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Abstract 

Cyclic peptides formed by disulfide bonds have been one large group of common drug candidates in drug develop‑
ment. Structural information of a peptide is essential to understand its interaction with its target. However, due to the 
high flexibility of peptides, it is difficult to sample the near-native conformations of a peptide. Here, we have devel‑
oped an extended version of our MODPEP approach, named MODPEP2.0, to fast generate the conformations of cyclic 
peptides formed by a disulfide bond. MODPEP2.0 builds the three-dimensional (3D) structures of a cyclic peptide 
from scratch by assembling amino acids one by one onto the cyclic fragment based on the constructed rotamer and 
cyclic backbone libraries. Being tested on a data set of 193 diverse cyclic peptides, MODPEP2.0 obtained a consider‑
able advantage in both accuracy and computational efficiency, compared with other sampling algorithms including 
PEP-FOLD, ETKDG, and modified ETKDG (mETKDG). MODPEP2.0 achieved a high sampling accuracy with an average 
C α RMSD of 2.20 Å and 1.66 Å when 10 and 100 conformations were considered, respectively, compared with 3.41 
Å and 2.62 Å for PEP-FOLD, 3.44 Å and 3.16 Å for ETKDG, 3.09 Å and 2.72 Å for mETKDG. MODPEP2.0 also reproduced 
experimental peptide structures for 81.35% of the test cases when an ensemble of 100 conformations were consid‑
ered, compared with 54.95%, 37.50% and 50.00% for PEP-FOLD, ETKDG, and mETKDG. MODPEP2.0 is computationally 
efficient and can generate 100 peptide conformations in one second. MODPEP2.0 will be useful in sampling cyclic 
peptide structures and modeling related protein-peptide interactions, facilitating the development of cyclic peptide 
drugs.
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Introduction
In recent years, peptides as potential drugs have been 
continuously explored [1]. Compared with small mol-
ecules and antibodies, peptides have unique advantages, 
such as strong selectivity and high binding affinity with 
protein targets [2]. However, as the most common pep-
tides, linear peptides may have limitations like low bio-
availability and poor half-life in circulation [3, 4]. A 
common strategy to overcome such limitations is to 
cyclize the peptide [5, 6]. Most cyclic peptides are closed 
by connecting head to tail or with a disulfide bond. 

Compared with linear peptides, cyclic peptides are more 
stable and have higher binding affinity, higher specificity, 
and improved enzyme activity, making cyclic peptides 
desirable drug candidates [7]. So far, more than 40 cyclic 
peptides have been approved by the FDA and EMA for 
clinical treatment [8, 9].

Structural information of peptides is important for 
modeling protein-peptide interactions and thus the 
design of cyclic peptide drugs in drug development [10–
21]. However, peptides are highly flexible and exist as an 
ensemble of conformations in solution. Therefore, com-
pared with the conformer generation of small molecules 
[22–25], determining the conformations of peptides is 
much more challenging [26]. Some computational pep-
tide structure prediction methods have been developed 
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to model cyclic peptides, such as PEP-FOLD [27–29], 
Peplook [30], and PEPstrMOD [31]. These methods 
can generate a certain number of peptide conforma-
tions, which can be used for docking [13–15, 32]. How-
ever, the prediction accuracy of these algorithms is still 
not satisfactory. Sampling cyclic peptides by molecular 
dynamics (MD) simulations is another way. Especially, it 
is a powerful strategy to study the structure of a certain 
cyclic peptide through MD simulations with enhanced 
sampling, such as Replica Exchange Molecular Dynam-
ics (REMD) [33–35], Metadynamics [36, 37], and Bias-
Exchange Metadynamics [38]. However, sampling cyclic 
peptide conformations through MD simulations is time-
consuming and also difficult for non-experts.

Recently, we developed a fast de novo peptide mod-
eling algorithm named MODPEP [39] to sample the 
three-dimensional (3D) conformers of linear peptides. By 
taking advantage of the one-letter (or one-amino acid), 
two-letter (or two-amino acid), and helical conforma-
tions in the experimentally determined peptide struc-
tures [40], MODPEP achieved an excellent performance 
in both accuracy and speed and can generate several 
hundred reasonable peptide conformers within seconds 
[39]. Inspired by the therapeutic potential of cyclic pep-
tides, here we propose an extended version of MODPEP, 
named MODPEP2.0, to efficiently model the 3D struc-
tures of peptides cyclized through a disulfide bond. Our 
MODPEP2.0 algorithm first generates the cyclic part of 
the peptide based on a cyclic backbone library. Then, it 
builds the 3D structure of non-cyclic parts by adding 
amino acids one by one onto the cyclic fragment based 
on the constructed rotamer libraries. Our method was 
extensively tested on a dataset containing 193 cyclic pep-
tides with one disulfide bond, and compared with three 
other approaches, including PEP-FOLD, ETKDG [41], 
and modified ETKDG (mETKDG) [42].

