overall, chronic neuroinflammation has been demonstrated in

AD patients and attributed to the imbalance of numerous pro-

and anti-inflammatory cytokines, released by activated glia cells.203

Cytokines, tumor necrosis factor alpha (TNF-α), interleukin-6 (IL-6),

and interleukin-1 beta (IL-1β) are a few of the exploratory inflam-

matory biomarkers being investigated in AD. These pro-inflammatory

cytokines have been shown to be altered in CSF and serum samples

from MCI and AD patients.70,83,212,213 Inconsistent results demon-

strate the need for further research into the role of cytokines as AD

biomarkers.214 Biomarkers of inflammation and the immune response

are being investigated in fluid samples primarily as risk/susceptibility,

monitoring, pharmacodynamic/response, and prognostic biomarkers

for ADCOU.

3.7 Oxidative stress

Through the process ofmetabolism, free radicals are released, with the

most important being reactiveoxygen species (ROS) and reactivenitro-

gen species (RNS).215 The imbalance of free radicals results in oxidative

stress, with the brain being particularly prone to oxidative damage

due to its high metabolic activity.215 Oxidative stress is observed with

aging and inflammatory processes in several NDDs, including AD.216

Oxidative changes have been reported early in AD pathogenesis.217

Products of lipid peroxidation, including isoprostanes and neuro-

prostanes, are biomarkers of oxidative stress. In plasma, markers of

lipid peroxidation are higher in CNCs and non-AD dementia patients,

compared to AD dementia, and are associated with cognition and tau

pathology.218,219 Recent data support the use of isoprostanes and neu-

roprostanes in a biomarker panel to increase the accuracy for detecting

AD, although inconsistencies between plasma and CSF levels merit

further investigation.220

Endogenous proteins with antioxidant properties, including uric

acid and sirtuins, are reduced in AD dementia patients and can be

used as biomarkers of oxidative stress. Serum uric acid is signifi-

cantly decreased in AD dementia patients compared to CNCs, with

a downward trend in patients with MCI.91 Serum from AD dementia

patients also shows reductions in multiple sirtuins, including SIRT1,

SIRT3, and SIRT6, compared to MCI and CNCs.88 Mechanisms of

sirtuins have been linked to AD pathology, although many of these

studies are in postmortem tissues and non-clinical models.221 The

oxidative stress CADRO category consists primarily of blood-based

biomarkers, which could be used as a risk/susceptibility, monitoring,

pharmacodynamic/response, or prognostic marker of AD.

3.8 Cell death

AD is characterized by neurodegeneration, as recognized in the A/T/N

system.9 MRI allows visualization of brain atrophy as a biomarker

of cell density. Region-specific changes can assist with differentia-

tion of AD from other NDDs, as well as classification of disease

progression.222 Atrophy in AD ismanifested as decreased overall brain

volume, including shrinkage in cortical volume, cortical thickness, hip-

pocampal size, andventricle expansion.223 Brain volume reductions are

≈2.4% per year in AD dementia patients, with CNCs having an aver-

age of 0.4% loss.224 MRI atrophy is a nonspecific marker that may

detect cell loss, reduction in other space-occupying elements includ-

ing Aβ, and fluid shifts. MRI can be used in the COU of monitoring

and pharmacodynamic/response to assess the impact of therapy on

volume.

