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Abstract

A large number of rare sequence variants of unknown clinical significance have been identified in the breast cancer
susceptibility genes, BRCA1 and BRCA2. Laboratory-based methods that can distinguish between carriers of pathogenic
mutations and non-carriers are likely to have utility for the classification of these sequence variants. To identify predictors of
pathogenic mutation status in familial breast cancer patients, we explored the use of gene expression arrays to assess the
effect of two DNA–damaging agents (irradiation and mitomycin C) on cellular response in relation to BRCA1 and BRCA2
mutation status. A range of regimes was used to treat 27 lymphoblastoid cell-lines (LCLs) derived from affected women in
high-risk breast cancer families (nine BRCA1, nine BRCA2, and nine non-BRCA1/2 or BRCAX individuals) and nine LCLs from
healthy individuals. Using an RNA–pooling strategy, we found that treating LCLs with 1.2 mM mitomycin C and measuring
the gene expression profiles 1 hour post-treatment had the greatest potential to discriminate BRCA1, BRCA2, and BRCAX
mutation status. A classifier was built using the expression profile of nine QRT–PCR validated genes that were associated
with BRCA1, BRCA2, and BRCAX status in RNA pools. These nine genes could distinguish BRCA1 from BRCA2 carriers with 83%
accuracy in individual samples, but three-way analysis for BRCA1, BRCA2, and BRCAX had a maximum of 59% prediction
accuracy. Our results suggest that, compared to BRCA1 and BRCA2 mutation carriers, non-BRCA1/2 (BRCAX) individuals are
genetically heterogeneous. This study also demonstrates the effectiveness of RNA pools to compare the expression profiles
of cell-lines from BRCA1, BRCA2, and BRCAX cases after treatment with irradiation and mitomycin C as a method to prioritize
treatment regimes for detailed downstream expression analysis.
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Introduction

Rare sequence variants in BRCA1 and BRCA2 that are not

predicted to lead to obvious or easily detectable molecular

aberrations, such as protein truncation or RNA splicing defects,

are currently difficult to classify clinically as pathogenic or neutral.

These variants attribute to approximately 10% of clinical test

results, and create a significant challenge for counseling and

clinical decision making when identified in patients with a strong

family history of breast cancer. Laboratory based methods that can

distinguish between carriers of known pathogenic mutations and

non-carriers are likely to have utility for the classification of

sequence variants of unknown clinical significance.

Expression profiling has been used successfully to characterize

molecular subtypes in breast cancer whether based on gene

expression patterns in primary tumor cells [1–3], metastatic cells

[4], or stroma-derived cells [5]. Distinctive patterns of global gene

expression have also been shown between breast tumors with

BRCA1 mutations and breast tumors with BRCA2 mutations [6].

More recently, evidence has been presented from several studies to

suggest that heterozygous carriers of BRCA1 and BRCA2

mutations, and breast cancer patients without such alterations

may be distinguished based on mRNA profiling of fibroblasts and

lymphoblastoid cell-lines (LCLs) [7–9]. In one study, short-term

breast fibroblast cell-lines were established from nine individuals

with a BRCA1 germ-line mutation, and five healthy control

individuals with no personal or family history of breast cancer [7].

Class prediction analysis using expression data from irradiated

fibroblast cultures showed that BRCA1 carriers could be

distinguished from controls with 85% accuracy [7]. A similar

study used short-term fibroblast cultures from skin biopsies from

10 BRCA1 and 10 BRCA2 mutation carriers and 10 individuals

who had previously had breast cancer but were unlikely to contain

BRCA1/2 mutations [8]. Class prediction analysis using expression

data from irradiated fibroblast cultures showed that BRCA1 and

BRCA2 samples could be classified with 95% accuracy, and

BRCA1/2 carriers could be distinguished from noncarriers with

90% to 100% accuracy [8].

PLoS Genetics | www.plosgenetics.org 1 February 2010 | Volume 6 | Issue 2 | e1000850