Materials and methods
MODPEP2.0 is an upgraded version of MODPEP, devel-
oped to perform conformational sampling of cyclic pep-
tides formed by a disulfide bond. MODPEP2.0 samples 
cyclic peptides based on a cyclic backbone library. The 
non-cyclic residues are built from scratch one by one to 
the cyclic fragment using the similar strategy in MOD-
PEP for modeling linear peptides. It should be noted that 
our method can be used to model any cyclic peptides, but 
has certain requirements on the amount of template data 
for the cyclic backbone fragments. Here, we restricted 
MODPEP2.0 to model the cyclic peptides formed by a 
disulfide bond due to the abundance of cyclic fragments 
with one disulfide bond in the PDB. As more and more 
experimental cyclic peptide structures are solved, it is 

expected that this method will be applicable to other 
cyclic peptides with more disulfide bonds.

Cyclic backbone library construction
We have constructed a length-dependent cyclic back-
bone library for cyclic peptides sampling. Specifically, 
we searched the protein structures in the PDB to get 
cyclic fragments meeting the following criteria. First, 
there is only one disulfide bond between the head and 
tail of the fragment and no more Cysteine residue among 
the fragment. Second, the length of the cyclic fragment 
is between 3 and 30. Third, there is no missing residue 
and backbone atom in the fragment. Here, we kept all 
atoms of Cysteine residues and only the backbone atoms 
of other residues (Fig. 1). This is because the side chain 
of Cysteine is the key component of disulfide bonds, and 
the side chain of other residues can be rebuilt from our 
single-letter library in MODPEP [39]. According to the 
lengths of cyclic fragments, we have a total of 28 sub-
libraries corresponding to the lengths between 3 and 30. 
The structures in each sub-library were aligned according 
to their backbone atoms (Cα , N, C, and O), and clustered 
based on their backbone RMSDs (bRMSD). For different 
lengths of cyclic fragments, we chose different bRMSD 
cutoffs of 0.1√ncyc for clustering, where ncyc is the length 
of the cyclic fragment. The bRMSD cutoff ranges from 
0.17 Å for a fragment length of 3 and 0.55 Å for a frag-
ment length of 30. Therefore, longer fragments have 
a larger bRMSD cutoff, which can evade the defect of 
bRMSD because longer fragments usually lead to larger 
RMSD values [43], to a certain extent. For each cluster 
with a certain length, we selected the cluster centroid as 
the representative.

Cyclic peptide modeling
With the cyclic backbone library, MODPEP2.0 can auto-
matically model the three-dimensional structures of 
a cyclic peptide from a peptide sequence and the given 
disulfide bond information. According to the cyclic 
length, MODPEP2.0 first selects a backbone template 
from the corresponding sub-library based on the proba-
bilities, which depend on the sequence similarity between 
the target peptide and the backbone template as well as 
the resolution of the backbone template as follows,

where si is the sequence identity score based on blo-
sum62 matrix of the target sequence and the i-th back-
bone template, and ri is the resolution of the original 
protein that the i-th backbone template comes from. 
Here, the division by the corresponding maximum value 
is to normalize different contributions. We have changed 

(1)Pi = exp(ws ×
si

smax
+ wr ×

ri

rmax
)
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the residue name of nonstandard residue in the backbone 
template to the nearest standard residue if it is modi-
fied from a standard residue according to the annota-
tions in the PDB file, so the corresponding identity score 
mentioned in the following is based on the modified 
backbone sequences. The weight coefficients w of differ-
ent contributions are empirically determined. Since the 
sequence similarity is much more important than the res-
olution of the template in homology modeling, we have 
empirically set the weights ws and wr to 6.0 and −1.0 in 
this study, respectively. This will enable MODPEP2.0 to 
choose a backbone template with a better identity score 
and a better resolution. Then we normalized the prob-
ability so that the sum in a cluster is 1.0. After selecting a 
backbone, MODPEP2.0 builds the side chains of residues 
in the cyclic backbone by selecting a corresponding rota-
mer according to the target sequence from the single-
letter library mentioned in the previous version [39]. The 
residues outside the cyclic fragment were also built by 
the same way as in the previous study for modeling linear 
peptides [39]. While modeling a peptide, we also check 
the conformational diversity by calculating the backbone 
RMSDs between the newly-built model and all previously 
modeled peptide structures. If any RMSD is less than 1.0 
Å, the model will be discarded. The peptide conforma-
tion modeling process repeats until a specified number of 
models have been successfully constructed.