Fluid biomarkers of cell death are also being investigated. Total tau

(or t-tau) has been established as a marker of neurodegeneration and

injury in several diseases includingAD, traumatic brain injury (TBI), and

stroke. In patients with AD dementia, elevated levels of plasma tau are

detected compared to patients with MCI and CNCs, with and without

Aβ pathology.99 In patients with mild to moderate AD dementia, high

levels of t-tau in CSF were associated with greater cognitive decline

in individuals who were APOE ε4 carriers.100 Furthermore, in patients

whoare cognitively normalwithpositivity forAβ, there is a significantly
higher level of plasma t-tau, compared to Aβ-negative CNCs.98

Neurofilament light chain (or NfL) is another biomarker that is

increased in relation to neuronal damage and cell death and can be

measured in CSF and blood.95 In plasma, NfL is elevated in patients

with MCI and AD dementia compared to those with subjective cogni-

tive decline; this elevation is dependent on Aβ status and age.95,225

Although t-tau and NfL are indicative of cell death in NDDs,

they are not specific biomarkers for AD, but rather markers of dis-

ease progression and neurodegeneration. Markers of cell death and

their relationships to biomarkers in other CADRO categories may

offer a more accurate and reliable combination diagnostic marker,

such as t-tau/Aβ (Roche), which received FDA 510(k) clearance in
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2023, facilitating diagnosis of symptomatic AD.32 Biomarkers of cell

death are important to AD research for COU of monitoring and

pharmacodynamic/response.32

3.9 Proteostasis/proteinopathies

Proteostasis is the process of regulating proper folding of proteins

after synthesis. If misfolding occurs, it results in unfolding, refold-

ing, and/or abnormal degradation and aggregation of the protein.

NDDs, including AD, PD, and ALS, are characterized by dysfunction

of proteostasis and the presence and accumulation of protein aggre-

gates. In AD, misfolding of Aβ leads to self-assembly and aggregation

into oligomers, fibrils, and plaques; p-tau aggregates to form NFTs.

Within the CADRO classification system, biomarkers for these pro-

teinopathies are organized into specific categories of their own: amy-

loid and tau. We do not include biomarkers of these processes in the

proteostasis/proteinopathies category, as they are discussed above.

Alpha-synuclein (α-syn) and TAR DNA-binding protein 43 kDa (TDP-

43) are other protein aggregation disturbances commonly present in

the AD brain that we discuss.

Accumulation of α-syn to form Lewy bodies is a predominant fea-

ture in PD and DLB; α-syn is also present in AD.102 Recently, α-syn
has been measured using α-synuclein seed amplification assays (αSyn-
SAA). The αSyn-SAA method relies on in vitro replication of protein

from a template, or seed, acquired through a patient fluid sample.

The cyclical process makes protein copies resulting in higher levels

for detection and determination of α-syn presence.226,227 Novel tech-
nology is emerging for digital quantification of αSyn-SAA.228 Through
meta-analysis, α-syn was determined to be highest in patients with

MCI, especially in thosewhoprogress rapidly toADdementia102;α-syn
correlates with Aβ levels in asymptomatic individuals, demonstrating

it to be an early detection marker for AD.102 α-Syn is detectable in

the skin biopsies of patients with PD, DLB, multiple system atrophy

(MSA), and pure autonomic failure (PAF); α-syn from skin biopsies of

AD patients have not yet been reported.229

TDP-43 is involved in RNA processing and gene expression reg-

ulation; however, mislocalization of TDP-43 results in multiple post-

translational modifications and ultimately insoluble aggregation of

TDP-43.230 TDP-43 aggregation is a key pathology of ALS and FTDand

has been observed in postmortem tissues fromAD patients as well.231

Quantification of plasma extracellular vesicle TDP-43 is signifi-

cantly increased in patients with ALS and behavioral variant FTD

(bvFTD), correlating with disease severity. Complete plasma TDP-43

levels do not differ between diagnostic groups, demonstrating the

importance of evaluating extracellular vesicles.232 Recent studies have

proposed a novel method: measuring TDP-43-dependent cryptic exon

hepatoma-derived growth factor-like protein 2 (HDGFL2) in the CSF

of patients with ALS.233 This method was verified as detecting TDP-

43 loss of cryptic splicing and demonstrated significant increases in

HDGFL2 in theCSF of patientswith familial ALS-FTDand sporadic ALS

compared to CNCs.233 Furthermore, HDGFL2 was present in patients

with presymptomatic ALS-FTD who were positive for the C9orf72

gene mutation associated with the disease.233 If substantiated in fur-

ther studies, this novel method could be employed in AD research,

advancing the understanding of TDP-43 in AD. Biomarkers of pro-

teostasis/proteinopathies areusedas risk/susceptibility,monitoring, or

pharmacodynamic/response COUmarkers.