In contrast to short-term fibroblast cell-lines, lymphoblastoid

cell-lines (LCLs) are a minimally invasive source of germline

material that can be maintained as long term culture, and which

have proven to be a valuable model system for studying gene

expression signatures in relation to genetic variation and external

stimulants [10–13]. A recent study from our laboratory utilizing

this model system suggested that post-irradiation (IR) gene

expression data from LCLs derived from blood of patients with

sequence alterations in BRCA1 and BRCA2, and from familial

breast cancer patients without such alterations (BRCAX) has

potential to predict BRCA1, BRCA2 and BRCAX mutation status

with up to 62% accuracy [9]. In view of improving prediction

accuracy, especially between BRCA1 and BRCA2, we used

expression arrays to assess the effect of the DNA damaging

agents, IR and mitomycin C (MMC), at different time points, on

cellular response in relation to mutation status. To facilitate

analysis of the large number of treated LCLs, an RNA pooling

strategy was implemented to reduce the number of microarray

experiments by three-fold. Previous studies have used RNA

pooling as a strategy to reduce the effects of biological variation

in order to help identify key features that differ between biological

class [14,15]. We have therefore explored a similar approach in

this study using patient derived LCLs as well as prior knowledge

that LCL expression profiles are influenced by both genotype and

exogenous factors. This strategy was shown to be effective in

identifying genes dysregulated in response to DNA damaging

agents. This study also demonstrated the effectiveness of RNA

pools to compare the effect of various IR and MMC treatment

regimes on the mRNA expression profiles of LCLs derived from

BRCA1, BRCA2 and BRCAX cases for downstream detailed

analysis of individual samples.

Results

Effect of IR and MMC on global gene expression
To identify which treatment caused the greatest amount of

change in gene expression levels, we first determined the number

of genes that showed differential expression between pools for each

treatment, particularly for BRCA1 versus BRCA2 and BRCA1 versus

BRCAX (Figure 1). Using fold-change as a measure of differential

gene expression revealed that the number of genes differentially

expressed (.2-fold) between BRCA1, BRCA2 and BRCAX pools

after IR was similar to that shown by the untreated controls

(Figure 1A). However, significant differences in the expression of

genes acting in the IR-induced ATM signaling pathway was

Author Summary

A large number of rare sequence variants of unknown
clinical significance have been identified in the breast
cancer susceptibility genes, BRCA1 and BRCA2. Laboratory
methods to identify which of these variants are mutations
would have utility for counseling and clinical decision
making when identified in patients with a family history of
breast cancer. We used DNA–damaging agents to disturb
gene expression profiles of cell-lines derived from blood of
patients, and we compared patterns from women with
BRCA1 and BRCA2 mutations to women familial breast
cancer families without such mutations. Using a pooling
strategy, which allowed us to compare several treatments
at one time, we identified which treatment caused the
greatest difference in gene-expression changes between
patient groups and used this treatment method for further
study. We were able to accurately classify BRCA1 and
BRCA2 samples, and our results supported other reported
findings that suggested familial breast cancer patients
without BRCA1/2 mutations are genetically heterogeneous.
We demonstrate a useful strategy to identify treatments
that induce gene expression differences associated with
BRCA1/2 mutation status. This strategy may aid the
development of a molecular-based tool to screen individ-
uals from multi-case breast cancer families for the
presence of pathogenic mutations.

Figure 1. Number of genes differentially expressed among BRCA1, BRCA2, and BRCAX. Differential expression was determined by (A) fold-
change (geometric mean of the expression ratios .2), and (B) statistical correlation using the F-test and alpha levels 0.05 and 0.01.
doi:10.1371/journal.pgen.1000850.g001
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PLoS Genetics | www.plosgenetics.org 2 February 2010 | Volume 6 | Issue 2 | e1000850



observed between irradiated LCL pools compared to untreated

pools (Figure S1), confirming inducement of an expression

phenotype by IR. Of the four MMC treatments, the number of

genes differentially expressed between pools was greatest when

LCLs were treated with 1.2 mM MMC and the RNA isolated 1

hour post-treatment (Figure 1A). There is currently no canonical

or consensus pathway based on MMC activity. It was therefore

not possible to confirm the effects of this treatment by assessing

expression phenotypes.

Identifying which treatment produced expression change in the

greatest number of genes was also carried out by performing an F-

test separately for each gene and determining the number of genes

differentially expressed with significance levels set at 0.05 and 0.01

(Figure 1B). LCLs treated with MMC showed the greatest

expression change after 1 hour incubation, with a slightly bigger

effect associated with 1.2 mM MMC versus 0.4 mM MMC, thus

suggesting that MMC has a greater perturbation effect after the

shorter incubation period (Figure 1B). A similar trend in the number

of genes differentially expressed between classes was observed when

the significance level was set at 0.001 (Data not shown). Overall,

these results indicated that, of the treatments used, 1.2 mM

MMC(T60) was most likely to induce gene expression profiles that

differ significantly between BRCA1, BRCA2 and BRCAX LCLs.

