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Abstract

In this paper, we outline a model of graph (or network) dynamics based on two ingredients. The first ingredient is a Markov
chain on the space of possible graphs. The second ingredient is a semi-Markov counting process of renewal type. The model
consists in subordinating the Markov chain to the semi-Markov counting process. In simple words, this means that the chain
transitions occur at random time instants called epochs. The model is quite rich and its possible connections with algebraic
geometry are briefly discussed. Moreover, for the sake of simplicity, we focus on the space of undirected graphs with a fixed
number of nodes. However, in an example, we present an interbank market model where it is meaningful to use directed
graphs or even weighted graphs.
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Introduction

The publication of Collective dynamics of ‘small world’ networks by

Watts and Strogatz [1] gave origin to a plethora of papers on

network structure and dynamics. The history of this scientific

fashion is well summarized by Rick Durrett [2]:

The theory of random graphs began in the late 1950s in several

papers by Erdös and Rényi. In the late twentieth century, the

notion of six degrees of separation, meaning that any two people

on the planet can be connected by a short chain of people who

know each other, inspired Strogatz and Watts [1] to define the

small world random graph in which each side is connected to k

close neighbors, but also has long-range connections. At about

the same time, it was observed in human social and sexual

networks and on the Internet that the number of neighbors of an

individual or computer has a power law distribution. This

inspired Barabási and Albert [3] to define the preferential

attachment model, which has these properties. These two papers

have led to an explosion of research. While this literature is

extensive, many of the papers are based on simulations and

nonrigorous arguments.

Incidentally, the results of Watts and Strogatz were inspired by

the empirical and theoretical work by Milgram [4] and

Granovetter [5] back in the 1960s and 1970s; similarly, the

preferential attachment model by Barabási and Albert is closely

related to the famous 1925 paper by Yule [6] as well as to a

celebrated work by Herbert Simon published in 1955 [7] (see

also chapters 8 and 9 in reference [8] for a recent analysis on

Simon’s results). This body of literature is partially reviewed in

Durrett’s book [2] as well as in a popular science book written by

Barabási [9].

It might be interesting to understand why this scientific fashion

was born and how. On this respect, we can quote Wikipedia’s

article (as retrieved on 4 May 2011) on Milgram’s experiment in

popular culture [10]:

Social networks pervade popular culture in the United States

and elsewhere. In particular, the notion of six degrees has become

part of the collective consciousness. Social networking websites

such as Friendster, MySpace, XING, Orkut, Cyworld, Bebo,

Facebook and others have greatly increased the connectivity of the

online space through the application of social networking

concepts. The ‘‘ Six Degrees’’ Facebook application calculates

the number of steps between any two members. […]

In other words, the social character of human beings

combined with the hyper-simplification (trivialization) of some

results promoted by leading science journals might have

triggered interest in social networkology also outside scientific

circles. Moreover, the emergence of social networks in the

Internet has indeed made some tools developed by networkol-

ogists profitable. However, a deeper analysis by sociologists and

historians of science will be necessary to falsify or corroborate

such hypotheses.

In this paper, we pay our tribute to this fashion, but we slightly

depart from the bulk of literature on social network dynamics. First

of all we consider time evolution also in continuous time and not only

in discrete time. As the reader will see, this will be enough to give

rise to interesting non stationarities as well as to non-trivial ergodic

behavior. Moreover, to begin with a simple situation, we will be

concerned with undirected graphs whose number of nodes M does not

change in time. These restrictions can be easily overcome and,

indeed, in the following, an example with directed graphs will be

presented. The dynamic variable will be the topology of the graph.

This approach is motivated by the following considerations. Social

networks are intrinsically volatile. You can be in contact with

someone for a finite time (at a meeting, during a phone call, etc.),

but never meet this person again in the future. This interaction
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may or may not have effects on your future actions. If memory is

not a major issue, the new configuration of the graph will only

depend on the previous configuration. Memory is indeed an issue,

but again, to simplify the analysis, we will consider a semi-Markov

dynamics on the state space of all the possible graphs with M

nodes. It is already quite rich. Incidentally, notice that all finite-

memory processes in discrete time can be re-written as Markov

chains.

The dynamics will be defined by a Markov chain subordinated

to a generic counting process. Similar models have been around

for many years. They were (and are) commonly used in

engineering and decision analysis and, on this point, the interested

reader can consult the monograph by Howard [11].

In this framework, it is often assumed that the waiting times

between consecutive events do follow the exponential distribution,

so that the corresponding counting process is Poisson. Indeed,

many counting processes with non-stationary and non-indepen-

dent increments converge to the Poisson process after a transient.

If these counting processes are of renewal type, i.e. inter-arrival

times fJig?i~1 are independent and identically distributed (iid)

random variables, it is sufficient to assume that the expected value

of these inter-arrival times is finite. However, recently, it has been

shown that heavy-tailed distributed interarrival times (for which

E(Ji)~?) play an important role in human dynamics [12–14].

