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Abstract: Mycobacterium tuberculosis (Mtb) is considered to be a devastating pathogen worldwide,
affecting millions of people globally. Several drugs targeting distinct pathways are utilized for the
treatment of tuberculosis. Despite the monumental efforts being directed at the discovery of drugs
for Mtb, the pathogen has also developed mechanisms to evade the drug action and host processes.
Rifampicin was an early anti-tuberculosis drug, and is still being used as the first line of treatment.
This study was carried out in order to characterize the in-depth rifampicin-mediated metabolic
changes in Mtb, facilitating a better understanding of the physiological processes based on the
metabolic pathways and predicted protein interactors associated with the dysregulated metabolome.
Although there are various metabolomic studies that have been carried out on rifampicin mutants, this
is the first study that reports a large number of significantly altered metabolites in wild type Mtb upon
rifampicin treatment. In this study, a total of 173 metabolites, associated with pyrimidine, purine,
arginine, phenylalanine, tyrosine, and tryptophan metabolic pathways, were significantly altered by
rifampicin. The predicted host protein interactors of the rifampicin-dysregulated Mtb metabolome
were implicated in transcription, inflammation, apoptosis, proteolysis, and DNA replication. Further,
tricarboxylic acidcycle metabolites, arginine, and phosphoenolpyruvate were validated by multiple-
reaction monitoring. This study provides a comprehensive list of altered metabolites that serves
as a basis for understanding the rifampicin-mediated metabolic changes, and associated functional
processes, in Mtb, which holds therapeutic potential for the treatment of Mtb.

Keywords: bacteria; RNA polymerase inhibitor; global metabolomics; targeted metabolomics;
ABSciex QTRAP 6500 mass spectrometer

1. Introduction

Mycobacterium tuberculosis (Mtb) predominantly infects the lungs of immunocompro-
mised individuals, causing tuberculosis (TB) [1]. According to the 2021 World Health
Organization (WHO) report, approximately 9.87 million people were infected with TB
globally, of which 56% were men, 33% were women, and 11% were children. Moreover,
1.5 million deaths were reported worldwide with 15% of TB fatality ratio. Global estimates
have shown that TB is considered to be the second leading cause of death due to a single
pathogenic agent. Treatment of resistant strains—multidrug-resistant (MDR) and extremely
drug-resistant (XDR) TB—has become a major concern, as the success rate for treating
MDR/RR-TB is 59%, and for XDR-TB is 52% [2].

Rifampicin (RIF), a front-line of anti-tubercular agent, has been used in the treatment
of TB for over half a century [3]. It is known to inhibit RNA polymerase by interacting with
the β subunit of the enzyme, thus inhibiting the process of transcription [4]. It inhibits RNA
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synthesis by blocking the elongation step, thereby preventing protein synthesis and leading
to bacterial killing [5,6]. There is a significant number of growing shreds of evidence on the
acquisition of mutations in the Mtb β subunit of the RNA polymerase gene rpoB that lead
to pathogenic resistance against RIF [7]. Further, drug tolerance to RIF is also observed
in Mtb through mechanisms involving the enhanced activity of efflux pumps, metabolic
shifts, and overexpression and mistranslation of the rpoB gene [8–10]. Despite the existence
of drug tolerance and the emergence of resistance mechanisms in Mtb, the use of RIF in
combination with other drugs is cataloged in the WHO model list of essential medicines
2021 [11]. Moreover, the TB treatment regimen includes RIF in the treatment of latent TB
infections under Mtb drug susceptible conditions, as per the guidelines mentioned by the
National Tuberculosis Controllers Association (NTCA) and Centers for Disease Control
(CDC) and Prevention 2020 [12].