Identification of MMC responsive genes that discriminate
BRCA1, BRCA2, and BRCAX mutation type

To identify genes that would discriminate pools based on

mutation status, three comparative analyses were performed to

achieve three objectives. The first objective was to identify genes that

were differentially expressed between BRCA1, BRCA2 and BRCAX

pools treated with 1.2 mM MMC(T60). This analysis identified 699

genes that are able to discriminate pools based on mutation status

(Figure 2A, Table S1). The second objective was to identify genes

that were differentially expressed between treated 1.2 mM

Figure 2. Classifying BRCA1, BRCA2, and BRCAX subtype by MMC response genes. (A) Venn diagram illustrating the number of genes
identified from three analyses: 1) 3-way comparison of BRCA1, BRCA2 and BRCAX pools (F-test, P,0.05); 2) Pairwise comparison of 1.2 mM MMC-T60

treated and non-treated BRCA1/2/X pools (,10% false discovery rate; 90% confidence level); and 3) 2-way comparison of 1.2 mM MMC-T60 treated and
non-treated healthy control pools (T-test, P,0.05). The extent of overlap between gene lists is shown. (B) List of 36 genes that are differentially
expressed between BRCA1, BRCA2, and BRCAX, and are MMC responsive in affected carrier pools but not in healthy controls. (C) Supervised
hierarchical clustering of treated (1.2 mM MMC-T60) sample pools using the 36-gene list.
doi:10.1371/journal.pgen.1000850.g002
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MMC(T60) and non-treated BRCA1, BRCA2 and BRCAX pools.

The 1911 genes identified from this analysis were then characterized

as MMC responsive (Figure 2A, Table S1). Combining these two

analyses revealed 50 genes that classified pools based on mutation

status and that are also MMC responsive (Figure 2A). The third

objective was to identify genes that were differentially expressed

between treated (1.2 mM MMC(T60)) and non-treated healthy

control pools. This analysis was important to identify genes that are

MMC responsive in healthy controls and therefore not specific for

mutation status in BRCA1, BRCA2 and BRCAX pools (Figure 2A,

Table S1). By combining the results of these three analyses, 36 genes

were identified that are differentially expressed between BRCA1,

BRCA2 and BRCAX pools, and are also MMC responsive in

affected carrier pools but not in healthy controls (Figure 2A and 2B).

As expected, supervised hierarchical clustering of 1.2 mM

MMC(T60) treated and non-treated pools using the 36-gene list

demonstrates a separation of treated pools based on mutation type,

but no separation by mutation type was observed in untreated pools

(Figure 2C). Likewise, there was no discrimination of treated and

untreated healthy control pools (Figure 2C).

QRT-PCR was carried out to validate the expression levels of

the 36 MMC responsive genes in the BRCA1, BRCA2, and

BRCAX derived RNA pools. Despite relatively small fold-changes

detected in pools for each of the 36 genes between the three

mutation groups, 15 genes were validated by QRT-PCR (Table 1);

three times more than that expected by chance.

Of these 15 genes, nine also showed high correlation (r.0.6) in

expression level between microarray and the QRT-PCR value of

the same RNA pools (Table 1). These nine MMC responsive genes

were therefore selected for class prediction tests.

Comparison of RNA pools and virtual pools
To explore potential technical variation associated with

generating RNA pools, we compared expression levels of the nine

MMC responsive genes, measured by microarray and QRT-PCR

analysis in the nine RNA pools, and by QRT-PCR in the 27

individual LCL samples. Virtual pools were also generated by

taking the average of QRT-PCR expression values from the

individual samples used in the pools. Figure 3 shows that the

coefficient of variation (CV) differed between the nine genes

regardless of the experiment strategy. The least amount of

variation from measured gene expression tended to be observed

after microarray analysis of RNA pools with the CV ranging from

0.05 to 0.49 for the nine validated genes (Figure 3). In contrast, the

greatest amount of variation from measured gene expression

tended to be observed after QRT-PCR analysis of individual RNA

samples with the CV of the same genes ranging from 0.33 to 1.11

(Figure 3). Similar gene expression variation was observed between

RNA pools (CV ranged from 0.16 to 0.76) and virtual pools (CV

ranged from 0.16 to 0.78), with the exception of FAM26F

(Figure 3). Moreover, the correlation of expression data between

the RNA pools and virtual pools was greater than 0.7 for seven of

the nine genes analyzed (Table S2). These results suggest that

although pooling reduces measured variation in expression levels,

this reduction is most likely the result of a biological averaging

effect and not technical issues relating to the different steps

involved in the microarray experiment.

Class prediction of BRCA1, BRCA2, and BRCAX mutation
status using nine MMC responsive genes

We utilized five different prediction methods (Diagonal Linear

Discriminant Analysis, 1-Nearest Neighbour and Nearest Centroid

classification, Support Vector Machines, and Compound Covar-

iate Predictor) to determine the accuracy of using the nine MMC

responsive genes to predict the three biological classes (BRCA1

truncation mutation, BRCA2 truncation mutation, and BRCAX)

by means of a three-way comparison (Details shown in Tables S3,

S4). If the nine genes selected for classification are related to MMC

Table 1. Fifteen QRT–PCR validated genes shown to be differentially expressed among BRCA1, BRCA2, and BRCAX pools, and MMC
responsive in affected carrier pools but not in healthy controls.