3.10 Metabolism and bioenergetics

Metabolic dysfunction is well documented in NDDs, such AD, PD,

ALS, and HD. Using fluorodeoxyglucose (FDG)–PET, progression from

MCI to dementia can be determined with reductions in the medial

temporal lobe metabolism (94.7% sensitivity; 80.5% specificity).108

These alterations can be detected up to 8 years prior to progres-

sion to dementia.108 In patients with lower levels of FDG-PET activity,

there is a faster rate of cognitive decline and greater shrinkage of the

middle temporal lobe, compared to individuals with higher FDG-PET

activity.107 FDG-PET provides a COUbiomarker for risk/susceptibility,

monitoring, and pharmacodynamic/response.

Mitochondria are responsible for cellular bioenergetics, cal-

cium signaling, and apoptosis.234 In AD, mitochondrial dysfunction,

including imbalance of fission and fusion, reduction of adenosine

triphosphate (ATP) generation, defects in mitophagy, increased

ROS, and mitochondrial fragmentation, have all been reported and

proposed as contributors to AD pathogenesis.235 As mitochondria

use the electron transport chain to produce ATP, mitochondrial

complex 1 (MC-1) is the rate-limiting enzyme for this process

and a step involved in ROS production.111 Using PET tracer

2-tert-butyl-4-chloro-5-{6-[2-(2[18F]fluoroethoxy)-ethoxy]-pyridin-

3-ylmethoxy}-2H-pyridazin-3-one ([18F]BCPP-EF), which binds

specifically to MC-1, there is a significant decrease in SUVR in the

medial temporal region in patients with AD dementia; mitochon-

drial PET has a significant negative correlation with tau-PET.111

Additional biomarkers of mitochondrial dysfunction overlap with

markers of increased ROS (as described in Section 3.8). Biomarkers

measuring metabolism and bioenergetics are important as COU for

risk/susceptibility, monitoring, and pharmacodynamic/response.

3.11 Vasculature

Cardiovascular disease (CVD) can lead to vascular dementia (VaD) and

vascular cognitive impairment (VCI), attributed to interrupted blood

flow to the brain leading to cognitive deficits. CVD is associated with

AD, although the relationship is complex, with many overlapping risk

factors. Individuals at high risk for developing VaD andAD are patients

with metabolic disorders, including type 2 diabetes (DM2), and an

APOE ε4 allele.236

Arterial spin labeling (ASL) MRI can be used to measure cere-

bral blood flow. In patients with AD dementia, there is a decrease in

cerebral blood flow in several brain regions, including the entorhinal,

hippocampus, inferior temporal, and posterior cingulate.114 Indepen-

dent of diagnosis, patients who are Aβ positive have lower cerebral
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blood flow than patients who are Aβ negative.114 Single-photon emis-