After defining the process in the Methods Section, we will present

two introductory examples and a detailed model of an interbank

market in the Results Section.

Methods

This section begins with the definition of the two basic

ingredients of our model, namely

1. a discrete-time Markov chain on the finite set of 2M(Mz1)=2

undirected graphs with M vertices (nodes), and

2. a counting process N(t) for the point process corresponding

to a renewal process.

The rest of the section is devoted to the definition of the basic

model class.

Ingredient 1: a Markov chain on graphs
Consider an undirected graph GM~(VM ,E) where VM

represents a set of M vertices (nodes) and E the corresponding

set of edges. Any such undirected graph can be represented by a

symmetric M|M adjacency matrix AGM
, or simply A, with

entries Ai,j~Aj,i~1 if vertices i and j are connected by an edge

and Ai,j~Aj,i~0 otherwise. Note that algebraic graph theory

using linear algebra leads to many interesting results relating

spectral properties of adjacency matrixes to the properties of the

corresponding graphs [15,16]. For instance, the matrix

A~

0 1 1

1 0 1

1 1 0

0
B@

1
CA ð1Þ

corresponds to a graph where there are no self-connections and

each vertex is connected to the other two vertices. As mentioned

above, for a given value of M there are 2M(Mz1)=2 possible graphs.

To see that, it is sufficient to observe that the M diagonal entries

can assume either value 1 or value 0 and the same is true for the

M(M{1)=2 upper diagonal entries. Now, denote by GM the set

of 2M(Mz1)=2 undirected graphs with M nodes. Consider a

sequence of random variables X1, . . . ,Xn assuming values in GM .

This becomes our state space, and the set of n random variables is a

finite stochastic process. Its full characterization is in term of all

finite dimensional distributions of the following kind (for 1ƒmƒn)

[17]

pX1,...,Xm (x1, . . . ,xm)~P(X1~x1, . . . ,Xm~xm) ð2Þ

where P(:) denotes the probability of an event with the values xi

running on all the possible graphs GM of GM . The finite

dimensional distributions defined in equation (2) obey the two

compatibility conditions of Kolmogorov [17], namely a symmetry

condition

pX1,...,Xm (x1, . . . ,xm)~pXp1
,...,Xpm

(xp1
, . . . ,xpm ) ð3Þ

for any permutation (p1, . . . ,pm) of the m random variables (this is

a direct consequence of the symmetry property for the intersection

of events) and a second condition

pX1,...,Xm (x1, . . . ,xm)~X
xmz1[GM

pX1,...,Xm,Xmz1
(x1, . . . ,xm,xmz1) ð4Þ

as a direct consequence of total probability.

Among all possible stochastic processes on GM , we will consider

homogeneous Markov chains. They are fully characterized by the initial

probability

p(x) ~
def

pX1
(x)~P(X1~x) ð5Þ

and by the transition probability

P(x,y) ~
def

P(Xmz1~yjXm~x) ð6Þ

that does not depend on the specific value of m (hence the

adjective homogeneous). Note that it is convenient to consider the

initial probability as a row vector with 2M(Mz1)=2 entries with the

property that

X
x[GM

p(x)~1 ð7Þ

and the transition probability as a 2M(Mz1)=2|2M(Mz1)=2 matrix,

also called stochastic matrix with the property that

X
y[GM

P(x,y)~1 ð8Þ

For a homogeneous Markov chain, the finite dimensional

distributions are given by

pX1,...,Xm (x1, . . . ,xm)~p(x1)P(x1,x2) � � �P(xm{1,xm) ð9Þ
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It is a well known fact that the finite dimensional distributions in

equation (9) do satisfy Kolmogorov’s conditions (3) and (4).

Kolmogorov’s extension theorem then implies the existence of

Markov chains [17]. Marginalization of equation (9) leads to a

formula for pXm
(xm)~P(Xm~xm), this is given by

pXm (xm)~
X

x1[GM

p(x1)Pm{1(x1,xm) ð10Þ

where Pm{1(x1,xm) is the entry (x1,xm) of the (m{1)-th power of

the stochastic matrix. Note that, from equation (10) and

homogeneity one can prove the Markov semi-group property

Pmzr(x,y)~
X

z[GM

Pm(x,z)Pr(x,y) ð11Þ

Starting from the basic Markov process with the set of graphs as

space state, we can also consider other auxiliary processes. Just to

mention few among them, we recall:

N the process counting the number of edges (i.e., the sum of the

adjacency matrix A);

N the process recording the degree of the graph (i.e., the

marginal total of the adjacency matrix A);

N the process which measures the cardinality of the strongly

connected components of the graph.

Notice that the function of a Markov chain is not a Markov chain

in general, and therefore the study of such processes is not trivial.

Under a more combinatorial approach, one can consider also

the process recording the permanent of the adjacency matrix A.