Test set
To construct a non-redundant test dataset of cyclic pep-
tides cyclized by a disulfide bond, we filtered the PDB 
entries with the following criteria. First, the lengths of 
peptides are between 3 and 30 residues. Second, the 
peptide contains only one disulfide bond and the cyclic 
fragment has more than two residues. Third, the pep-
tide contains standard amino acids only and there is 
no missing atom for the backbone. As of November 13, 
2020, the query yielded a total of 310 peptides. Then, 
we used CD-HIT [44] to cluster the sequences of these 
peptides. If two sequences are the same in a cluster, the 
structure with the better resolution was retained. This 
resulted in a total of 200 non-redundant peptides. To 
test the modeling ability of tested programs for cyclic 
peptides, the peptides with the cyclic length less than 
1/3 of the entire length were excluded from the test set. 
The final test data set consists of 193 cyclic peptides of 
length between 5 and 30. The detailed list is shown in 
Additional file  1: Table  S1. To reduce the impact from 
the templates, we have also removed the correspond-
ing sequences of the 193 cyclic peptides from the cyclic 
backbone library during the evaluation.

A new non-standard residue data set was constructed to 
evaluate the performance of our MODPEP2.0 method. We 
filtered the PepBDB [45] (2020-03-18) with the criteria as 
follows. First, the peptide contains at least one non-stand-
ard amino acid. The backbone atoms of the non-stand-
ard amino acids should be the same as those of standard 
amino acids, which are N, CA, C, and O. Second, the pep-
tide is cyclized through a disulfide bond and the sequence 
length of cyclic fragment exceeds 1/3 of the entire peptide 
sequence. We used CD-HIT to cluster the sequences of 
screened peptides with a sequence identity cutoff 80%, and 
kept the peptide with the better resolution in a cluster. The 
final non-standard test data set consists of 9 cyclic pep-
tides with lengths between 10 and 31. The detailed list is 
shown in Additional file 1: Table S2.

Evaluation criteria
We used the same evaluation criterion as that in MOD-
PEP [39] to assess the performance of tested approaches. 
Namely, the quality of a structure was measured by the 
root mean square deviation (RMSD) between the pre-
dicted model and the experimental structure of a peptide. 
The RMSD between the C α atoms of the peptide (cRMSD) 
was used as the primary evaluation parameter. The RMSD 
of backbone heavy atoms (bRMSD) and the RMSD of all 
heavy atoms (aRMSD) are additional quality assessment 
parameters to check the capability of MODPEP2.0 in 
modeling backbones and side chains. For an ensemble of 
N conformations of a peptide, the accuracy of this ensem-
ble was defined as the RMSD of the best conformation, i.e., 
the smallest RMSD value.

As for the criterion for successful predictions, we have 
used a size-dependent RMSD cutoff as follows [39],

where n is the length of the peptide and n0 was set to 3 
[39]. A successful prediction for a peptide of n residues 
was defined as a modeled peptide conformation with an 
RMSD within the cutoff of rmsd(n). In addition, unlike a 
large protein that has a relatively stable native structure, 
a short-length peptide normally may not have a unique 
structure because of its high flexibility. One important 
goal of peptide conformation generation is to generate an 
ensemble of peptide conformers that contains protein-
bound structures, so that the biologically active ones can 
be screened during ensemble docking. Therefore, the 
top-1 performance would be less relevant than the top-
n performance for a peptide conformation generation 
method in terms of ensemble docking. As such, we have 
used the best RMSD in an ensemble of peptide confor-
mations for each peptide to measure the performance of 
a peptide modeling approach in this study.

(2)rmsd(n) = 1.0× [1+ ln(n/n0)]
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Compared with other methods
Only a few approaches allow modeling cyclic peptides 
with user-specified sequences, so it is difficult to compare 
MODPEP2.0 with other methods. Here, we have selected 
a widely used de novo peptide structure prediction server 
PEP-FOLD [27] and a conformer generation algorithm 
RDKit [46, 47]. PEP-FOLD predicts the Structural Alpha-
bet (SA) probability profile based on an SVM model and 
performs peptide 3D generation through an enhanced 
greedy procedure, followed with a Monte-Carlo refine-
ment. Coarse-grained Cysteine interaction force field and 
all-atom minimization based on Gromacs facilitate the 
formation of disulfide bonds. RDKit is one of the best and 
the most widely-used conformer ensemble generators for 
small molecules, which contains different algorithms to 
generate conformers. We have used two different RDKit 
algorithms for extensive comparison and reference. One 
is ETKDG (Experimental-Torsion-Knowledge Distance 
Geometry), which is the default conformer generator in 
RDKit (version 2015.03) [41]. ETKDG is not specifically 
designed for cyclic peptides, but a general molecular 
conformer generator, which performs stochastic search 
and utilizes distance geometry with chemical knowledge 
and experimental torsional-angle preferences. In addi-
tion, a modified ETKDG has been developed in 2020 and 
incorporated into the 2020.03 release of RDKit, which 
specifically facilitates the sampling of macrocycles [42]. 
The modified ETKDG contains additional torsional-angle 
potentials for aliphatic cyclic bonds and uses elliptical 
geometry and customizable Coulombic interactions as 
heuristics to restrict the search space of macrocycles. 
The inclusion of customizable Coulombic interactions is 
computationally expensive. We only tested the combina-
tion of modified ETKDG with eccentricity constraints, 
which is referred to as mETKDG in this study. It should 
be noted that PEP-FOLD, ETKDG, and mETKDG are ab 
initio structure prediction methods, and MODPEP2.0 
relies on cyclic backbone templates. Therefore, the pre-
sent comparison is to provide a performance reference 
more than a comparison.