sion computed tomography (SPECT) and oxygen-15-labeled water

(15O-H2O)PET are alternative measures of cerebral blood flow.237,238

The blood–brain barrier (BBB) is protective barrier between the

brain and the vascular system. Although biomarkers are being sought

to characterize the integrity of the BBB, there is no consensus on

whether the BBB is compromised in AD. Patients with MCI have

demonstrated BBB permeability through water extraction with phase

contrast arterial spin tagging (WEPCAST) MRI, suggesting a deterio-

ration of the BBB in these patients compared to CNCs.124 In relation

to AD pathology, the BBB shows higher water permeability in patients

with lower CSF Aβ42/40 ratio.124 However, BBB permeability to

albumin is not associated with AD pathology, but rather hypercholes-

terolemia, demonstrating a potential biomarker for differentiation of

AD and VaD.124

Biomarkers of vascular health and BBB integrity are being investi-

gated in biofluids, including fibrinogen, platelet-derived growth factor

receptor-β (PDGFRβ), vascular cell adhesion molecule 1 (VCAM-1),

placental growth factor (PlGF), andmatrixmetalloproteinase-9 (MMP-

9). Fibrinogen is responsible for coagulation, inflammation, and repair

of vascular damage.117 In the CNS, the presence of fibrinogen is a

marker of BBB dysfunction and mediates microglia processes.117 In

patients with AD dementia, plasma fibrinogen correlates positively

with plasma Aβ40 and Aβ42, and negatively with CSF Aβ42; fibrino-
gen correlates positively with CSF t-tau and p-tau181.116 In CNCs,

there are no reported associations between fibrinogen and Aβ and tau
pathology.116

PDGFRβ is a protein involved in the development and maintenance

of the BBB.239 In patients with amnestic MCI who are positive for all

A/T/N biomarkers (CSF Aβ42, unspecified p-tau epitope, and t-tau),

CSF PDGFRβ is significantly increased compared to amnestic MCI

patients with a negative A/T/N profile.122

VCAM-1 is found on endothelial and immune cells responsible for

interactions between the two cell types.240 In patients with AD, sig-

nificant increases were observed in CSF VCAM-1, associated with

Clinical Dementia Rating–Sum of Boxes (CDR-SB) scores, modified

by APOE ε4 status; this was not observed in MCI.241 Furthermore,

plasma VCAM-1 levels are significantly increased in patients with AD

dementia, correlating with cognitive decline and brain atrophy.123

Placental growth factor (or PlGF) is part of the vascular endothe-

lial growth factor family involved in angiogenesis.120 Patients with

AD dementia have elevated levels of PlGF in CSF and blood com-

pared to patients who are cognitively impaired with no dementia

and CNCs.120,121 PlGF levels are associated with higher white mat-

ter hyperintensity burden and cerebral microbleeds in patients with

AD.120 Non-clinical data show PlGF messenger RNA (mRNA) levels

increase with the presence of Aβ.242 These findings indicate that PlGF
could beused as a biomarker for concomitant cerebrovascular diseases

in AD.

Matrix metalloproteinase-9 (or MMP-9) is a proteolytic enzyme,

capable of Aβ degradation.243 Patients with AD dementia who are

positive for Aβ have elevated levels of CSF MMP-9 compared to Aβ-
positive MCI patients.118 High MMP-9 level is associated with greater

decline in hippocampal volume and cognitive function.244 Elevated lev-

els of MMP-9 may affect AD pathology as well as cognition differently

in men and women.118 The dual roles of MMP-9 in degradation and

promotion of Aβ, and the differences between sexes, require further

research.

Overall, the CADRO category of vasculature biomarkers includes

assessments of vascular inflammation, BBB dysfunction, and vascular

health associated with AD. Quantification of these markers could pro-

vide risk/susceptibility, monitoring, and pharmacodynamic/response

biomarkers in terms of COU.