A couple of metabolomic studies have been reported in the recent past on RIF mutant
strains of Mtb. A study has previously reported 16 differential metabolites by GC–MS
analysis in two RIF mutant strains of Mtb [13]. In another study, GC–MS analysis resulted
in the identification of 15 metabolites in wild type and S531L and S522L RIF mutant strains
of Mtb [14]. Similarly, 87 metabolite features in methanol extraction, and 99 features
in chloroform fraction, have been reported to be significant in two rpoB mutant strains,
compared to wild-type Mtb [15]. In addition to these studies, metabolomic analysis has
also been carried out on RIF-treated Mycobacterial strains. Man D.K et al. have reported
a number of differential metabolites in RIF-treated M. smegmatis [16]. Further, LC–MS
analysis has shown 122 altered metabolites in Mtb cells treated with RIF at 0.1 to 6.4 µg/mL
for a period of 24 h to 72 h [9]. These metabolites were majorly classified as carboxylic acids,
amino acids, and tricarboxylic acids and their derivatives. They also included purines
nucleosides, pyrimidines, primary aliphatic amines, and carbohydrates and its conjugates.

Metabolites, the reactants of the metabolic pathways, are the vital signaling molecules
in the cell. These represent the phenotype of the cell by governing various physiolog-
ical functions through metabolite–protein interactions [17,18]. Over the past decade,
metabolomics has advanced rapidly in areas of biomarker discovery, drug development,
and precision medicine [19]. As RIF continues to be the first-line drug for the treatment of
TB, it is essential to understand the global metabolic perturbations caused by this drug in
Mtb. In this study, we performed a metabolomic analysis of Mtb upon RIF treatment, and,
unlike previous studies, here we were able to identify 157 non-redundant metabolites that
have not been previously reported. We performed global and targeted metabolomic analy-
ses at the MS2 level using a high-throughput mass spectrometer to identify the dysregulated
metabolites by RIF in Mtb.

2. Results
2.1. MS2 Identification of Mtb Metabolites by RIF Treatment

Mass spectrometry analysis of Mtb lysates in the presence and absence of RIF treatment
was carried out in triplicate runs for each biological replicate. A schematic illustration
of the experimental and analysis pipeline is shown in Figure 1. LC–MS/MS analysis led
to the identification of 2290 aligned peaks in positive mode and 2311 aligned peaks in
negative mode. The list of aligned peak features in positive and negative modes is tabulated
in Supplementary Materials, Tables S1 and S2. Of these, 2224 aligned peak features in
positive mode and 2258 aligned peak features in negative mode were observed in two
technical replicates for each biological group. Collectively, 461 features in positive mode
and 280 features in negative mode were mapped, at the MS2 level, to the Mtb H37Rv strain
of KEGG [20] and BioCyc [21] databases, for the first time, in this study. Hierarchical
clustering of Mtb and RIF-treated aligned peak features showed significant clustering
of replicates and discrete separation between the groups. This analysis was carried out
separately for data acquired from positive and negative modes, as shown in Figure 2A,B.
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Figure 1. A schematic illustration of the metabolomics pipeline, with details of sample conditions
and experimental workflow.
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Figure 2. Hierarchical clustering heat map showing metabolic features identified in untreated and
RIF-treated Mtb samples in: (A) Positive mode (B) Negative mode.

The mass spectrometry-derived data quality was examined by comparing control
and RIF-treated sample runs with the intermediate blank runs to rule out the possibility
of sample carry over [22]. Hence, PCA analysis was carried out, which showed discrete
separation of sample groups from blank runs. Further, PLS discriminant analysis (PLS-DA)
of sample groups and blank runs showed variable importance in projection (VIP) scores
of important features that were either insignificant or undetected in the blank runs [23].
The schematic illustrations of PCA and PLS-DA analyses are provided in Supplementary
Materials, Figure S1.

2.2. Metabolic Dysregulation in Mtb by RIF

Differentially regulated metabolites were analyzed using an unpaired t-test to calculate
the p-values. Metabolites with a fold change of 1.5 and p-value ≤ 0.05 were considered to
be significantly altered. A significant dysregulation of 680 metabolite features in positive
mode, and 631 metabolite features in negative mode, was observed in response to RIF
in Mtb. Of these, 101 metabolites in positive mode and 75 metabolites in negative mode
were non-redundantly assigned to Mtb databases. Drugs, alkaloids, and other mapped
exogenous compounds were deleted for downstream analysis [24]. Differential expression
of the identified metabolites, including significant and non-significant, are depicted as
volcano plots in Figure 3A,B. A partial list of differentially expressed metabolites, with
significant raw p-values (≤0.05), is given in Table 1. The entire list of significantly altered
metabolites, in both positive mode and negative mode, is provided in Supplementary
Materials, Tables S3 and S4, respectively.
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Rate (FDR) ≤ 0.05 against the dysregulated metabolites are shown as a horizontal multi-set bar graph.
The length of bars represents the count for both FDR and the number of metabolite entities enriched
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Table 1. A partial list of altered metabolites.