Gene Symbol BRCA1/BRCA2a BRCA1/BRCAXa BRCA2/BRCAXa
Pearson’s
correlationb

Microarray QRT-PCR Microarray QRT-PCR Microarray QRT-PCR

SLC6A4 1.08 1.23 0.66 0.52 0.61 0.43 0.95

FAM26F 0.39 0.60 0.63 0.94 1.63 1.55 0.83

CCDC151 0.51 0.51 0.48 0.50 0.95 0.99 0.80

RARSL 1.14 1.32 1.00 1.18 0.88 0.90 0.75

P4HA2 0.61 0.49 0.97 0.65 1.60 1.33 0.70

LMNA 1.47 1.27 1.82 1.71 1.24 1.35 0.68

CASP3 1.56 1.28 1.30 1.03 0.83 0.81 0.67

GPM6A 0.91 0.34 0.94 0.75 1.04 2.18 0.61

CDCP1 0.98 0.81 1.18 2.14 1.21 2.63 0.61

CEND1 1.10 1.20 0.86 0.80 0.79 0.67 0.48

TNFRSF13C 0.59 0.95 0.66 0.98 1.13 1.04 0.47

HES4 0.38 0.58 0.69 0.69 1.82 1.19 0.47

CHCHD4 1.01 1.07 0.75 0.87 0.74 0.81 0.42

HSPA1L 0.87 0.83 0.83 0.79 0.96 0.95 0.35

GRHL1 0.96 0.81 0.83 0.70 0.87 0.86 0.34

a Ratio of the average expression level.
b Correlation between microarray and QRT–PCR expression data from nine RNA pools. Nine genes with a Pearson’s correlation greater than 0.6 are shown in bold.
doi:10.1371/journal.pgen.1000850.t001
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response pathways we would predict better predictions for MMC

treated groups compared to non-treated and IR treated group.

Interestingly, BRCA1, BRCA2 and BRCAX pools were poorly

classified from the IR(T60) (44%–78%) and T0 (33%–56%)

treatments groups compared to the four MMC treated groups

(67%–100%) using microarray data from the nine MMC

responsive genes (Table S5). Results from the class prediction

analysis of 1.2 mM MMC(T60) treated pools and individual

samples are shown in Table 2. Not surprisingly, the highest

accuracy (67%–100%) for predicting BRCA1, BRCA2 and

BRCAX mutation status of pools was achieved using microarray

data (Table 2). By comparison, performing the same analysis on

BRCA1, BRCA2 and BRCAX pools using QRT-PCR derived

expression data achieved an accuracy of 56%-78% in predicting

mutation type for each of the pooled RNAs (Table 2).

Prediction analysis with QRT-PCR data from the 27 individual

LCL samples used to derive the nine BRCA1, BRCA2, and

BRCAX associated pools correctly classified the individual

samples with up to 59% accuracy using the NC model (Table 2).

Similar to the results shown using QRT-PCR data from the RNA

pools, classification of the virtual pools was typically lower than

that seen with the microarray data but higher than that achieved

when analyzing the individual samples (Table 2). In addition to the

three-way comparison, we also performed a series of two-way

comparisons to explore the accuracy of the nine MMC responsive

genes to classify both pools and individual samples (Details shown

in Tables S6, S7, S8, S9, S10, S11). Notably, these genes were

sufficient to classify BRCA1 versus BRCA2 pools with 100%

accuracy, with a slightly reduced prediction accuracy of 83%

within the individual samples for all models (Table 2). Classifica-

tion was lowest when comparing BRCAX and BRCA1 samples

(56%–67%), or BRCAX and BRCA2 samples (44%–72%)

(Table 2). Although the DLDA classifier performed well using

microarray derived expression values from BRCA1, BRCA2 and

BRCAX pools, the model performed relatively poorly when

classifying individual samples with greater than 50% misclassifi-

Figure 3. The coefficient of variation (i.e. standard deviation divided by the mean) of the expression values for the nine MMC
responsive genes. For each gene, microarray and/or QRT–PCR derived data are compared across RNA pools, virtual pools and individual samples.
doi:10.1371/journal.pgen.1000850.g003

Table 2. Accuracy of class prediction based on the expression profile of nine MMC responsive genes.