3.12 Growth factors and hormones

Sex influences AD prevalence, with two-thirds of patients being

women.245 Although several factors may be involved, menopause is a

risk factor for dementia, with the onset of AD brain changes coinciding

with the time of menopausal transition.246 Alterations in sex hor-

monesduringmenopauseexacerbateADpathologies. Postmenopausal

women have higher Aβ deposition, tau burden, neuroinflammatory

responses, and reduced cerebral glucose metabolism compared to

premenopausal women.247,248,249 There are significant reductions in

estrogen and progesterone during the menopausal transition, and

depletions of these hormones are biomarkers of risk/susceptibility for

AD.250,251 Elevated levels of gonadotropins, including follicle stimulat-

ing hormone (FSH) and luteinizing hormone (LH), have been reported

in patients with dementia; however, the findings are mixed, potentially

due to variables in the studies, including the type of dementia evalu-

ated, sex of the patients, hormonal replacement therapy (HRT) status,

and time sincemenopause.127,252,253

Through aging, men experience a gradual loss of testosterone,

impacting the risk for AD. A meta-analysis found that in elderly

men, lower levels of testosterone are associated with worse cog-

nitive function.254 Decreased levels of testosterone correlate with

increases in CSF p-tau181 in men who are APOE ε4 carriers.131 Like

HRT in women, inconsistencies in studies involving testosterone ther-

apy in men may be attributed to differences in drug formulation,

administration, and study design.

Growth factors, such as brain-derived neurotrophic factor (BDNF)

and nerve growth factor (NGF), represent biomarkers of AD. BDNF

promotes cell growth and is essential to learning and memory. Serum

BDNF in patients with MCI due to AD is significantly lower than

in CNCs, correlating with CSF Aβ42 levels and medial temporal

lobe atrophy.126 CSF BDNF has associations with CSF Aβ42 and

MMSE scores in patients with AD dementia compared to CNCs.125

NGF supports neuronal growth, development, and differentiation in

the brain and is increased in blood samples from patients with AD

dementia.255,256 Patients with Down syndrome, a population in which

individuals develop AD with age, demonstrate alterations in the NGF

pathway through CSF and plasma biomarkers, supporting the link

between NGF and AD.128 Hormone and growth factor biomarkers

are important for the COU of risk/susceptibility, monitoring, and

pharmacodynamic/response.
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3.13 Synaptic plasticity/neuroprotection

Synaptic loss and dysfunction of synaptic plasticity are more closely

associated with cognitive decline than other pathological changes

in patients with AD dementia.257 Several neuroimaging techniques,

including fluorodeoxyglucose–positron emission tomography (FDG-

PET), electroencephalography (EEG), functional MRI (fMRI), and

synaptic vesicle glycoprotein 2A (SV2A) PET, are used to measure

synaptic plasticity. Synaptic function can be evaluated through EEG,

detecting electrophysiological changes in the brain primarily includ-

ing slowing of EEG signal and coherence of signals among brain

regions.134,137 The use of EEG to monitor event-related potentials

(ERPs) as a response to specific events or stimuli is another candi-

date biomarker for AD, predicting cognitive decline.138,258 Gradual

changes in delta activity fromMCI to AD dementia on EEGmay repre-

sent a biomarker of disease progression.163 EEGandpolysomnography

(discussed further in 3.15) can serve the COU of monitoring or

pharmacodynamic/response characterization in drug development.

Evaluation of synaptic function using fMRI to measure blood oxy-

gen level–dependent (BOLD) signal demonstrates neuronal activity

through alterations in blood flow and oxygenation in the brain. Greater

variability in BOLD is observed in patients with AD dementia, com-

pared to CNCs.135,136 Resting-state fMRI (rs-fMRI) detects changes

in neuronal networks, including the salience network and default

mode network (DMN), and in patients with MCI and AD, substan-

tial alterations in these networks have been observed in relation to

CNCs.259,260 In undiagnosed patients who later developed dementia,

changes in the DMN can be identified at an individual level, providing a

risk biomarker for AD.259

Radiotracers for PET allow detection of specific proteins related

to synaptic function and density. FDG is an analog of glucose, used

to demonstrate glucose metabolism levels in the brain. With glucose

necessary for neuronal activity, FDG-PET uptake reflects synaptic

function. Patients with MCI or AD dementia have significantly lower

FDG-PET SUVRs than CNCs, with hypometabolism severity being

associated with Braak staging of NFTs.141,143 FDG-PET SUVR is sig-

nificantly correlated with CSF t-tau, p-tau181, and Aβ42.142 However,
FDG-PET cannot distinguish AD from other NDDs; combinations of

FDG-PETwith other biomarkers are being investigated to increase the

reliably of bothmarkers for the diagnosis COU.