S.No Metabolite Mode of Acquisition Fold Change p-Value

1 2C-Methyl-D-erythritol
2,4-cyclodiphosphate Positive 3.33 0.01

2 L-Glutamine Positive 48.68 0.00

3 Thymidine Negative 0.47 0.02

4 Thymidine-5′-phosphate Negative 0.10 0.00

5 Uridine-5′-diphosphate Positive 5.42 0.01

6 Deoxycytidine diphosphate Positive 0.09 0.00

7 2-Isopropylmaleic acid Positive 1.70 0.03

8 3-Deoxy-D-arabino-
heptulosonate-7-phosphate Positive 14.13 0.00
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Table 1. Cont.

S.No Metabolite Mode of Acquisition Fold Change p-Value
9 4-Guanidinobutyric acid Positive 5.93 0.02
10 Biotin Negative 2.14 0.02
11 Cyclic AMP Negative 9.25 0.00

12 Histidinal Positive 1.83 0.00

13 L-Cystathionine Negative 3.95 0.03
14 Menaquinone-9 Negative 0.19 0.00
15 S-Adenosyl-L-homocysteine Negative 4.09 0.03

2.3. Metabolic Pathway Analysis and Classification of Metabolites

Metabolic pathway analysis plays a significant role in understanding the physiological
processes associated with the altered metabolites. Pathway enrichment was carried out
against Mtb H37Rv using MBROLE [25]. KEGG identifiers were used as input to perform
the analysis. About 10 pathways including purine metabolism, pyrimidine metabolism,
phenylalanine, tyrosine and tryptophan biosynthesis, arginine and proline metabolism
were enriched with significant False Discovery Rate (FDR) ≤ 0.05. The pathways asso-
ciated with dysregulated metabolites are shown in Figure 3C. Global metabolomics led
to the identification of metabolites classified as nucleotides-deoxyribonucleotides and ri-
bonucleotides; nucleosides, pyrimidines, amino acids-glutamine, threonine, proline and
arginine; water-soluble vitamins—riboflavin and biotin; fatty acids and carbohydrates.

2.4. Prediction of Host Protein Targets against RIF Mediated Mtb Dysregulated Metabolites

Prediction of host protein targets provides a better understanding of the host biological
or functional processes that are regulated in response to RIF treatment and Mtb infection.
Henceforth, in this study human protein targets were predicted against the dysregulated
metabolites, using the tool BindingDB. BindingDB comprises a large number of protein
and small molecule interaction datasets, essentially derived from experimental studies [26].
In order to identify the protein targets, SMILES identifiers of the dysregulated metabolites
were used as inputs for the tool. A total of 351 human interactors were obtained with a
similarity score ≥85% from BindingDB (Supplementary Materials, Table S5). Gene ontol-
ogy (GO) analysis of these protein targets was performed by acquiring GO terms from
the PANTHER database. The majority of the protein targets were classified as G-protein
coupled receptors, proteases, transferases, and voltage- or ligand-gated ion channels. In
addition to these, protein classes, such as histone modifying enzymes, non-receptor ser-
ine/threonine protein kinase, dehydrogenases, oxygenases, and other enzymes and protein
classes, were associated with the protein targets. These proteins are majorly involved in sig-
naling, metabolism, membrane potential, transcription, and inflammatory processes. Other
biological processes impacted include protein phosphorylation, proteolysis, and transport.
The GO analysis, including protein classes and biological processes of the predicted protein
targets, is shown in Figure 4A,B.