Class Expression data sourcea Mean percent of correct classification

DLDA 1-NN NC SVM CCP

BRCA1 vs BRCA2 vs BRCAX Pools (Microarray) 100% 67% 89% – –

Pools (QRT-PCR) 56% 67% 78% – –

Virtual Pools (QRT-PCR) 78% 89% 67% – –

Samples (QRT-PCR) 48% 52% 59% – –

BRCA1 vs BRCA2 Pools (Microarray) 83% 100% 100% 100% 100%

Pools (QRT-PCR) 100% 100% 100% 83% 100%

Virtual Pools (QRT-PCR) 100% 100% 100% 100% 100%

Samples (QRT-PCR) 83% 83% 83% 83% 83%

BRCA1 vs BRCAX Pools (Microarray) 100% 100% 100% 100% 100%

Pools (QRT-PCR) 67% 83% 67% 83% 67%

Virtual Pools (QRT-PCR) 83% 100% 83% 100% 83%

Samples (QRT-PCR) 56% 56% 67% 56% 56%

BRCA2 vs BRCAX Pools (Microarray) 100% 50% 83% 83% 100%

Pools (QRT-PCR) 67% 67% 83% 50% 67%

Virtual Pools (QRT-PCR) 33% 83% 67% 67% 83%

Samples (QRT-PCR) 44% 72% 72% 61% 72%

a Pools, n = 9; Samples, n = 27. Abbreviations: CCP, Compound covariate predictor; DLDA, Diagonal Linear Discriminant Analysis; NC, Nearest Centroid; 1-NN, Nearest
Neighbour; SVM, support vector machine.
doi:10.1371/journal.pgen.1000850.t002
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cation in some analyses (Table 2). The best performing classifier of

individual samples was the Nearest Centroid model which gave

the highest prediction accuracy (59%) for BRCA1, BRCA2 and

BRCAX mutation type. Furthermore, this model successfully

classified the majority of individual samples from two-way

comparisons of BRCA1 versus BRCA2 (83%), BRCA1 versus BRCAX

(67%), and BRCA2 versus BRCAX (72%).

Discussion

We have recently reported a study using expression profiling of

IR treated LCLs to predict the mutations status of BRCA1 and

BRCA2 with the ultimate aim of predicting the significance of

unclassified variants of BRCA1 and BRCA2 [9]. Using similar

rationale, the present study explores the use of treatment regimes

that employ the DNA damaging agents, IR and MMC, with the

aim to increase the prediction accuracy from that reported by

Waddell et al, especially between BRCA1 and BRCA2 [9].

Furthermore, this study demonstrates the use of RNA pools to

compare the effect of five different IR or MMC treatment regimes

on the expression profiles of LCLs derived from BRCA1, BRCA2

and BRCAX cases.

Our results from analysis of RNA pools suggested that treating

LCLs with 1.2 mM MMC and measuring the gene expression

profiles 60 minutes post-treatment had the greatest potential to

discriminate BRCA1, BRCA2 and BRCAX mutation status. We

subsequently built a classifier using the expression of nine genes

that were responsive to the 1.2 mM MMC(T60) treatment regime.

Leave-one-out-cross-validation to the whole procedure was not

possible with the current study design given that the 9-gene

classifier was derived in two stages: 1) from the intersection of three

gene lists from three separate analyses, and 2) from only those

genes confirmed by QRT-PCR. We acknowledge that overfitting

could play a role in this study, and for this reason we used a

stringent filtering approach as outlined in Figure 1. The highest

prediction accuracy achieved using the 9-gene classifier for

individual BRCA1, BRCA2 and BRCAX samples (59%) was

similar to that previously reported by Waddell et al (62%) [9],

although due to differences in experimental design we cannot

exclude the possibility that the prediction accuracy from the latter

study may have been influenced by an experimentally induced

bias. Importantly, our results showed that after treatment with

MMC, BRCA1 and BRCA2 samples were shown here to be more

dissimilar than either BRCA1 or BRCA2 was from BRCAX.

Furthermore, in contrast to Waddell et al [9], BRCA1 and BRCA2

samples were classified with high accuracy, thus supporting the

notion that LCLs harboring pathogenic mutations in BRCA1 and

BRCA2 have a distinctive expression. Together these results

suggest that compared to BRCA1 and BRCA2 truncating mutation

carriers BRCAX comprises a genetically heterogeneous group that

requires further molecular-based stratification. This notion is also

consistent with linkage studies [16] as well as molecular studies

that suggested BRCAX tumors can be classified into at least five

molecular subtypes [17,18]. It is therefore reasonable to propose

that the accuracy of classifying pathogenic sequence variants in

LCLs by expression profiling will improve as molecular subgroups

within BRCAX individuals are identified.