Results and discussion
MODPEP2.0 can model cyclic peptides with one 
disulfide bond efficiently. The capacity of MODPEP2.0 
in predicting near-native cyclic peptide structures was 
evaluated on a test set of 193 cyclic peptides and a data-
set of 9 cyclic peptides with non-standard amino acids 
mentioned above. For a fair evaluation, we have removed 
the corresponding sequence from the cyclic backbone 
library when modeling a tested peptide. For each peptide, 
we have generated up to 1000 conformations based on its 
sequence and the disulfide bond information.

Accuracy
We modeled the 3D structures of 193 cyclic peptides in 
the test set and calculated the RMSDs of modeled pep-
tide conformers. The test set was divided into five groups 
according to their sequence lengths, Fig.  2A shows the 
average accuracy as a function of ensemble size for the 
peptides of different length ranges. From the figure, we 
can find some notable features. First, MODPEP2.0 had 
a high prediction accuracy and a strong ability to sam-
ple cyclic peptides. The average accuracy for all peptides 
was below 2.0 Å for an ensemble of 100 conforma-
tions (Table  1). Second, it can be seen from Fig.  2 that 
the accuracy depends on the cyclic peptide length. The 
peptides within ten amino acids achieved an average 
cRMSD below 1.0 Å for an ensemble size of 100, indicat-
ing that MODPEP2.0 has an excellent performance on 
short cyclic peptide modeling. When the peptide lengths 
exceed 25 amino acids, the average cRMSD was about 
3.5 Å for an ensemble of 100 conformations. The main 
reason for large RMSDs of long peptides is that the con-
formational space grows exponentially with the number 
of rotatable bonds. In addition, it is worth noting that 
there were only six cases ranging from 25 to 30 residues 
in length (Table  1), so the data for this group may lack 
sufficient statistics. Third, the accuracy also depends on 
the ensemble size of generated conformations. The accu-
racy changed quickly at small ensemble sizes and then 
became stable at big ensemble sizes. Overall, when an 
ensemble of 500 conformations was sampled, the accu-
racy was relatively stable. MODPEP2.0 can achieve an 
accuracy of 2.20 Å on average for an ensemble size of 10, 
1.54 Å for an ensemble size of 200, 1.44 Å for an ensem-
ble size of 500, and 1.39 Å for an ensemble size of 1000. 
Therefore, an ensemble of 500 conformations seems to be 
a good choice considering both accuracy and computa-
tional resource. However, other peptide modeling meth-
ods like PEP-FOLD can only provide up to 100 structures 

Table 1  The average accuracy of MODPEP2.0 measured by C α 
(cRMSD), backbone (bRMSD), and all heavy atoms (aRMSD) for 
the peptides with different length ranges when an ensemble of 
100 conformations were considered for each peptide

Cyclic Peptide RMSD (Å)

Length Number cRMSD (Å) bRMSD (Å) aRMSD (Å)

(0, 10] 35 0.70 0.73 1.77

(10, 15] 83 1.28 1.24 2.59

(15, 20] 37 2.34 2.22 3.65

(20, 25] 32 2.64 2.52 4.00

(25, 30] 6 3.22 3.05 4.52

ALL 193 1.66 1.60 2.94
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for download. Therefore, for a fair comparison, we have 
used 100 as the default ensemble size in the following 
evaluations. Of course, users can choose a larger size of 
samples according to their needs to achieve more accu-
rate predictions.

To evaluate the robustness of MODPEP2.0, we also cal-
culated the RMSD of the backbone atoms (bRMSD) and 
the RMSD of all heavy atoms (aRMSD) for an ensemble 
of 100 conformations. The average RMSDs of different 
length ranges are shown in Table 1. It can be seen from 
Table 1 that bRMSD and aRMSD showed the same trend 
as cRMSD, gradually increasing as the length increases. 
The bRMSD and cRMSD are also comparable, while 
aRMSD is larger. This suggests that cRMSDs can show 
the deviation of the overall backbone, but cannot include 
the information of side chains. The larger RMSD caused 
by the side chain can be understood by noting that we 
did not consider the environment of the peptide, includ-
ing the solvents and proteins to bind. Different solvents 
and binding proteins will induce different side chain con-
formational changes. Therefore, it is difficult to predict 
the exact position of the side chain without considering 
the surroundings. For further research, users can use 
our predicted model as a starting point and consider the 
solvent and binding protein through molecular dynamic 
simulations or other methods.