The predicted proteins were subjected to pathway analysis using the Reactome path-
way database. Pathways such as signal transduction, immune system, cellular response to
stress, cell cycle, homeostasis, DNA replication, and programmed cell death were identified
with significant FDR ≤ 0.05. The pathway enrichment of predicted protein targets in
response to RIF and Mtb infection is shown in Figure 4C.
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2.5. Multiple Reaction Monitoring (MRM)-Based Validation of Altered Metabolites

In this study, 14 metabolites belonging to the tricarboxylic acid (TCA) cycle, the
arginine metabolism, and certain amino acids were validated by using a mass spectrometry-
based Multiple Reaction Monitoring (MRM) approach. A total of seven metabolites, in-
cluding α-ketoglutarate, citrate, malate, fumarate, succinate, phosphoenolpyruvate, and
L-arginine were dysregulated with significant p value (≤0.05). The fold change values and
p-values, along with the optimization and transition details of the validated metabolites,
are shown in Supplementary Materials, Table S6. Box-whisker plots of the significantly
dysregulated metabolites are shown in Figure 5.
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(E) Malate. (F) Succinate. (G) Phosphoenolpyruvate.

3. Discussion

Although there was a previously published study on RIF-treated Mtb, 157 metabolites
were uniquely identified in this study compared to a previously published study [9]. Unlike
the previous study, 461 features in positive mode and 280 features in negative mode were
mapped to the Mtb database at the MS2 level, which represents a comprehensive number
of metabolites identified in this study for the first time. Moreover, both studies significantly
differ in terms of drug concentration, duration of treatment, and culture growth phases.
In this study, the MABA assay showed inhibition of Mtb growth with RIF treatment at
5 ng/mL to 320 ng/mL concentration with an IC50 value of 10.17 ng/mL and MIC90
of 40 ng/mL (Supplementary Materials, Figure S2). Hence, Mtb cells were treated with
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RIF at a concentration of 40 ng/mL, which was used to study the metabolic changes in
Mtb. RIF is known to mediate Mtb killing through hydroxy radical formation within
the pathogen [27]. As expected, monodehydroascorbate radicals (2.4-fold, ≤0.05 p-value)
and isonicotinoyl radicals (7.5-fold, ≤0.05 p-value) were upregulated by RIF treatment in
Mtb. In contrast, anti-oxidants, such as ergothioneine and mycothiol-bimane conjugate, an
intermediate of mycothiol biosynthesis, were downregulated in this study. Ergothioneine
and mycothiol, as low molecular weight antioxidants, confer protection to Mtb against
oxidative species [28–30].

The TCA cycle is vital for the maintenance of cell homeostasis, as the intermediates of
the TCA cycle are involved in the synthesis of proteins, fatty acids, and nucleotides, in ad-
dition to distinct signaling mechanisms [31]. Metabolites of the TCA cycle—citrate, malate,
α-ketoglutarate, succinate, and fumarate, validated by LC-MS/MS-MRM approach—were
found to be upregulated in this study. Glutamine, the connecting link between the TCA
cycle, purine, and pyrimidine metabolism, was also upregulated by RIF. Purines such as
GTP, XTP, dATP, and dADP, and pyrimidines, including CDP, dCDP, dCTP, and dTMP,
were downregulated by RIF. In contrast ADP, cAMP, UTP, UDP, dUMP, TDP nucleotides
were upregulated by RIF. RIF exposure led to dysregulation of the balance of nucleotide
synthesis and mRNA degradation, whereby cytosine, guanosine, thymine, and thymidine
were also found to be altered [14].