Synaptic vesicle glycoprotein 2A (or SV2A) is located in the synapse,

observed by radiotracer (R)-1-((3-([11C]methyl)pyridin-4-yl)methyl)-

4-(3,4,5-trifluorophenyl)pyrrolidin-2-one ([11C]UCB-J) as a marker of

synaptic density. Research shows reductions of SV2A in patients

with AD dementia compared to CNCs using this radiotracer.151 Addi-

tional radiotracers for SV2A are being explored, including derivatives

[11C]UCB-A and [18F]UCB-H.257

CSF markers of synaptic damage and loss are promising fluid

biomarkers. Synaptosomal-associated protein 25 (SNAP-25) aa40

species, neurogranin (NRGN), growth associated protein 43 (GAP-

43), and synaptotagmin-1 (SYT1) all show a positive correlation with

Aβ levels, determined by CSF Aβ42/40 and Aβ-PET imaging. These

biomarkers are associated with CSF p-tau181 and NfL in CNCs.144

Patients withMCI-AD and AD dementia have higher levels of GAP-43,

NRGN, SNAP-25 aa40, and SYT1, compared toCNCs and patientswith

non-AD MCI or non-AD dementias.145 Blood-based biomarkers for

synaptic plasticity/neuroprotection arebeing investigated, althoughno

robust markers have emerged. Overall, biomarkers of synaptic plastic-

ity/neuroprotection have a COU for risk/susceptibility, monitoring, or

pharmacodynamic/response.

3.14 Gut-brain axis

Gut microbiota includes bacteria, fungi, viruses, and helminths in the

gastrointestinal tract.261 Bi-directional communication between the

gut and the brain is termed the gut–brain axis (GBA). Gut microbes

have been shown to synthesize several neurotransmitters, including γ-
aminobutyric acid (GABA), serotonin, dopamine, and acetylcholine.262

Dysbiosis is observed in NDDs including AD and PD.262 The composi-

tionof themicrobiomemay influenceADpathogenesis. In patientswho

are Aβ positive, there are higher levels of fecal Escherichia/Shigella (pro-
inflammatory) and lower levels of E. rectale (anti-inflammatory).156

Gut microbiota–related inflammatory processes could provide a link

between the gut and brain health. In patients with uncharacterized

dementia, significant increases in the inflammatory marker soluble

cluster of differentiation-14 levels (sCD14) and the gut permeabil-

ity marker, serum diamine oxidase (DAO), were observed in serum

and fecal samples, respectively, compared to CNCs.157 Gut health

influences AD pathogenesis, with Aβ detected in the gut.263 Through

intra-intestinal injection of fluorescence-labeled Aβ in transgenicmice,

Aβ42 from the gut was observed being transported to the brain, sug-

gesting that peripheral Aβ may be contributing to the aggregation of

Aβ in the brain.263

Metabolites of gut microbiota, specifically fecal volatile organic

compounds, are potential biomarkers for severity of AD, with early

stages having high levels of fecal short-chain fatty acids (SCFAs) and

bacteria Faecalibacterium and Lachnoclostridium; advanced stages of

AD show greater levels of fecal hexanoic acid, Ruminococcus, and

Blautia.159 In patients with cognitive complaints, plasma levels of

the SCFAs acetate and valerate positively correlate with Aβ-PET.158

Biomarkers of gut health are important to be used as COU markers of

risk/susceptibility, monitoring, or pharmacodynamic/response.

