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The most common genetic cause of amyotrophic lateral sclerosis (ALS) and
frontotemporal dementia (FTD) is a hexanucleotide expansion in the chromosome 9
open reading frame 72 gene (C9ORF72). This hexanucleotide expansion consists of
GGGGCC (G4C2) repeats that have been implicated to lead to three main modes of
disease pathology: loss of function of the C9ORF72 protein, the generation of RNA
foci, and the production of dipeptide repeat proteins (DPRs) through repeat-associated
non-AUG (RAN) translation. Five different DPRs are currently known to be formed:
glycine–alanine (GA) and glycine–arginine (GR) from the sense strand, proline–alanine
(PA), and proline–arginine (PR) from the antisense strand, and glycine–proline (GP) from
both strands. The exact contribution of each DPR to disease pathology is currently
under intense scrutiny and is still poorly understood. However, recent advances in both
neuropathological and cellular studies have provided us with clues enabling us to better
understand the effect of individual DPRs on disease pathogenesis. In this review, we
compile the current knowledge of specific DPR involvement on disease development
and highlight recent advances, such as the impact of arginine-rich DPRs on nucleolar
protein quality control, the correlation of poly-GR with neurodegeneration, and the
possible involvement of chimeric DPR species. Further, we discuss recent findings
regarding the mechanisms of RAN translation, its modulators, and other promising
therapeutic options.

Keywords: amyotrophic lateral scelerosis, C9ORF72 ALS/FTD, dipeptide repeat proteins (DPRs), RAN translation,
neurodegeneration, motor neuron

INTRODUCTION

Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease characterized by
the progressive degeneration of upper and lower motor neurons leading to hyperreflexia, spasticity,
fasciculation, and muscle atrophy (Van Langenhove et al., 2012). Frontotemporal dementia (FTD)
is another neurodegenerative disease that primarily affects the frontal and temporal lobes of the
brain, resulting in progressive changes in behavior, personality, and/or speech (Van Langenhove
et al., 2012; Strong et al., 2017). Based on overlapping clinical, genetic, and epidemiological data,
ALS and FTD have recently been recognized as two ends of the same disease spectrum (Neumann
et al., 2006; Lillo and Hodges, 2009). Approximately 15% of FTD patients show symptoms of ALS
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disease, whereas up to 50% of ALS patients have symptoms of
FTD (Ng et al., 2014). In 2006, for the first time, both ALS and
FTD were linked to chromosome 9 (Morita et al., 2006; Vance
et al., 2006). Later in 2011, a hexanucleotide repeat expansion
in the non-coding region of the C9ORF72 gene was identified
as a disease mutation common between both neurodegenerative
diseases. This hexanucleotide repeat expansion, consisting of
GGGGCC (G4C2) repeats, can be found in the first intron in
the reading frame 72 of chromosome 9 (C9ORF72) in the non-
coding region between exons 1 and 1b (DeJesus-Hernandez et al.,
2011; Renton et al., 2011). Healthy individuals harbor less than 30
of these G4C2 repeats, while ALS/FTD patients with C9ORF72
mutations carry 400 to several thousand G4C2 repeats (Taylor
et al., 2016). Compared to the mutation in the SOD1 gene, which
was identified as the first causative gene for familial ALS, the
expansion in the C9ORF72 gene is twice as common in familial
ALS patients (Renton et al., 2011).

To date, three different non-mutually exclusive mechanisms
have been proposed to induce neurodegenerative changes
through the G4C2 repeat expansion within the C9ORF72 gene
(Figure 1). The first mechanism involves the loss-of-function

(LOF) of the C9ORF72 gene due to the hexanucleotide
repeat expansion (reviewed by Braems et al., 2020). Evaluation
of postmortem tissue of C9ORF72 ALS/FTD patients has
identified a significant decrease in total C9ORF72 transcript
levels (DeJesus-Hernandez et al., 2011; van Blitterswijk et al.,
2015) and C9ORF72 protein levels (Waite et al., 2014; Frick
et al., 2018) compared to healthy controls. Reduction of
both mRNA transcript and protein levels was also observed
in iPSC-derived motor neurons from C9ORF72 ALS/FTD
patients,(Almeida et al., 2013; Shi et al., 2018) further supporting
decrease in C9ORF72 level due to hexanucleotide repeat
expansion. Although reduced levels of C9ORF72 protein cause
motor neuron degeneration in Caenorhabditis elegans (Ciura
et al., 2013) and zebrafish (Therrien et al., 2013), loss of
C9ORF72 in mice did not elicit the ALS or FTD phenotype
(Koppers et al., 2015). However, a reduction of C9ORF72
levels exacerbated neurodegeneration caused by the gain of
toxicity of the repeat expansion (Zhu et al., 2020) and
dipeptide repeat proteins (DPRs) (Shi et al., 2018). C9ORF72
protein functions as a RabGEF (Rab guanine nucleotide
exchange factor) and is involved in vesicle trafficking and

FIGURE 1 | C9ORF72 repeat associated disease mechanisms. The G4C2 repeat expansion can cause C9ORF72 ALS/FTD through three proposed mechanisms.
(A) Reduction in C9ORF72 protein levels. (B) RNA foci formation resulting in sequestration of different RNA binding proteins. (C) Accumulation of dipeptide repeat
proteins (DPRs) generated through RAN translation.
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autophagy (Levine et al., 2013; Farg et al., 2014; Sullivan
et al., 2016), implying that loss of C9ORF72 results in
compromised autophagolysosomal clearance of toxic DPRs
and misfolded proteins, which then leads to neuronal toxicity
(Sellier et al., 2016; Shi et al., 2018).