Previous reports have shown aggregation of cholesterol on the cell wall of mycobacte-
ria, which is known to decrease its permeability to the standard of care anti-TB drugs, such
as RIF. In addition to cell permeability, cholesterol accumulation on the cell wall shields
the recognition of mycobacterial antigens, as previously reported with a 20% decrease
in antibody binding, thus protecting the bacteria from host immunity. Mutational stud-
ies have shown that the 3-ketosteroid ∆1-dehydrogenase (KstD) enzyme, which converts
androst-4-ene-3,17-dione (AD) to androsta-1,4-diene-3,17-dione (ADD), is an essential step
for cholesterol utilization or degradation in Mtb. Further, the growth of H37Rv and the kstD
mutant was inhibited when grown in cholesterol-depleted media [32]. FadD3, an 3aα-H-
4α(3′-propanoate)-7aβ-methylhexahydro-1,5-indanedione (HIP)-CoA synthetase, converts
HIP to HIP-CoA in the cholesterol degradation pathway. A Rhodococcus jostii FadD3 mutant
showed reduced growth when compared to a FadD3 mutant complemented with Mtb
enzyme in 1 mM of cholesterol-supplemented media [33]. ADD and HIP, associated with
the cholesterol degradation pathway, were upregulated by RIF.

Menaquinones play a key role in the electron transport chain that transfers electrons
to terminal oxidases and reductases, mediating ATP synthesis [34]. Decreased expression
of menaquinone-9 in Mtb has been shown to result in reduced oxygen consumption, ATP
production, and bacterial survival in the presence of inhibitors. Previous reports have
shown that inhibitors targeting menaquinone-9 biosynthetic enzymes—MenA and MenG—
serve as potential anti-bacterial agents in controlling Mtb growth [35,36]. Menaquinone
synthesis begins with chorismite, the product of the shikimate pathway [37]. In addition
to menaquinone-9, aromatic amino acids such as phenylalanine, tyrosine, and tryptophan
are also synthesized through the downstream reactions of chorismite [38]. In this study,
menaquinone-9 and chorismite are downregulated by RIF. These dysregulated metabolites
also correlate with perturbation of metabolites related to the electron transport chain;
NADH, ADP, diphosphoric acid, and triphosphoric acid were upregulated, while ATP was
downregulated, in this study.

MEP pathway metabolites, including D-Glyceraldehyde 3-phosphate, 2C-Methyl-D-
erythritol 2,4-cyclodiphosphate, 4-CDP-2-C-methyl-D-erythritol 2-phosphate, and farnesyl
diphosphate, were found to be upregulated in Mtb in response to RIF. Mutational studies
have shown that the idsA gene, involved in the synthesis of geranyl pyrophosphate from
farnesyl pyrophosphate, is vital for the growth of Mtb [39].

Prediction of host protein targets against Mtb infection and RIF treatment resulted
in the observation of interesting host biological processes. Previous reports indicate that
RIF prevents the augmented expression of apoptosis-associated proteins in Mtb infected
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macrophages. Moreover, previous experiments have shown RIF-mediated inhibition
of apoptosis and nitic oxide production [40]. Further, cytokine levels, including IL-10,
IFNγ, and TNFα, have been reported to decrease by isoniazid and RIF in Mtb infected
macrophages [41].

In this study, global and targeted analyses were performed on data acquired at the MS2
level. MRM validation was performed on some of the key metabolites associated with the
TCA cycle and arginine metabolism. In the last couple of years, mass spectrometry-based
metabolomics has evolved in the employment of quality control methods, which have
progressed from the comparison of blank profiles to the currently deployed pooled QC
samples [22]. Although the deployment of quality-control sample runs, along with the main
sample runs in the mass spectrometer, has become a standard practice, this concept of QC
was introduced at the time the data were acquired for this study [42]. Hence, sample runs
were compared to the blank runs to avoid carryover of sample features (see Supplementary
Materials, Table S1). Here, high confidence data were acquired at the MS2 level for both
global and targeted metabolomic approaches, and most of the altered metabolites identified
in this study provide insights for understanding the role of RIF in Mtb.

4. Materials and Methods
4.1. Bacterial Culture

Mtb H37Rv cells (kind gift from Dr. Amit Singh, IISc, Bangalore) were grown up to
logarithmic phase (0.6 OD) in 100 mL Middlebrook 7H9 media containing 0.05% Tween 80
(Sigma, Burlington, MA, USA) and 10% OADC. Successively, actively growing Mtb cells
were treated with 40 ng/mL RIF (Sigma, Burlington, MA, USA) in 0.5% DMSO (Sigma,
Burlington, MA, USA), while the non-drug-treated cells were treated with 0.5% of DMSO
as a control. The cultures were incubated at 37 ◦C for 12 h, and the cell density was adjusted
to 0.4 OD (~0.6 × 108 cells) following cell harvest. The cultures and treatment were carried
out in biological duplicates.