3.15 Circadian rhythm

Sleep disturbances affect 25%–66% of patients with AD, including

alterations in sleep duration, fragmentation of sleep, breathing dis-

orders during sleep, changes in sleeping brain wave activities, and

reduction in rapid eye movement (REM).264 Sleep disorders have a

bidirectional relationship with Aβ and tau pathology, and biomarkers

of circadian rhythms may indicate risk and progression of AD.265,266

Polysomnography provides a biomarker that can be used to evalu-

ate sleep through several physiologic measures. Patients with mild to

moderateADdementia,who spendmore time in light sleep stages eval-
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uated via polysomnography, have a significant decrease in cognition

after 12 months.162 EEG studies report alterations in sleep brain wave

patterns, including increased sleep latency, and reduced slow-wave

sleep in patients withMCI and AD dementia.163

Orexin (also known as hypocretin) is a neuropeptide involved in the

regulation of sleep andwakefulness. Increases in CSF orexin have been

reported in patients with MCI due to AD and patients with moderate

to severe AD dementia, compared to CNCs.161,267 In CSF, there is a

positive correlation between orexin and t-tau, as well as orexin and p-

tau181, in patients with moderate to severe AD dementia compared

to CNCs.161 Nonclinical research through BV2 cell cultures demon-

strates that orexin inhibits the phagocytosis and degradation of Aβ by
microglia cells, supporting this relationship between the orexin andAD

pathologies.268 Further research into the relationship between orexin

and AD is needed and may provide risk/susceptibility, monitoring, or

pharmacodynamic/response biomarkers for the disease.

3.16 Multi-target, unknown target, and other

We defined multi-target biomarkers as single biomarkers that assess

more than one mechanism. This includes ratios and panels in which

the result is a numerical value frommultiple differentmeasures.Multi-

targeted biomarkers for AD have emerged frequently as ratios, with

oneof themostwidely usedbeingCSFandplasmaAβ42/40, associated
with amyloid PET.269,270 This ratio has been used in AD clinical trials,

including in trials investigatingDMTs.17 Combinations ofmarkersmea-

suring different mechanisms are being evaluated, especially between

the A/T/N categories. An example is plasma p-tau181/Aβ42, which can
accurately distinguish AD patients (Aβ positive) from patients with

VaD (Aβ negative), and is correlatedwith hippocampal atrophy.165 This

biomarker was categorized as amulti-target marker.

As the investigation for novel biomarkers continues, and new tech-

nologies are emerging, proteomic panels evaluating large numbers of

proteins are being used to identify proteins of interest and develop

AD profile scores.271,272,273 Through proteome studies, potential AD

biomarkers may emerge that are not yet associated with a specific

mechanism; these markers would also be included in this CADRO

category.

4 DISCUSSION

We identify current and candidate biomarkers for AD and demon-

strate the feasibility and practicality of classifying them using the

CADRO system. Categorization of biomarkers by their biological pro-

cesses provides a tool for drug development. Researchers can select

an appropriate biomarker based on the target of the mechanism of the

intervention, routes of detection (neuroimaging, CSF, blood), and COU

for their trial or research program. Here we show that all categories

of CADRO addressing disease processes have at least preliminary

biomarkers measurable by imaging or biofluid analyses.

We focus specifically on AD biomarkers; some of the markers

have been described in other NDDs, including dopaminergic mark-

ers, α-syn, and NfL.274,275 A few of the biomarkers are associated

with multiple categories, and when determining the most appropriate

CADRO category, we classified them based on the primary mechanism

as it was related to AD. Decisions were also informed by consider-

ing the mechanism being measured. For example, the revised NIA/AA

Research Framework for Alzheimer’s Diagnosis classifies biomarkers

by the pathologic process endpoint and includes t-tau as a marker of

neurodegeneration.8 We applied this framework to the CADRO sys-

tem and included t-tau as a biomarker of cell death in the CADRO

system.8,276 As our knowledge and understanding of AD biomarkers

evolve, the CADRO system can be adapted to changes.