We recall that the permanent of the matrix A is given by

perm(A)~
X

s[SM

P
M

i~1
Ai,s(i) ð12Þ

where SM is the symmetric group on the set f1, . . . ,Mg. The

permanent differs from the best known determinant only in the

signs of the permutations. In fact,

det(A)~
X

s[SM

({1)jsj P
M

i~1
Ai,s(i) ð13Þ

where jsj is the parity of the permutation s. Notice that the

permanent is in general harder to compute than the determinant,

as Gaussian elimination cannot be used. However, the permanent

is more appropriate to study the structure of the graphs. It is

known, see for instance [16], that the permanent of the adjacency

matrix counts the number of the bijective functions w : VM?VM .

The bijective functions w are known in this context as perfect

matchings, i.e., the rearrangements of the vertices consistent with

the edges of the graph. The relations between permanent and

perfect matchings are especially studied in the case of bipartite

graphs, see [18] for a review of some classical results.

Moreover, we can approach the problem also from the point of

view of symbolic computation, and we introduce the permanent

polynomial, defined for each adjacency matrix as follows. Let Y

be an M|M matrix of variables Y~(yi,j)
m
i,j~1. The permanent

polynomial is the polynomial

pperm(A)~perm(Y8A) ð14Þ

where 8 denotes the element-wise product. For example, the

polynomial determinant of the adjacency matrix

A~

0 1 1

1 0 1

1 1 0

0
B@

1
CA ð15Þ

introduced above is

pperm(A)~det

0 y1,2 y1,3

y2,1 0 y2,3

y3,1 y3,2 0

0
B@

1
CA~y1,2y2,3y3,1zy1,3y3,2y2,1ð16Þ

The permanent polynomial in Equation (14) is a homogeneous

polynomial with degree M and it has as many terms as the

permanent of A, all monomials are pure (i.e., with unitary

coefficient) and each transition of the Markov chain from the

adjacency matrix A1 to the matrix A2 induces a polynomial

pperm(A2){pperm(A1).

Finally, it is also interesting to consider conditional graphs. With

this term we refer to processes on a subset of the whole family of

graphs GM . For instance we may require to move only between

graphs with a fixed degree, i.e., between adjacency matrices with

fixed row (and column) totals. In such a case, also the construction

of a connected Markov chain in discrete time is an open problem,

recently approached through algebraic and combinatorial tech-

niques based on the notion of Markov basis, see [19–21]. This

research topic, named Algebraic Statistics for contingency tables,

seems to be promising when applied to adjacency matrices of

graphs.

Ingredient 2: a semi-Markov counting process
Let J1, . . . ,Jn, . . . be a sequence of positive independent and iid

random variables interpreted as sojourn times between events in a

point process. They are a renewal process. Let

Tn~
Xn

i~1

Ji ð17Þ

be the epoch (instant) of the n-th event. Then, the process N(t)
counting the events occurred up to time t is defined by

N(t)~ maxfn:Tnƒtg ð18Þ

A well-known (and well-studied) counting process is the Poisson

process. If J* exp (l), one can prove that

P(N(t)~n)~ exp ({lt)
(lt)n

n!
ð19Þ

The proof leading to the exponential distribution of sojourn times

to the Poisson distribution of the counting process is rather

Semi-Markov Graph Dynamics

PLoS ONE | www.plosone.org 3 August 2011 | Volume 6 | Issue 8 | e23370



straightforward. First of all one notices that the event

fN(t)vnz1g is given by the union of two disjoint events

fN(t)vnz1g~fN(t)vng|fN(t)~ng ð20Þ

therefore, one has

P(N(t)~n)~P(N(t)vnz1){P(N(t)vn) ð21Þ

but, by definition, the event fN(t)vng coincides with the event

fTnwtg. Therefore, from equation (21), one derives that

P(N(t)~n)~P(Tnƒt){P(Tnz1ƒt) ð22Þ

The thesis follows from equation (17). The cumulative

distribution function of Tn is the n-fold convolution of an

exponential distribution, leading to the Erlang distribution

P(Tnƒt)~1{
Xn{1

k~0

exp ({lt)
(lt)k

k!
ð23Þ

and, by virtue of equation (22), the difference P(Tnƒt){
P(Tnz1ƒt) gives the Poisson distribution of equation (19).

Incidentally, it can be proved that N(t) has stationary and

independent increments.

One can also start from the Poisson process and then show that

the sojourn times are iid random variables. The Poisson process

can be defined as a non-negative integer-valued stochastic process

N(t) with N(0)~0 and with stationary and independent

increments (i.e. a Lévy process; it must also be stochastically

continuous, that is it must be true that for all aw0, and for all s§0
limt?s P(jN(t){N(s)jwa)~0) such that its increment

N(t){N(s) with 0ƒsvt has the following distribution for n§0

P(N(t){N(s)~n)~ exp ({l(t{s))
½l(t{s)�n

n!
ð24Þ

Based on the definition of the process, it is possible to build any

of its finite-dimensional distributions using the increment

distribution. For instance P(N(t1)~n1,N(t2)~n2) with t2wt1 is

given by

P(N(t1)~n1,N(t2)~n2)~P(N(t1)~n1)P(N(t2){N(t1)~n2{n1)