4.2. Bacterial Cell Lysis and Metabolite Separation

Control and RIF-treated Mtb cultures were centrifuged at 5000× g rpm at 4 ◦C for
10 min to separate the pellets. The extracted pellets were washed thrice with ice-cold
PBS and were snap-frozen with liquid nitrogen. Instantaneously, the frozen pellets were
resuspended in an ice-cold resuspension buffer comprised of methanol, acetonitrile (ACN),
and water at a 2:2:1 ratio. Subsequently, cell lysis was carried out by mechanical disruption
with zirconia beads (0.1 mm) using a tissue homogenizer. The cell lysates were subjected to
centrifugation at high speed for 20 min and the supernatants were collected and filtered
through 0.22 µm (Corning, New York, NY, USA) filters. Further, samples of both conditions
were vacuum dried before tandem mass spectrometry analysis.

4.3. Tandem Mass Spectrometry Analysis for Untargeted Metabolomics

The dried metabolite samples were analyzed on quadrupole ion-trap-ABSciex QTRAP
6500) (SCIEX, Framingham, MA, USA) mass spectrometer in technical triplicates for each bi-
ological duplicate sample, in positive mode and negative mode, separately. The instrument
was connected in line with the liquid chromatography system (Agilent 1290 Infinity II),
which contained a C18 column (RRHD Zorbax; 20× 150 mm, 1.8 µm particle size). A 30 min
LC method was set up for the separation of metabolites using solvent A (0.1% formic acid
in water) and solvent B (0.1% formic acid, 90% can) at a flow rate of 0.3 mL/min. Solvent B,
with a gradient of 2.0% for 1 min, 2.0–30% for 9 min, 30–60% for 7 min, 60–95% for 9 min,
and 2% for 4 min, at a flow rate of 0.3 mL/min and sample injection volume of 15 µL, was
applied for LC-MS/MS analysis. Data were acquired using the IDA method, comprised of
enhanced mass spectra (EMS) and enhanced product ion (EPI) modes, which are inbuilt in
the ABSciex QTAP 6500 mass spectrometer. The most intense five MS1 spectra (EMS mode)
were subjected to MS/MS analysis (EPI mode) using collisional-induced dissociation (CID).
Metabolite raw data were acquired with a probe temperature of 450 ◦C in both positive
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(4500 V) and negative polarities (−4500 V). Samples were run with a cycle time of 2.091 sec
per cycle. The parameters of collision energy (CE) and de-clustering potential (DP) were
set at 45 V and 75 V, respectively. Blank runs were executed on mass spectrometer amidst
triplicate sample runs to avoid carryover of metabolite features from adjacent samples.

4.4. Data Analysis and Metabolite Mapping

Mass spectrometry-derived data were analyzed on MZmine (Version 2.53) [43], as
described previously [44]. The mzML files, derived from wiff files, were uploaded to
MZmine to obtain the RT, m/z, and peak areas of the identified features. Initially, the
files including control and RIF-treated were subjected to mass detection at the MS1 and
MS2 levels, where the peak intensities were set to a minimum. The precursors, containing
fragment details, were selected by the MS/MS peak list builder to build the m/z feature list.
The features that passed 0.05 Da m/z tolerance through the Peak Extender algorithm were
subjected to chromatogram deconvolution, where the noise peak height was set to 1.5 × 102