Success rate
According to the RMSD cutoff defined in Eq. (1), we cal-
culated the success rate of MODPEP2.0 in peptide con-
former modeling. Here, the success rate is defined as the 
percentage of the peptides in the test set that includes 
at least one conformer within the corresponding RMSD 
cutoff for an ensemble of peptide conformations. The 
average success rates for different length ranges are listed 

in Table 2. It can be seen from the table that the success 
rate shows a similar trend to that of cRMSD. The average 
success rate for all peptides is 81.35% when an ensemble 
of 100 conformations were considered for a peptide. This 
indicates that MODPEP2.0 has a powerful cyclic peptide 
conformational sampling ability, and can reproduce near-
native structures for most cyclic peptides. The sampling 
capacity of MODPEP2.0 depends on peptide lengths. For 
cyclic peptides with lengths ranging from 5 to 15, MOD-
PEP2.0 achieved a success rate of more than 90% for an 
ensemble size of 100 conformations. For cyclic peptides 
with lengths ranging from 20 to 25, the average success 
rate decreased to 65.62% for an ensemble of 100 con-
formations. However, for cyclic peptides with lengths 
greater than 25, the average success rate is only 33.33% 
when an ensemble of 100 conformations are considered.

The success rate also depends on the ensemble size 
of sampled peptide conformations (Fig.  2B). The more 
conformations were generated, the higher the success 
rate was. On average, MODPEP2.0 gave a success rate of 
63.73% for an ensemble size of 10, 85.49% for an ensem-
ble size of 200, 89.64% for an ensemble size of 500, and 
90.16% for an ensemble of 1000 conformations. As the 
ensemble size increases, the success rate grows rapidly 
at the beginning, and then gradually stabilizes. The suc-
cess rate only increases slightly after more than 500 con-
formations. Therefore, MODPEP2.0 achieved a good 
balance between the ensemble size and the success rate 
when 500 conformations were considered. All groups 
showed a stable growth in the success rate except the 
last group of 25–30 residues, which exhibits a large rise 
at some points. The following reasons can explain this 
difference. First, there were only six peptide cases in the 
group of length ranging from 25 to 30. Therefore, even if 
one new test case succeeded, the success rate would show 

Table 2  The average accuracy and success rate by MODPEP2.0, PEP-FOLD, ETKDG, and mETKDG for the peptides with different length 
ranges when an ensemble of 100 conformations were considered for each peptide. The numbers in bold fonts indicate the best 
performances for the corresponding length ranges

aThe data of PEP-FOLD is based on the 182 cyclic peptides from 9 to 30 in length because PEP-FOLD cannot model 11 cyclic peptides with less than nine aa
bThe data of ETKDG is based on the 176 cyclic peptides modeled because ETKDG cannot model 17 cyclic peptides in the test set
cThe data of mETKDG is based on the 168 cyclic peptides modeled because mETKDG cannot model 25 cyclic peptides in the test set

Cyclic Peptide cRMSD (Å) Success Rate (%)

Length Number MODPEP2.0 PEP-FOLDa ETKDGb mETKDGc MODPEP2.0 PEP-FOLD ETKDG mETKDG

( 0, 10] 35 0.70 1.89 1.68 1.57 100.00 66.67 77.14 85.71

(10, 15] 83 1.28 2.19 2.70 2.44 90.36 65.06 38.55 56.10

(15, 20] 37 2.34 2.85 3.89 3.55 64.86 51.35 20.00 22.86

(20, 25] 32 2.64 3.65 5.98 4.69 65.62 28.12 0.00 0.00

(25, 30] 6 3.22 4.63 5.20 5.26 33.33 33.33 0.00 0.00

ALL 193 1.66 2.62 3.16 2.72 81.35 54.95 37.50 50.00
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a great change. In addition, the length of the non-cyclic 
part is long for some cases, such as 5XNM_U shown in 
Fig.  4. The conformational space of the peptide grows 
exponentially with the length increases. As such, it is 
more challenging to model long peptides. 