The biomarkers presented are in different states of validation.277

Biomarkers including amyloid-PET, FDG-PET, and CSF Aβ42/40 are

well-established and commonly used in the diagnosis of AD. Can-

didates in advanced stages of validation include GFAP, some p-tau

epitopes, and markers of cell death, such as NfL. Many biomarkers are

not as well characterized, or the relationship to the associated biol-

ogy is less well established. Incorporation of the Strategic Biomarker

Roadmap (SBR) into the CADRO system could further denote the

biomarker validation status as fully achieved, partly achieved, or

supported by preliminary evidence.277

There is a critical need for blood-based biomarkers to offer a

more cost-effective, non-invasive, and accessible test for AD. Although

blood-basedmarkers are less proximate to the brain, a simple, low risk,

low-cost blood draw can be performed in rural and low-resource areas;

samples can be easily stored, collected longitudinally, and rendered

clinically useful.

Minority populations are at greater risk for developing AD. His-

panic/Latinos are at a 1.5 times greater risk for AD, whereas African

Americans are twice as likely than non-Hispanic White individuals to

manifest dementia.278,279 Several studies have demonstrated that AD

neurobiology differs among ethnoracial groups, with differences in

neuroimaging,CSF, andblood-basedbiomarkers for thedisease.280–284

Racial disparities in clinical trials and research of AD biomarkers pre-

vents deeper understanding of how ethnicity and race influence AD

and affects the development of new tests and treatments for AD in

underrepresented populations. TheCADROsystem can be used to cat-

egorize biomarker findings by ethnoracial group, providing insights and

helping to decrease racial disparities in AD.

Expansion of the A/T/N system in the revised NIA/AA Research

Framework for Alzheimer’s Diagnosis introduced inflammation as a

biomarker of non-specific processes involved in AD pathophysiology,

and vascular and α-syn as biomarkers of non-AD co-pathology fre-

quently found in patients with AD.9 As presented as ATX(N), amyloid-

beta (A), tau (T), and neurodegeneration (N), where X represents novel

canidate biomarkers, additional biomarkers can be added to the frame-

work to better characterize patients and provide therapies specific to a

patient profile, paving the way for precision medicine.285 The CADRO

system offers the structure for these biomarker categories to be inte-

grated into the framework, providing a patient profile in which several
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aspects of the disease can be captured for diagnosis and therapeutic

intervention.

Organization of AD biomarkers into the CADRO classification sys-

temcan reveal gaps in the field related to the types ofmarkers available

for each of the biological processes. For example, new approaches to

measuring α-syn and TDP-43 are currently in the preliminary stages

of development, validation, and interpretation. Understanding of these

co-pathologies is a key next step for the field.

Limitations to the use of the CADRO system to classify biomarkers

include the focus of CADRO disproportionately on AD. The CADRO

system could be adapted to encompass biomarkers for other NDDs,

thereby strengthening this approach. There is overlap of some cat-

egories, making application ambiguous. For example, the CADRO

category on metabolism and bioenergetics could include some of the

biomarkers for oxidative stress. Similarly, whether a biomarker is opti-

mally seen as a marker of cell death or of neuroprotection can be

difficult to discern, as these categories involve similar processes. Addi-

tional complexity is added when specific biomarkers touch on more

than one CADRO category, presenting a challenge when evaluating

specific target engagement.

5 CONCLUSION

We identified current and candidate biomarkers for AD and demon-

strated the CADRO system to be a practical approach to the orga-

nization of biomarkers as they relate to AD. We demonstrate that

CADRO is a comprehensive catalogue of AD-related processes and

that biomarkers exist or are in progress for all aspects of CADRO.Anal-

ysis of the biomarkers relevant to the CADRO system reveals gaps in

biomarker research allowing growth in the field towardmore accurate,

reliable, and accessible biomarkers for AD. This system is adaptive to

changes as we expand our knowledge in this complex disease. CADRO

can be incorporated into several systems in use, including the COU,

FDA BEST classification, and A/T/N. The CADRO system will assist

researchers in choosing themost appropriate biomarkers and advance

drug development for AD.
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