while the retention time and m/z tolerance for MS2 pairing were set to 1 min and 0.1 Da,
respectively. The deconvoluted features were further processed using an isotopic peaks
grouper algorithm, with m/z and RT tolerance set to 0.25 Da and 0.2 min, respectively.
These features were aligned using the Join-Aligner algorithm, with parameters set as
follows: m/z weight, 70%; m/z tolerance, 50 ppm; RT threshold, 30%; and RT tolerance,
0.5 min. The features were then gap-filled using the Peak finder algorithm, with an intensity
tolerance of 30%, RT tolerance of 0.6 min, and m/z tolerance of 0.05 Da. The resulting
duplicate peaks were discarded by employing the New Average mode in the duplicate
peaks filter algorithm, with m/z and RT tolerance set to 0.1 Da and 0.2 min, respectively.
The results comprising of peak areas, RT, m/z, and feature ID were exported at the MS2
level to csv files. Subsequently, precursor masses and their corresponding fragment details
were also exported for metabolite assignment. The wiff files of intermediate blank runs in
between the sample runs were similarly analyzed, along with the control and RIF-treated
sample groups, in MZmine to check for details of sample carry over.

The mgf files derived from MZmine were uploaded to the MS2 Compound tool [45]
to attain details of metabolites at the MS2 level. Metabolites specific to Mtb H37Rv were
downloaded and annotated from the BioCyc and KEGG databases. The metabolites SMILES
ID were submitted to the Competitive Fragmentation Modeling-ID (CFM-ID) tool [46] to
retrieve theoretical fragmentation data, which was used to search against experimental
MS2 data with precursor tolerance of 0.05 Da and fragment tolerance of 0.5. In addition, at
least 2 fragment matches against the theoretical database were set as criteria for metabolite
mapping. Further, metabolites with the highest mS-score and rank 1 were chosen to filter
the redundant metabolites.

4.5. Bioinformatic Analysis

The statistical analysis for this study was performed using MetaboAnalyst online
software (Version 5.0; https://www.metaboanalyst.ca/) [47]. Peak areas of the identified
features were normalized using median mode to calculate the fold changes. Heat maps
were developed using the Pearson distance measure and average clustering method for
log10 transformed and auto-scaled positive and negative mode data. Pathway analysis and
metabolite classification were performed in MBROLE (Version 2.0; http://csbg.cnb.csic.
es/mbrole2/) [25] by providing Mtb H37Rv as the source organism. Protein classes and
biological processes for the predicted protein interactors were analyzed on PANTHER (Ver-
sion 16.0; http://www.pantherdb.org/), while the pathway analysis for these interactors
was performed using REACTOME.

https://www.metaboanalyst.ca/
http://csbg.cnb.csic.es/mbrole2/
http://csbg.cnb.csic.es/mbrole2/
http://www.pantherdb.org/
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4.6. MRM-Based Validation

Targeted analysis was carried out with 14 standards that were individually optimized
for RT, DP, EP, CE, and CXP, in addition to Q1 and Q3 masses. In order to optimize
MS/MS parameters, around 1 mg of each of the 14 standards were suspended in either
0.1% formic acid or 50% methanol, depending on solubility of the standards. Subsequently,
the resuspended standards, at a concentration of 1 ug/mL, were directly infused into
the mass spectrometer for optimization of DP, CE, EP, and CXP. Later, the RT and LC
gradients were optimized by pooling each standard at a concentration of 1 ug/mL. Mass
spectrometry-based MRM analysis was carried out on an ABSciex triple quadrupole mass
spectrometer in technical triplicates, per biological duplicate samples. The metabolite
extracts from samples were injected into LC-RHP Zorbax C18 column (2.1 mm × 150 mm,
2.7 µm; Agilent Technologies, Santa Clara, CA, USA) through an instrument-coupled
automated autosampler. Metabolite separation was achieved with a 35 min LC gradient,
where the flow rate was set to 0.3 mL/min for solvent A (0.1% formic acid) and solvent
B (1% formic acid in 90% ACN), and sample injection volume was set to 15 µL. Solvent B
was applied with a gradient of 2% for 3 min, 2–10% for 2 min, 10–30% for 2 min, 30–70%
for 7 min, 70–98% for 9 min, and 2% for 7 min. The data were obtained using MRM
scan mode in both the polarities. Metabolites were ionized using curtain gas at 20 psi,
ion source gas 1 at 25 psi, and ion source gas 2 at 5 psi in ESI. Further, ion spray voltage
at 5500 V, collision activated dissociation gas at medium, and ESI source temperature at
450 ◦C were maintained during the analysis. The data, including m/z, RT, and peak areas
of the standard metabolites, were extracted from Skyline software [48] by uploading the
mass spectrometer-derived wiff files. The MRM data, including RT, Q1 and Q3 masses,
and the corresponding DP, CE, and CXP values for the validated metabolites, are given in
Supplementary Materials, Table S6. In this study, a total of 14 metabolites were relatively
quantified in both the modes. The above-mentioned 14 standards were used as analytical
standards, while epicatechin was used as an internal standard.