~ exp ({lt1)
(lt1)n1

n1!
exp ({l(t2{t1))

½l(t2{t1)�n2{n1

(n2{n1)!
ð25Þ

Every Lévy process, including the Poisson process is Markovian

and has the so-called strong Markov property roughly meaning that

the Markov property is true not only for deterministic times, but

also for random stopping times. Using this property, it is possible

to prove that the sojourn times are iid. For N(0)~0, let

Tn~ infft : N(t)~ng be the n-th epoch of the Poisson process

(the time at which the n-th jump takes place) and let

Jk~Tk{Tk{1 be the k-th sojourn time (T0~0). For what

concerns the identical distribution of sojourn times, one has that

P(T1wt)~P(J1wt)~P(N(t)~0)~ exp ({lt) ð26Þ

and for a generic sojourn time Tk{Tk{1, one finds

Tk{Tkz1~ infft{Tk{1 : N(t)~kg

~ infft{Tk{1 : N(t){N(Tk{1)~1g

~
d

infft{Tk{1 : N(t{Tk{1)~1,N(Tk{1)~0g

~ infft : N(t)~1,N(0)~0g ð27Þ

where ~
d

denotes equality in distribution and the equalities are

direct consequences of the properties defining the Poisson process.

The chain of equalities means that every sojourn time has the

same distribution of J1 whose survival function is given in equation

(26). As mentioned above, the independence of sojourn times is

due to the strong Markov property. As a final remark, in this

digression on the Poisson process, it is important to notice that one

has that its renewal function H(t) ~
def

E(N(t)) is given by

H(t)~lt ð28Þ

i.e. the renewal function of the Poisson process linearly grows with

time, whereas its renewal density h(t) defined as

h(t) ~
def dH(t)

dt
ð29Þ

is constant:

h(t)~l ð30Þ

Here, for the sake of simplicity, we shall only consider renewal

processes and the related counting processes (see equations (17)

and (18)). When sojourn times are non-exponentially distributed,

the corresponding counting process N(t) is no longer Lévy and

Markovian, but it belongs to the class of semi-Markov processes

further characterized in the next section [22–25]. If yJ (t) denotes

the probability density function of sojourn times and

YJ (t) ~
def

P(Jwt) is the corresponding survival function, it is

possible to prove the first renewal equation

H(t)~1{YJ (t)z

ð t

0

H(t{u)yJ (u)du ð31Þ

as well as the second renewal equation

h(t)~yJ (t)z

ð t

0

h(t{u)yJ (u)du ð32Þ
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The second renewal equation is an immediate consequence of

the first one, based on the definition of the renewal density h(t)
and on the fact that yJ (t)~{dYJ (t)=dt. The first renewal

equation can be obtained from equation (22) which is valid in

general and not only for exponential waiting times. One has the

following chain of equalities

H(t)~E(N(t))~
X?
n~0

nP(N(t)~n)

~
X?
n~0

n(P(Tnƒt){P(Tnz1ƒt))

~
X?
n~1

P(Tnƒt)~
X?
n~1

Fn(t) ð33Þ

where Fn(t) is the cumulative distribution function of the

random variable Tn, a sum of iid. positive random variables.

Let fn(t) represent the corresponding density function. By

taking the Laplace transform of equation (33) and using the fact

that

effn(s)~½eyyJ (s)�n ð34Þ

one eventually gets

eHH(s)~
X?
n~1

eFFn(s)~
1

s

X?
n~1

effn(s)~
1

s

X?
n~1

½eyyJ (s)�n

~
eyyJ (s)

s

X?
m~0

½eyyJ (s)�m~
eyyJ (s)

s

1

1{eyyJ (s)

ð35Þ

or (as jeyyJ (s)jv1 for s=0)

(1{yJ (s)) eHH(s)~
eyyJ (s)

s
ð36Þ

the inversion of equation (36) yields the first renewal equation

(31).

If the sojourn times have a finite first moment (i.e.

mJ~E(J)v?), one has a strong law of large numbers for renewal

processes

lim
t??

N(t)

t
~

1

mJ

a:s: ð37Þ

and as a consequence of this result, one can prove the so-called

elementary renewal theorem

Figure 1. Box-plot of the distribution of the stopping times with varying b for Example A.
doi:10.1371/journal.pone.0023370.g001
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lim
t??

H(t)

t
~

1

mJ

ð38Þ

The intuitive meaning of these theorems is as follows: if a renewal

process is observed a long time after its inception, it is impossible to

distinguish it from a Poisson process. As mentioned in the

Introduction, the elementary renewal theorem can explain the

ubiquity of the Poisson process. After a transient period, renewal

processes with finite first moment behave as the Poisson process.

However, there is a class of renewal processes for which the

condition E(J)v? is not fulfilled. These processes never behave

as the Poisson process. A prototypical example is given by the

renewal process of Mittag-Leffler type introduced by one of us

together with F. Mainardi and R. Gorenflo back in 2004 [26,27].

A detailed description of this process will be given in one of the

examples below.