Examples of predicted models
Figure  3 shows several examples of peptide conforma-
tions that MODPEP2.0 successfully predicted. For these 
six examples, the accuracy was below 1.0 Å, resulting 
in high-quality predictions. These results suggested the 
accuracy of MODPEP2.0 in building cyclic peptide mod-
els. Nevertheless, MODPEP2.0 failed to sample correct 
conformations of some long cyclic peptides when an 
ensemble of 100 conformations were considered (Fig. 4). 
In addition to the large conformational space mentioned 
above, two additional factors may contribute to such fail-
ures. One is that there is no suitable cyclic backbone tem-
plate in the library. 1N2Y_A, 3MLS_P, and 2JRW_A are 
the examples of this reason. It can be seen from the figure 
that the cyclic fragment of predicted models cannot over-
lap well with the experimental structure. The cRMSD of 
the closest cyclic backbone in the library to the experi-
mental conformation is 3.73 Å for 1N2Y_A, 3.13 Å for 
3MLS_P and 3.94 Å for 2JRW_A. Even if the best cyclic 
backbone was selected for modeling, the RMSD of the 
cyclic part would exceed the cutoff of a successful predic-
tion, let alone considering the non-cyclic part of the pep-
tide. For peptides that do not have a suitable backbone 
in the library, we can further try to model them through 
MD simulations or other methods. The other factor is 
that the probability formula in Eq.  1 could not select a 
good template when an ensemble of 100 conformations 
were considered. For example, the smallest cRMSD of 
1I6Y_A in the cyclic backbone library is 1.94 Å  but the 
identity score between this template and the sequence 
of 1I6Y_A is only 18%, which was much smaller than the 
maximum score of 54% in the library. According to Eq. 1, 
the probability rank of this template is 241, making it dif-
ficult to pick this template when considering an ensemble 
size of 100 conformations.

Comparative evaluations
We compared our MODPEP2.0 with the other three 
approaches mentioned above, including PEP-FOLD, 
ETKDG, and mETKDG. For PEP-FOLD, we submit-
ted the different peptide sequences with the disulfide 
bond information in the test set to its online server and 
downloaded the modeled results. During the submis-
sion of PEP-FOLD jobs, all the default parameters were 
used except the “Type of simulation” where long simu-
lations correspond to 200 runs were chosen for more 
extensive sampling. The PEP-FOLD server only allows 

downloading up to 100 clustered peptide models. For 
a fair comparison, we used all 100 peptide models with 
their cluster rank based on sOPEP energies. As PEP-
FOLD can only process the disulfide bonded cyclic 
peptides with 9–36 amino acids, we could not have 
the PEP-FOLD results for 11 test cases with less than 9 
amino acids, yielding a subset of 182 cyclic peptides in 
the evaluation of PEP-FOLD. For RDKit, we downloaded 
the program of version 2015.03 from its official website 
and ran it locally using the default parameters. For each 
peptide, we generated 100 conformations for each tested 
peptide by RDKit. ETKDG could not model 17 peptides, 
resulting in a total of 176 peptides in the evaluation. 
For mETKDG, we downloaded the program of version 
2020.03 from its official website and ran it locally using 
the same parameters with eccentricity constraints in ref 
[42]. The total number of conformers generated is always 
divisible by 18, and we generated 108 conformers for 
each tested peptide. We only analyzed the results for the 
top 100 conformers. mETKDG could not model 25 pep-
tides, yielding a final set of 168 peptides. Therefore, the 
accuracy and the success rate for PEP-FOLD, ETKDG, 
and mETKDG were evaluated on 182, 176, and 168 pep-
tides, respectively.

Figure  5 shows the average accuracy and the average 
success rate of different methods as a function of ensem-
ble size on the test set. It can be seen from the figure that 
MODPEP2.0 achieved the best accuracy and the high-
est success rate among the four methods, followed by 
PEP-FOLD and ETKDG. When the ensembles of 10, 50, 
and 100 conformations were considered, MODPEP2.0 
obtained an accuracy of 2.20, 1.79, and 1.66 Å, compared 
with 3.41, 2.90, and 2.62 Å for PEP-FOLD, 3.44, 3.23, 
and 3.16 Å for ETKDG, 3.09, 2.79, and 2.72 Å for mET-
KDG, respectively. In addition, MODPEP2.0 achieved an 
average success rate of 81.35% when an ensemble of 100 
peptide conformations were considered, compared with 
54.95% for PEP-FOLD, 37.50% for ETKDG, and 50.00% 
for mETKDG.

We further compared the modeling capabilities of dif-
ferent methods for peptides with different length ranges 
when an ensemble of 100 conformations were considered 
(Table 2). The data in bold indicates the best performance 
for the corresponding length range. It can be seen from 
the table that MODPEP2.0 achieved the best perfor-
mance for peptides of all length ranges. As the peptide 
length increased, all methods had different degrees of 
decreases in accuracy and success rate, as expected. The 
peptides with 10–15 residues had the most number of 
83. In this length range, MODPEP2.0 achieved an aver-
age cRMSD of 1.28 Å, compared with 2.19 Å for PEP-
FOLD, 2.70 Å for ETKDG, and 2.44 Å for mETKDG. 
Correspondingly, MODPEP2.0 had a high success rate 
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of 90.36% for modeling peptides of this length range, 
which is considerably higher than 65.06% for PEP-FOLD, 
38.55% for ETKDG, and 56.10% for mETKDG. For the 
six difficult targets whose lengths range from 25 to 30, 
although MODPEP2.0 and PEP-FOLD had the same 
success rate of 33.33%, the average accuracy of MOD-
PEP2.0 was better than PEP-FOLD. Overall, MODPEP2.0 
obtained an accuracy of 1.66 Å and a success rate of 

81.35% in peptide conformer generation for the test set of 
193 cyclic peptides.