An important method employed by this microarray-based study

was the use of RNA pooling primarily to reduce cost. Studies have

also used RNA pooling as a strategy to reduce the effects of

biological variation with the aim of detecting gene expression

profiles that differ between biological class [14,15]. A disadvantage

with pooling RNA is the impact it may have on statistical power in

identifying genes that are differentially expressed between two or

more classes [19,20]. This is because pooling RNA prevents both

accurate measurement of expression variation within the sample

population and identification of deviant samples. Pooling has been

shown to be most useful when the gene expression differences

between biological conditions are larger than differences intro-

duced by technical variability [21–23]. LCLs analyzed in the

present study showed relatively low biological variation between

pools for many of the genes analyzed, including the nine genes

found to be 1.2 mM MMC(T60)-responsive. Expression differences

between the biological classes studied were therefore more prone

to variance introduced at each step of the microarray experiment.

These small differences may account in part for the reduced

classification accuracy observed using expression values measured

by QRT-PCR as compared to the same analysis using microarray

data. However, it is worth noting that we generally observed good

correlation between the RNA pools and virtual pools for the

expression differences (Table S2), supporting the use of pooling

sample RNA for initial microarray experiments to direct

downstream analysis of individual samples.

Previous studies have suggested MMC may perturb the Fanconi

anemia pathway, in which BRCA2 plays a major role [24].

Interestingly, the protein encoded by one of the nine MMC

responsive genes, CASP3, is known to be activated by the Fanconi

anemia pathway as result of MMC or IR treatment [25]. The

nuclear lamina protein LMNA has also been shown to play a role

in ATR mediated DNA repair [26] and through this role may

interact with BRCA1 and/or BRCA2 in response to MMC

induced DNA damage [27]. It is unclear at this stage whether the

remaining seven MMC responsive genes play a role in the Fanconi

anemia pathway, and how they are functionally linked to BRCA1

and/or BRCA2. It is possible that unmapped BRCA1- and/or

BRCA2-related pathways are also being perturbed by MMC

treatment. An intriguing thought is the possibility that these genes

may act as potential modifiers of BRCA1 and/or BRCA2 associated

breast cancer risk. We have previously reported a novel method of

using expression arrays and the Cancer Genetic Markers of

Susceptibility (CGEMS) Breast Cancer Whole Genome Associa-

tion Scan to prioritize IR response genes that potentially modify

breast cancer risk in BRCA1 and BRCA2 carriers [28]. It is

interesting to note that of the nine 1.2 mM MMC(T60)-responsive

genes, GPM6A and CDCP1 are tagged with single nucleotide

polymorphisms that are shown by CGEMS to be associated with

breast cancer risk (P,0.05) (data not shown). Furthermore,

deletions of chromosome regions harboring GPM6 (4q34.2),

CASP3 (4q35.1), and P4HA2 (5q23.3) have been shown to be

associated with breast tumors from BRCA1 mutation carriers [29–

31,18]. Likewise, genomic regions harboring RARSL (6q15) and

FAM26F (6q22.1) have been frequently deleted in BRCA2

associated breast tumors [31]. These results give rise to an

intriguing possibility that GPM6, CASP3, P4HA2, RARSL and

FAM26F may also be targeted during breast tumorigenesis as the

tumor cells undergo genomic copy number change.

In summary, our results demonstrate the use of RNA pooling

and microarray profiling to assess LCLs derived from patients with

a strong family history of breast cancer. This study highlights the

novel use of MMC to perturb LCL expression profiles to identify

genes that correlate with BRCA1, BRCA2 and BRCAX mutation

status. This strategy proved promising for classifying mutation

status by gene expression profile, particularly between BRCA1 and

BRCA2, and prediction accuracy may be improved further by

exploring different MMC doses and/or analysis time points. We

propose that the pooling method is the most practical approach for

comparing a number of different treatment regimes across several

different sample sets. This strategy is likely to be very useful for

Expression Profiles Related to BRCA1/2 Mutations
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identifying treatments that induce the greatest expression changes

in LCLs after stimulation. Identifying genes whose expression is

associated with BRCA1, BRCA2 and BRCAX mutation status

would be a valuable method of screening individuals from multiple

case breast cancer families for the presence of pathogenic

mutations.

Materials and Methods

Ethics statement
Ethical approvals were obtained from the Human Research

Ethics Committees of the Queensland Institute of Medical

Research and the Peter MacCallum Cancer Centre. Written

informed consent was obtained from each participant.