Putting the ingredients together
Let X1, . . . ,Xn represent a (finite) Markov chain on the state

space GM , we now introduce the process Y (t) defined as follows

Y (t) ~
def

XN(t) ð39Þ

that is the Markov chain Xn is subordinated to a counting process

N(t) coming from a renewal process as discussed in the previous

subsection, with Xn independent of N(t). In other words, Y (t)
coincides with the Markov chain, but the number of transitions up

to time t is a random variable ruled by the probability law of N(t)
and the sojourn times in each state follow the law characterized by

the probability density function yJ (t), or, more generally, by the

survival function YJ (t).

As already discussed, such a process belongs to the class of semi-

Markov processes [22–25,28], i.e. for any A5GM and tw0 we do

have

P(Xn[A,Jnƒt jX0, . . . ,Xn{1,J1, . . . ,Jn{1)

~P(Xn[A,Jnƒt jXn{1)
ð40Þ

Table 1. Summary statistics for Example A with varying b.

Min 1st Qu. Median Mean 3rd Qu. Max

b = 0.9 0.363 8.010 12.750 31.460 20.260 54750.000

b = 0.95 0.325 7.545 11.440 20.860 16.890 32920.000

b = 0.98 0.261 7.296 10.860 12.950 15.050 2704.000

b = 0.99 0.537 7.219 10.630 12.340 14.670 2487.000

doi:10.1371/journal.pone.0023370.t001

Figure 2. Box-plot of the distribution of the stopping times with varying M for Example A.
doi:10.1371/journal.pone.0023370.g002

Semi-Markov Graph Dynamics

PLoS ONE | www.plosone.org 6 August 2011 | Volume 6 | Issue 8 | e23370



and, if the state Xn{1~x is fixed at time tn{1, the probability on

the right-hand side will be independent of n. Indeed, by definition,

given the independence between the Markov chain and the

counting process, one can write

P(Xn[A,Jnƒt jX0, . . . ,Xn{1,J1, . . . ,Jn{1)~

P(Xn[A jXn{1~x)P(Jnƒt)
ð41Þ

~P(x,A)(1{YJ (t))41)

where

P(x,A)~
X
y[A

P(x,y) ð42Þ

Equation (41) is a particular case of (40).

It is possible to introduce a slight complication and still preserve

the semi-Markov property. One can imagine that the sojourn time

in each state is a function of the state itself. In this case P(Jnƒt) is

no longer independent of the state of the random variable Xn{1

and equation (41) is replaced by

P(Xn[A,Jnƒt jX0, . . . ,Xn{1,J1, . . . ,Jn{1)~

P(Xn[A jXn{1~x)P(JnƒtjXn{1~x)

~P(x,A)(1{Yx
J (t)) ð43Þ

where Yx
J (t) denotes the state-dependent survival function.

However, in this case, the random variable Tn is still the sum of

independent random variables, but they are no-longer identically

distributed, and the analysis of the previous section has to be

modified in order to take this fact into proper account.

Results

In order to show the behavior of the stochastic processes

described in the previous sections we have simulated the

distribution of two stopping times in two different situations.

The simulations have been written in R, see [29] and the source

files are available as Supporting Information S1 and S2 Notice

that some specific packages for the analysis of graph structures are

available, see for instance [30]. However, we have used only the

R-base commands, so that our examples can be analyzed easily

without any additional package.

The examples in the first two subsections are designed to

introduce the reader to the simulation algorithms in a framework

as simple as possible. An extended example about a model of

interbank market will be discussed in the last subsection.

In our examples we use the Mittag-Leffler distribution for the

sojourn times. We recall that the Mittag-Leffler distribution has

survival function given by

Figure 3. Mean and median of the distribution of the stopping times with varying M for Example A.
doi:10.1371/journal.pone.0023370.g003
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YJ (t)~P(Jwt)~Eb({tb) ð44Þ

where Eb(z) is the one-parameter Mittag-Leffler function defined

as

Eb(z)~
X?
n~0

zn

C(nbz1)
ð45Þ

for 0vbƒ1. There are two strong reasons for this choice. The

first one is that many analytical results are available on the Mittag-

Leffler renewal process a.k.a. fractional Poisson process [26,27,31–

34]. The second reason is that the Mittag-Leffler distribution is the

repeated-thinning limit of heavy-tailed sojourn-time distributions

with algebraically decaying tails with exponent 0vbv1 [27]. For

b~1, the exponential distribution is recovered from (44).

First example
In this example we consider graphs without self-loops. Let us

consider a fixed number M of vertices and define a process as

follows:

N At time 0, there are no edges in the graph;

N At each time, we choose an edge e with uniform distribution

on the 2
M(M{1)

2 edges. If e belongs to the graph we remove it; if e
does not belong to the graph we add it;

N The stopping time is defined as the first time for which a

triangle appears in the graph.

To simulate the distribution of the stopping times we have used

10000 replications. As the Mittag-Leffler distribution is heavy-

tailed, the density plot and the empirical distribution function plot

are not informative. Thus, we have reported the box-plot, to

highlight the influence of the outliers.