4.7. Microplate Alamar Blue Assay (MABA)

An MABA assay was used to determine the MIC90 and IC50 of RIF. Mtb H37Rv cells
were grown in sterile 96-well plates up to log phase of 0.6 OD600 in Middlebrook 7H9 media
supplemented with 10% OADC. A total volume of 200 µL media, containing 105 Mtb cells,
was dispensed into each well. The wells containing Mtb cells without inhibitor served as
a positive control, while wells containing only inhibitor served as a negative control, for
the experiment. Plain media was used as a blank. The concentration of RIF, ranging from
2.5 ng/mL to 320 ng/mL, was aliquoted into respective wells and incubated for 5 days
at 37 ◦C. Subsequently, 20 µL of Alamar Blue dye was added to each well, in the dark,
and re-incubated at 37 ◦C for 24 h to record the fluorescence intensity. The readings were
taken with excitation at 530 nm and emission at 590 nm, and the inhibition percentage was
calculated simultaneously. The drug efficacies were represented in terms of IC50 and MIC90
values. The experiment was performed in triplicates for each of the duplicate samples.

4.8. Data Availability

RIF-treated and control Mtb metabolomics data were submitted to the publicly acces-
sible MetaboLights database [49]. The MetaboLights database is an archive of metabolite
data pertaining to structures, spectra, concentration, biological roles, and localization that
were acquired from metabolomic experiments. The metabolite details of this study can be
accessed from the database with the identifier MTBLS4243.
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5. Conclusions

In this study, global and targeted approaches, performed using high-resolution mass
spectrometry, led to the identification of a comprehensive number of significantly altered
metabolites. In addition to purine and pyrimidine metabolism, the altered metabolites were
also associated with oxidative phosphorylation, phenylalanine, tryptophan, and tyrosine
metabolism. Moreover, the metabolic pathways and predicted human interactors identified
in this study will provide insights for a deeper understanding of the functional processes
regulated by RIF in Mtb. This is the first study that reports a large number of dysregulated
metabolites in Mtb by RIF.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/metabo12060493/s1, Figure S1: PCA analysis showing distinct
clustering of blank, control and RIF treated samples in (A) Positive and (B) Negative modes. Important
features identified by PLS-DA analysis in (C) Positive and (D) Negative modes are depicted; Figure S2:
Representative MABA assay to determine MIC90 and IC50 of RIF in Mtb H37Rv cells. (A) 96-well
plate showing the change in colour from pink to blue with increasing RIF concentration. (B) Plot
showing cell viability against RIF concentration; Table S1: List of metabolite features identified in
positive mode; Table S2: List of metabolite features identified in negative mode; Table S3: A complete
list of significantly dysregulated metabolic features identified in positive mode; Table S4: A complete
list of significantly dysregulated metabolic features identified in negative mode; Table S5: List of
predicted human protein interactors of the altered metabolites; Table S6: Details of MRM validated
metabolites. The table provides the list of validated metabolites along with FC, p-values, transitions
and optimization parameters.
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Abbreviations

TB Tuberculosis
RIF Rifampicin
PCA Principal Component Analysis
PLS-DA PLS discriminant analysis
FDR False Discovery Rate
GO Gene Ontology
ACN Acetonitrile
MRM Multiple reaction monitoring
TCA Tricarboxylic acid
FC Fold change
QC Quality control
DP Declustering Potential
RT Retention time
CE Collision Energy
EP Entry Potential
CXP Cell exit potential
MABA Microplate Alamar blue assay
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