In addition, the accuracy of the predicted conforma-
tions for each test case was also compared between 
MODPEP2.0 and the other methods (PEP-FOLD, 
ETKDG, and mETKDG). As shown in Fig.  6, MOD-
PEP2.0 outperformed the other three methods on the 
benchmark and obtained a smaller cRMSD for most of 

Table 3  The average accuracy and success rate of MODPEP2.0 with different sequence identity cutoffs between the modeled peptide 
and the cyclic backbone library when an ensemble of 100 conformations were considered for a peptide

Sequence identity cutoff (%)

100 90 80 70 60 50 40

cRMSD (Å) 1.66 1.70 1.74 1.87 1.92 1.99 2.09

Success Rate (%) 81.35 79.79 79.79 78.76 76.68 74.35 74.32

Fig. 1  Examples of the cyclic backbone sub-libraries, where only the first 100 conformations are shown. The lengths of backbones are 6 (A), 12 (B), 
and 20 (C), respectively

Fig. 2  The average accuracy (A) and the average success rate (B) by MODPEP2.0 for peptides with different length ranges on the test set as a 
function of ensemble size. The detailed cRMSDs of predicted models for each peptide are listed in Additional file 1: Table S3
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Fig. 3  Six examples of successfully predicted models by for cyclic peptides when an ensemble of 100 conformations were considered. The 
predicted model (blue) is superimposed on the experimental structure (yellow). The corresponding peptide PDB code_chain ID is given above the 
structure with peptide length and corresponding accuracy in parentheses

Fig. 4  Six examples of failed models for cyclic peptides when an ensemble of 100 conformations were considered. The predicted model (blue) is 
superimposed on the experimental structure (yellow). The corresponding peptide PDB code_chain ID is given above the structure with peptide 
length and corresponding accuracy in parentheses
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the test cases than the other three methods. Specifically, 
MODPEP2.0 was better than PEP-FOLD for 142 cases, 
better than ETKDG for 161 cases, and better than mET-
KDG for 149 cases. Furthermore, it can be seen from 
Fig.  6 that there were many points distributed on the 
upper triangular region, suggesting the powerful ability 
of MODPEP2.0 in generating conformers of cyclic pep-
tides with disulfide bonds.

Impact of template similarity
We first explored the impact of sequence similarity 
between the modeled peptide and the cyclic backbone 
library. We removed the templates in the library whose 
sequence identity is greater or equal to a cutoff when 
modeling a peptide. A lower sequence identity cutoff cor-
responds to less similar sequences in the cyclic backbone 
library to the target. The cutoff of 100% returns to the 
results discussed above. Table 3 lists the average accuracy 
and success rate of MODPEP2.0 with different sequence 
identity cutoffs in the library. It can be seen from the 
table that the performance of MODPEP2.0 depends on 
the sequence similarity, gradually deteriorates as the 
sequence identity cutoff decreases. However, MOD-
PEP2.0 still performed well at low sequence identity cut-
offs. MODPEP2.0 achieved an average cRMSD of 1.74 
Å at a sequence identity cutoff of 80%, 1.92 Å at a cut-
off of 60%, and 2.09 Å at a cutoff of 40%, corresponding 
to success rates of 79.79%, 76.68%, and 74.32%, respec-
tively. It is also encouraging to notice that MODPEP2.0 
still performed significantly better than other methods 
mentioned above under different sequence identity cut-
offs. This phenomenon may be attributed to both the low 
sequence-structure conservation for peptides and the 
structural diversity in the cyclic backbone library, which 
would facilitate the modeling of novel peptides.