With a first experiment, we have studied the influence of the b
parameter. In a graph with M~10 nodes, we have considered the

sojourn times with a Mittag-Leffler distribution with different b
parameter, namely b~0:90:0:95,0:98,0:99. The box-plots are

displayed in Figure 1, and some numerical indices are in Table 1.

Our results show that:

Table 2. Summary statistics for Example B with varying b.

Min 1st Qu. Median Mean 3rd Qu. Max

b = 0.9 3.786 21.540 32.070 88.110 49.380 271500.000

b = 0.95 3.393 19.410 27.050 41.550 38.260 12140.000

b = 0.98 3.565 18.230 24.980 33.530 33.970 19600.000

b = 0.99 4.738 17.690 23.940 27.160 32.310 1701.000

doi:10.1371/journal.pone.0023370.t002

Figure 4. Box-plot of the distribution of the stopping times with varying b for Example B.
doi:10.1371/journal.pone.0023370.g004
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N the outliers are highly influenced from the value of b. This

holds, with a less strong evidence, also for the quartiles Q1 and

Q3;

N the median is near constant, while the mean is affected by the

presence of outliers.

With a second experiment, we have considered a fixed

parameter b = 0.99, but a variable number of vertices M ranging

from 5 to 50 by 5. In Figures 2 and 3 we present the box-plots of

the stopping time distribution and the trends of the mean and the

median. From these graphs we can notice that:

N the presence of outliers is more relevant in the graph with a

large number of nodes;

N the mean and the median are roughly linear, but the trend of

the median looks more stable.

Second example
Let us consider a population with individuals f1, . . . ,Mg and

suppose that the person labelled 1 has to share some information.

At a first random time, he chooses another individual with random

uniform probability and shares the information with him. At a

second random time, one person who has the information chooses

an individual among the other (M{1) and shares again the

information. Note that each individual shares the information with

another one, no matter if the latter has already or not the

information. At each time, we denote by S the subset of persons

having the information. In terms of graphs, the process is then

defined as follows:

N At time 0, there are no edges in the graph and S~f1g;
N At each time, we choose a vertex m[S and we choose an edge

among (m,1),(m,2), . . . ,(m,m{1),(m,mz1), . . . ,(m,M{1),
(m,M) with random uniform distribution. If the chosen edge is

already in the graph we do nothing; otherwise, we add the chosen

edge to the graph and we add the appropriate vertex to S;

N The stopping time is defined as the first time for which the

whole graph is connected.

The experimental settings for this example are the same as for

Example A. With a fixed number of vertices M~10 and varying b
as above, we obtain the box-plots in Figure 4, and the numerical

summary in Table 2. From these results we can see that the

outliers are highly influenced from the value of b, while the

variation of the quantiles Q1 and Q3 is much lower. Also in this

example, the mean is affected by the presence of outliers.

With the second experiment with a variable number of vertices M

ranging from 5 to 50 by 5, we obtain the plots displayed in Figures 5

and 6. The conclusions are the same as in the previous example.

Extended example. An interbank market
In this subsection we present a simple model for interbank

markets. It serves the purpose of illustrating the modelling

potential of the ideas presented above.

Figure 5. Box-plot of the distribution of the stopping times with varying M for Example B.
doi:10.1371/journal.pone.0023370.g005
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This example deals with an interbank market receiving loan

requests from the corporate sector at random times. For the sake

of readability, in this subsection we will use the symbol Dtk instead

of Jk for the k-th inter-arrival duration and we will denote the

epochs at which loan requests are made with the symbol tk instead

of Tk. In this more realistic example, we will briefly discuss the

difficulties that must be faced when one desires to go beyond a

mere phenomenological description of reality.

We consider an interbank market characterized by M banks

that demand and supply liquidity at a given interest rate rB. Each

bank b is described at any time by its balance sheet, as outlined in

Table 3. The market is decentralized and banks exchange liquidity

by means of pairwise interactions. Banks lend money also to the

corporate sector at the constant rate rCwrB and all corporate and

interbank loans are to be repayed after T units of time. We

stipulate that the loan requests from the corporate sector to the

banking system are the events triggering the interbank market and

we model these events as a Poisson process of parameter l. In

particular, we state that, at exponentially distributed intervals of

time Dtn~tn{tn{1, a loan request of constant amount ‘ is

submitted from the corporate sector to a bank chosen at random

with uniform distribution among the M banks. As in the previous

examples, in principle, the Poisson process can be replaced by any

suitable counting process. Let us denote the chosen bank with the

index i and the time at which the loan is requested as tn. If

Ci
tn{1

v‘, the chosen bank is short of liquidity to grant the entire

amount of the loan. Given the interest rate spread between rC and

rB, the profit-seeking bank enters the interbank market in order to

borrow at the rate rB the amount ‘{Ci
tn{1

necessary to grant the

entire loan. In the interbank market, a new bank is then chosen at

random with uniform distribution among the remaining M{1
banks. Let us denote with j the new chosen bank. If bank j has

not enough liquidity to lend the requested amount, i.e., if

C
j
tn{1

v‘{Ci
tn{1

, then a new bank h is again chosen at random

among the remaining M{2 ones to provide the residual liquidity,

and so on. This process in the interbank market continues till the

liquidity amount ‘{Ci
tn{1

necessary to bank i is collected.