Subjects and lymphoblastoid cell-lines
Epstein Barr virus-transformed lymphoblastoid cell-lines (LCLs)

were derived from breast cancer-affected women in multi-case

families recruited into the Kathleen Cuningham Foundation for

Research into Breast Cancer (kConFab) [32] and from healthy

female controls recruited as volunteers from the Queensland

Institute of Medical Research. A cohort of 36 LCLs were used in

this study, including nine LCLs from women carrying a

pathogenic mutation in BRCA1, nine LCLs from women carrying

a pathogenic mutation in BRCA2, nine LCLs from women from

breast cancer families that have tested negative for pathogenic

mutations in BRCA1 or BRCA2 (termed BRCAX), and nine LCLs

from healthy control females. Details of the mutations carried by

each of the LCLs used in the study are shown in Table S12.

LCL culture and treatment
LCLs were cultured in RPMI-1640 (Gibco Invitrogen) supple-

mented with 10% Serum Supreme (Lonza BioWhittaker), 1%

penicillin-streptomycin (Gibco Invitrogen). Cell number was

normalized to a density of 56105 cells/mL, approximately 4 h

prior to treatment. To extend a previous study where gene

expression levels were measured in LCLs after 10 Gy IR and 30

minute incubation [9], this study aims to identify IR responsive

genes after an equivalent IR dose but at 60 minutes post-

treatment. The MMC treatments were selected based on previous

reports that showed LCLs carrying a mutation in the BRCA2 gene

were sensitive to MMC at 0.05 mM - 1.2 mM after 1–2 hours

incubation [33,34]. In this study, LCLs from each of the BRCA1,

BRCA2 and BRCAX patient groups, and from healthy controls,

were irradiated at 10 Gy using a calibrated Cesium-137 source or

treated with MMC at two different doses (0.4 mM or 1.2 mM).

Cells were harvested prior to IR or MMC treatment (T0), at 1 h

after IR exposure, and at 1 and 2 h after exposure for MMC.

Microarray expression profiling
Total RNA was extracted and purified using the RNeasy Mini

Kit (Qiagen GmbH). Three RNA pools were generated within

each group (BRCA1, BRCA2, BRCAX and healthy controls) that

comprised RNA (1000 ng) from each of three individual samples.

RNA was quantified pre- and post-pooling using the NanoDrop

ND-1000 spectrophotometer (Thermo Scientific). A comparison of

estimated and observed RNA concentrations associated with each

pool is detailed in Table S13. This procedure was carried out for

each of the six treatment groups (including T0), thus generating a

total of 72 RNA pools. The Illumina TotalPrep RNA Amplifica-

tion Kit (Ambion) was used to amplify and biotinylate 450 ng of

total RNA from each of the pools. Biotinylated RNA was

hybridized to Illumina HumanRef8-V2 Beadchips (,22,000

probes), washed, and stained with streptavidin-Cy3 before

scanning with an Illumina BeadArray Reader. The RNA pools

were processed in random order to minimize any chance of

technical bias being introduced into the microarray data.

Duplicate arrays were performed for eight pools to test for

reproducibility, and a high correlation (r2.0.99) was measured

within each paired-pool comparison. Only one of each duplicated

sample was included in subsequent analyses.

Microarray data analysis
Raw data were processed using Illumina BeadStudio before

undergoing quantile normalization to account for systematic

variation between arrays. Microarray data are available via

GEO: GSE17764. Probes that obtained an Illumina detection

score greater than 0.99 in at least one of the arrays (n = 16,478

probes) were retained for further analysis. Subsequent statistical

analysis of genes differentially expressed between RNA-pools,

classified by mutation and treatment type, was carried out using

BRB-ArrayTools version 3.7.0 (http://linus.nci.nih.gov/BRB-

ArrayTools.html). Genes differentially expressed between BRCA1,

BRCA2 and BRCAX pools, and between treated and untreated

LCL pairs of healthy control pools were evaluated using three-

sample F-tests and paired T-tests, respectively (a= 0.05). Micro-

array expression profiles of the treated and untreated LCL pairs of

BRCA1, BRCA2 and BRCAX pools were compared using paired

T-tests and the number of false discoveries was restricted to 10%

at a 90% confidence level using methods described elsewhere

[35,36].

Quantitative reverse transcription–PCR
First-strand cDNA synthesis was performed using 450 ng of

total RNA and SuperScript III First-Strand Synthesis System for

RT-PCR (Invitrogen), according to manufacturer’s instructions.