Next, we examined the impact of the structural simi-
larity between the modeled peptide and the cyclic back-
bone library. Figure 7 shows the cRMSD of the modeled 
peptide structure with respect to the crystal conforma-
tion as a function of the similarity (cRMSD) to the closest 

Fig. 5  Comparison of the average accuracy (A) and the average success rate (B) between MODPEP2.0 and other methods (PEP-FOLD, ETKDG, 
mETKDG) as a function of ensembles size. The data of PEP-FOLD, ETKDG, and mETKDG are based on 182, 176, and 168 peptides that can be 
modeled, and MODPEP2.0 are based on the complete test set of 193 peptides

Fig. 6  Comparison of the cRMSDs of predicted models between 
MODPEP2.0 and three other methods (PEP-FOLD, ETKDG, and 
mETKDG) on the test set of 193 cyclic peptides when an ensemble of 
100 conformations were considered. The data of PEP-FOLD, ETKDG, 
and mETKDG are based on 182, 176, and 168 peptides that can be 
modeled
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cyclic fragment in the library. It can be seen from the 
figure that the modeled peptides tend to have a better 
accuracy for a better template and most data points are 
located near the diagonal, which means that MODPEP2.0 
is able to model comparably accurate structures to their 
closest cyclic fragments in the library for most of the test 
cases. However, there are a few cases like 5XNM_U and 
3ZLD_B that have a significantly higher cRMSD (>3.0 Å) 
than the closest cyclic fragments in the library ( < 0.5Å). 
This can be understood because a peptide often contains 
both cyclic and non-cyclic parts, where the accuracy of 

cyclic parts tends to depend very much on the similarity 
to the existing fragments in the library, but the modeling 
of non-cyclic parts is more like a de novo way. For exam-
ple, the peptides 5XNM_U and 3ZLD_B have 25 and 30 
residues, but their cyclic parts only contain 10 and 12 res-
idues, respectively (Additional file  1: Table  S3). Encour-
agingly, despite their long lengths, these two peptides still 
achieved an accuracy of 4.67 Å and 3.7 Å, respectively. 
These results demonstrate the efficiency of our MOD-
PEP2.0 utilizing the template fragments in the library.

Performance on cyclic peptides with non‑standard 
residues
We further tested MODPEP2.0 on a data set with non-
standard residues. Figure  8 shows the average accu-
racy and success rate as a function of ensemble size. 
PEP-FOLD does not support modeling of non-standard 
amino acids, so there are no PEP-FOLD data on the 
non-standard residue test set. From the figure, we can 
observe similar notable features to those in Fig. 5. When 
the ensembles of 10, 50, and 100 conformations were 
considered, MODPEP2.0 obtained an accuracy of 1.65, 
1.52, and 1.50 Å, compared with 3.61, 3.51, and 3.46 Å 
for ETKDG, 3.36, 3.01, and 2.93 Å for mETKDG, respec-
tively. In addition, MODPEP2.0 achieved an average suc-
cess rate of 77.78% when an ensemble of 100 peptide 
conformations were considered, compared with 22.22% 
for ETKDG, and 44.44% for mETKDG. Overall, MOD-
PEP2.0 achieved roughly a similar prediction accuracy 
and success rate on the test sets of cyclic peptides with/
without non-standard residues when an ensemble of 100 

Fig. 7  The best cRMSD of the modeled peptide structure with 
respect to the crystal conformation as a function of the similarity 
(cRMSD) to the closest cyclic fragment in the library on the test set of 
193 cyclic peptides when an ensemble of 1000 conformations were 
considered. The red line stands for the function of y = x

Fig. 8  Comparison of the average accuracy (A) and the average success rate (B) between MODPEP2.0 and two RDKit methods (RDKit and mETKDG) 
as a function of ensembles size on a test set of 9 cyclic peptides with non-standard residues



Page 11 of 12Tao et al. Journal of Cheminformatics           (2022) 14:26 	

conformations were considered, indicating the robust-
ness of MODPEP2.0.

Conclusion
Cyclic peptides as drugs for various diseases have 
recently attracted a great attention. It is important to 
understand the relationship between the sequence 
and structure of peptides. Meeting the need, we have 
extended our MODPEP method to MODPEP2.0 to 
model the 3D structure of cyclic peptides formed by 
a disulfide bond. MODPEP2.0 samples cyclic peptide 
conformations based on the cyclic backbone library 
derived from the PDB. The non-cyclic residues are 
assembled from scratch one by one to the cyclic frag-
ment. MODPEP2.0 is as fast as MODPEP and can gen-
erate 100 peptide conformations within one second. 
Being tested on a diverse benchmark of 193 cyclic pep-
tides, MODPEP2.0 obtained an average accuracy of 
1.66 Å and an average success rate of 81.35% in predict-
ing experimentally observed peptide structures when 
an ensemble of 100 conformations were considered. As 
for cyclic peptides with non-standard residues, MOD-
PEP2.0 achieved an average accuracy of 1.50 Å and an 
average success rate of 77.78% on a test set of 9 cyclic 
peptides with non-standard residues. MODPEP2.0 
was also compared with three other methods, includ-
ing PEP-FOLD, ETKDG, and mETKDG, and showed an 
overall best performance among these approaches. It is 
anticipated that MODPEP2.0 will facilitate the ensem-
ble docking, help researchers discover new peptide 
therapeutics, and understand the sequence-structure 
relationship of cyclic peptides.
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