Finally, as soon as the loan ‘ is provided to the corporate

sector, we stipulate that the deposits as well as the liquidity of any

bank b, being b~1, . . . ,M, is increased by the amount vb
t ‘,

where vb
t are random numbers constrained by

P
b vb

t ~1. The

rationale behind this choice is that a loan, when it is taken and

spent, creates a deposit in the bank account of the agent to whom

the payment is made; for instance, when the corporate sector gets

Table 3. Balance sheet entries of bank b at time tn.

Assets Liabilities

Cb
tn

: liquidity Db
tn

: total (households’ and firms’)

deposits

Lb
tn

: loans to the corporate sector Bb
tn

: debt with other banks

Lb
tn

: loans to other banks Eb
tn

: equity (net worth)

doi:10.1371/journal.pone.0023370.t003

Figure 6. Mean and median of the distribution of the stopping times with varying M for Example B.
doi:10.1371/journal.pone.0023370.g006
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a loan to pay wages to workers or to pay investments to capital

goods producers, then the deposits at the M banks of the agents

receiving the money are increased by a fraction of the borrowed

amount ‘. We assume that these deposits are randomly dis-

tributed among the M banks.

To give a clearer idea on how the balance sheets of banks

evolve after an event in the interbank market, let us consider an

example where at time tn the corporate sector requests a loan ‘
to the randomly selected bank i, which, being short of liquidity

(i.e. Ci
tn{1

v‘), needs to enter into interbank market where it

borrows a loan of amount ‘{Ci
tn{1

from the randomly selected

bank j. We suppose here C
j
tn{1

w‘{Ci
tn{1

, therefore no other

lending banks enter the interbank market. According to the

model outlined above, at the end of the interbank market

session, the balance sheets of bank i and of bank j change as

outlined in Table 4.

Once the assets and the debt liabilities entries of any bank are

updated following the lending activity to the corporate sector and

the interbank market outcomes, the equity is then updated as

residual according to the usual accounting equation:

Eb
tn

~Cb
tn

zLb
tn

zLb
tn

{Db
tn

{Bb
tn

ð46Þ

It is worth noting that, as reported in Table 4, the equity of both

bank i and j does not change from tn{1 to tn. This result is

obtained by computing the new equity levels at time tn using (46)

but should not be a surprise given that lending and borrowing

clearly change the balance sheet entries of banks but not their net

worth at the time the loan is granted or received. Indeed, the net

worth of the lending banks is increased by the interest revenues

when the corporate loan as well as the interbank loan is repaid

together with the interest amounts. In particular, equity of bank i

is increased by rC ‘{rB (‘{Ci
tn{1

), while equity of bank j is

increased by rB (‘{Ci
tn{1

). Table 5 shows how balance sheet

entries change at time tm~tnzT when the two loans are paid

back. It is worth noting again that the equity dynamics is consistent

with the dynamics of other balance sheet entries, according to (46).

Finally, as granting a bank loan to the corporate sector increases

private deposits at banks, also the opposite holds when a loan is

paid back. The repayment of the loan ‘ together with interests rC ‘
corresponds to a reduction of private deposits, as well as of the

related banks’ liquidity, of the same amount. As in the previous

case, we assume that the reduction (1zrC)‘ is uniformly and

randomly distributed among the M banks with weights vb
tm

, where

b~1, . . . ,M.

We can then define a M|M adjacency matrix A representing

the graph associated to the interbank market, where the nodes of

the graph correspond the M banks and the edges to the lending

and borrowing relationships among banks. Differently from the

previous discussion and examples, here, it is meaningful to

consider directed graphs and therefore the matrix can be

asymmetric. In particular, if bank j is lending money to bank i,

we set Aj,i~1, but we may have Ai,j~1 or Ai,j~0, depending if

bank i is lending or not money to bank j. The situation where both

Aj,i and Ai,j are set to 1 is not contradictory but it means that two

loans have been granted in the two opposite directions, i.e. from

bank i to bank j and from bank j to bank i, at different times. In

fact, let us suppose that at time tn, as stated in the example, bank i

borrows money from bank j so that Aj,i is set to 1, while Ai,j is still

zero. The loan will be repaid at time tm~tnzT , but it may

happen that that at any time th, being tnvthvtm, bank j has been

randomly chosen as the corporate sector lender, and, being short

of liquidity, bank i is chosen to provide the necessary liquidity in

the interbank market. Bank i is likely to have Ci
th{1

w0 and so able

to lend to bank j. The reason is that bank i ended period tn with a

positive liquidity, i.e., Ci
tn

= vi
tn
‘, see Table 4 and the related

discussion; moreover, we cannot exclude that a loan granted by

bank i in the past has been repaid at any time between tn and th.