Quantitative reverse transcription PCR (QRT-PCR) was per-

formed using Platinum SYBR Green qPCR SuperMix-UDG

(Invitrogen) and the LightCycler480 system (Roche Applied

Science). Briefly, each 15 mL reaction contained 1x Platinum

SYBR Green qPCR SuperMix-UDG, and 333 nM of each

primer. Primer sequences are listed in Table S14. For each gene,

primers sequences were designed to target at least one exon

detected by the Illumina HumanRef8-V2 Beadchip probe

sequence. QRT-PCR conditions were as follows: 50uC for 2

minutes, 95uC for 2 minutes, and then 45 cycles of 95uC for 20

seconds, 60uC for 15 seconds and 72uC for 20 seconds. All QRT-

PCR reactions were done in triplicate. The data were normalized

to the housekeeping gene EEF1A1 and log2-transformed for

further analysis.

Class prediction with microarray and QRT–PCR data
Class prediction was performed using Diagonal Linear Dis-

criminant Analysis [37], K-Nearest Neighbour Classification [37],

Nearest Centroid [38], Support Vector Machines (SVM) [39], and

Compound Covariate Predictor [40] algorithms in BRB-Array-

Tools version 3.7.0. The K-Nearest Neighbour method used one

nearest neighbour (k = 1), and the linear kernel method was used

for Support Vector Machines. The models incorporated MMC

responsive genes confirmed by QRT-PCR (see Results) that were

differentially expressed between BRCA1, BRCA2 and BRCAX

classes. Leave-one-out cross-validation method was used to

compute misclassification rate [41].

Supporting Information

Figure S1 Supervised cluster analysis of IR treated (IR T60) and

non-treated (T0) RNA pools from BRCA1 and BRCA2 mutation
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carriers, non-BRCA1/2 (BRCAX) carriers and healthy control

(HC) individuals using 19 genes (ATM, BRCA1, CDKN1A, CHEK1,

CHEK2, GADD45A, JUN, MAPK8, MDM2, MRE11A, MTTP,

NBN, NFKB1, NFKBIA, RAD50, RAD51, RBBP8, TP53, TP73)

comprising the ATM Signaling Pathway (Biocarta).

Found at: doi:10.1371/journal.pgen.1000850.s001 (0.11 MB TIF)

Table S1 List of genes and their associated significance levels

from three different analyses.

Found at: doi:10.1371/journal.pgen.1000850.s002 (0.52 MB

XLS)

Table S2 Correlation of QRT-PCR derived expression data

between pools and virtual pools.

Found at: doi:10.1371/journal.pgen.1000850.s003 (0.05 MB

DOC)

Table S3 Performance of classifier with BRCA1, BRCA2, and

BRCAX pools during cross-validation.

Found at: doi:10.1371/journal.pgen.1000850.s004 (0.05 MB

DOC)

Table S4 Predictions of classifiers for BRCA1, BRCA2, and

BRCAX virtual pools and samples.

Found at: doi:10.1371/journal.pgen.1000850.s005 (0.06 MB

DOC)

Table S5 Correct classification rates of BRCA1, BRCA2, and

BRCAX pools using microarray data from the various treatment

groups and the nine 1.2 mM MMC(T60)-responsive genes.

Found at: doi:10.1371/journal.pgen.1000850.s006 (0.03 MB

DOC)

Table S6 Performance of classifier with BRCA1 and BRCA2

pools during cross-validation.

Found at: doi:10.1371/journal.pgen.1000850.s007 (0.05 MB

DOC)

Table S7 Predictions of classifiers for BRCA1 and BRCA2 virtual

pools and samples.

Found at: doi:10.1371/journal.pgen.1000850.s008 (0.06 MB

DOC)

Table S8 Performance of classifier with BRCA1 and BRCAX

pools during cross-validation.

Found at: doi:10.1371/journal.pgen.1000850.s009 (0.05 MB

DOC)

Table S9 Predictions of classifiers for BRCA1 and BRCAX

virtual pools and samples.

Found at: doi:10.1371/journal.pgen.1000850.s010 (0.06 MB

DOC)

Table S10 Performance of classifier with BRCA2 and BRCAX

pools during cross-validation.

Found at: doi:10.1371/journal.pgen.1000850.s011 (0.05 MB

DOC)

Table S11 Predictions of classifiers for BRCA2 and BRCAX

virtual pools and samples.

Found at: doi:10.1371/journal.pgen.1000850.s012 (0.06 MB

DOC)

Table S12 Details of mutations carried by each LCL used in the

study and pool assignment.

Found at: doi:10.1371/journal.pgen.1000850.s013 (0.05 MB

DOC)

Table S13 Comparison of estimated and observed RNA

concentrations associated with each pool analysed.

Found at: doi:10.1371/journal.pgen.1000850.s014 (0.04 MB

DOC)

Table S14 QRT-PCR primer details.

Found at: doi:10.1371/journal.pgen.1000850.s015 (0.05 MB

DOC)
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