Therefore, if the conditions above are all verified, it will happen

that both Aj,i and Ai,t are equal to 1 at any time t in between th

and tm. The overall result can be interpreted as a net lending

between one bank to the other, the direction depends on the

amounts of money involved, but the two loan cannot be cancelled

out because they have been granted and they will expire at

different times.

The time evolution of the adjacency matrix depends on the

evolution of events in the interbank market. In particular, when

the first loan from bank j to bank i is paid back, Aj,i is again set to

0, provided that no new loans have been granted by bank j to bank

i in the meantime, if this happens the value of Aj,i remains at 1 till

there are debts of bank i to bank j. If this is required by the

particular application, it is even possible to consider weighted graphs

where the entry Ai,j contains the value of the loan from bank i to

bank j.

The dynamics in the interbank market can then be represented

as a Markov chain on graphs subordinated to the Poisson process

representing the random events of loan requests to the banking

system by the corporate sector. It is worth noting that the Markov

process and the Poisson process are independent here, however,

the transition probabilities of the Markov process are not fixed ex

ante but depends on the endogenous evolution of the balance sheets

of banks. Therefore, here, the Markov process is not homogeneous.

Table 4. Dynamics of balance sheet entries of bank i (lender to the corporate sector and borrower in the interbank market) and
bank j (lender in the interbank market) at time tn when both the corporate loan ‘ and the related interbank loan ‘{Ci

tn{1
are

granted.

Ci
tn

= vi
tn
‘ C

j
tn

= C
j
tn{1

{(‘{Ci
tn{1

)zvj
tn
‘

Li
tn

= Li
tn{1

z‘ L
j
tn

= L
j
tn{1

Li
tn

= Li
tn{1

Lj
tn

= Lj
tn{1

z(‘{Ci
tn{1

)

Di
tn

= Di
tn{1

zvi
tn
‘ D

j
tn

= D
j
tn{1

zvj
tn
‘

Bi
tn

= Bi
tn{1

z(‘{Ci
tn{1

) B
j
tn

= B
j
tn{1

Ei
tn

= Ei
tn{1

E
j
tn

= E
j
tn{1

doi:10.1371/journal.pone.0023370.t004
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Discussion

We have discussed a model of graph dynamics based on two

ingredients. The first ingredient is a Markov chain on the space of

possible graphs. The second ingredient is a semi-Markov counting

process of renewal type. The model consists in subordinating the

Markov chain to the semi-Markov counting process. In simple

words, this means that the chain transitions occur at random time

instants called epochs. This model takes into account the fact that

social interactions are intrinsically volatile and not permanent.

Note that state dependent subordination (see equation (43))

gives rise to very interesting dynamics from the ergodicity

viewpoint [35]. In order to illustrate this fact, let us consider a

simple two-state aperiodic and irreducible Markov chain with the

following transition probability matrix:

P~
0:1 0:9

0:9 0:1

� �
ð47Þ

In this case, the invariant measure is uniform and it is given by

p~
1

2
,
1

2

� �
ð48Þ

meaning that the probability of finding each state at equilibrium is

1/2. Now, let us call A the first state and B the second state. Let the

sojourn time in A be exponentially distributed with parameter lA

and the sojourn time in B still exponentially distributed with

parameter lB. If a single realization of this process is considered,

the average time of permanence in state A will be given by 1=lA

and the average time of permanence in B will be given by 1=lB.

Therefore, if lA=lB, then the ratio of average sojourn times will

be different from 1. In other words, for this simple model, the

fraction of sojourn times is not equal to the fraction of the

ensemble measure: a signal of non-ergodicity.

Finally, with reference to the examples discussed above, this

kind of modeling can be used for risk evaluation. Given a loss

function, a function that gives the losses when adverse events take

place, the risk function is defined as the expected value of the loss

function. With our approach, one can derive the probability of the

adverse events as a function of time and use this measure to

evaluate the risk function. To be more specific, assume that the

failure of a bank implies the payment of deposit insurance up to a

certain limit. Then the loss function can be defined as the capped

sum of deposits and risk is the product of this loss function by the

bank failure probability at a certain time instant. The latter

example may become relevant for macroeconomics, when one has

situations in which either a very large bank fails or many banks fail

in a short time period. This event may trigger big losses in real

macro variables such as GDP and employment rate and these

variables themselves can be interpreted as loss functions. In an

economy, given that the dynamics is a consequence of many

individual choices, it may be impossible to write down a fully

deterministic description for the time evolution. However, it may

be sensible to define suitable stochastic processes on the state space

of oriented and weighted graphs which are able to phenomeno-

logically reproduce the main statistical features of macroeconomic

time evolution. At least, this is what we hope to do in the near

future.

Supporting Information

S1 R program for Example 1: Rcode_example_1.txt
(TXT)

S2 R program for Example 2: Rcode_example_2.txt
(TXT)
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