The second pathogenic mechanism involves a gain-of-
function (GOF) due to the formation of toxic RNA foci from
repeat expansion transcripts (reviewed by McEachin et al.,
2020b). RNA foci are a pathological hallmark of C9ORF72
ALS/FTD. Both sense and antisense RNA foci have been detected
in multiple regions of central nervous system in C9ORF72
ALS/FTD patients and in different models of C9ORF72 ALS/FTD
(DeJesus-Hernandez et al., 2011; Gendron et al., 2013; Batra
and Lee, 2017). Various studies have shown that RNA foci are
able to sequester functionally important RNA binding proteins
(RBPs), potentially altering their localization and function (Xu
et al., 2013; Zhang et al., 2015). Furthermore, RNA foci have
been shown to correlate with the mislocalization of TDP-43 in
both C9ORF72 ALS/FTD patients and mouse models (Chew
et al., 2015; Aladesuyi Arogundade et al., 2019). In addition,
the use of antisense oligonucleotides (ASOs) targeting the repeat
expansion was able to mitigate C9ORF72 ALS/FTD-related
pathology, highlighting the importance of RNA foci in C9ORF72
ALS/FTD pathogenesis (Donnelly et al., 2013; Lagier-Tourenne
et al., 2013).

The third mechanism is a GOF due to the formation and
accumulation of DPRs via repeat-associated non-AUG (RAN)
translation of the hexanucleotide repeat sequences from both
sense and antisense strands (reviewed by Freibaum and Taylor,
2017) (elaborated in this review). The involvement of both LOF
and GOF in C9ORF72 ALS/FTD pathophysiology has been
comprehensively investigated using different model systems.
Although more than one of these mechanisms may contribute to
C9ORF72 ALS/FTD pathology, the presence of DPRs in neurons
implies that they likely play a crucial role in disease progression.
However, the precise involvement of each DPR species in
C9ORF72 ALS/FTD pathogenesis remains unresolved, further
complicated by a recent finding implicating chimeric DPRs
(cDPRs) in C9ORF72 ALS/FTD pathology. This review compiles
the current knowledge about different DPRs and the recently
identified cDPRs and discusses their relative contribution to
C9ORF72 ALS/FTD pathogenesis.

DPRS, THE GAIN OF TOXIC FUNCTION:
CLUES FROM DIFFERENT MODEL
SYSTEMS

DPR production is facilitated by non-canonical RAN translation,
a mechanism first described in spinocerebellar ataxia type 8 (SCA
8) and myotonic dystrophy type 1 (DM1) (Zu et al., 2011). This
finding was also quickly confirmed in many other microsatellite
disorders and takes place in the absence of an AUG start codon
and can occur in multiple reading frames. In C9ORF72 ALS/FTD,
a hexanucleotide expansion of GGGGCC (G4C2) in the first
intron of chromosome 9 produces five distinct DPRs from
sense [poly-GA (glycine–alanine), poly-GP (glycine–proline),

poly-GR (glycine–arginine) and antisense poly-GP (glycine–
proline), poly-PR (proline–arginine), and poly-PA (proline–
alanine)] (Mori et al., 2013; Zu et al., 2013) strands. These DPRs
are amyloidogenic and accumulate in different parts of the central
nervous system of C9ORF72 ALS/FTD patients (Ash et al., 2013;
Mori et al., 2013; Zu et al., 2013). However, the pathogenic
contribution of DPR-associated toxicity to disease progression is
still unknown. In addition, the relative pathogenic contribution
of each individual DPR remains unclear. Nevertheless, our
understanding of DPR-related toxicity has been augmented
through the use of codon-optimized constructs expressing each
DPR independent of G4C2 repeats (May et al., 2014; Mizielinska
et al., 2014; Jovicic et al., 2015). Although poly-GA is the
most abundant DPR localizing in p62-positive inclusions in
postmortem tissues from C9ORF72 ALS/FTD patients, multiple
lines of evidence suggest that arginine-rich DPRs are the most
toxic of the five DPRs in both in vitro and in vivo disease models
(May et al., 2014; Mizielinska et al., 2014; Moens et al., 2019; Cook
et al., 2020; Sun et al., 2020).

NON-ARGININE DPRS

Poly-GA is the most easily detected DPR in cytoplasmic
inclusions (May et al., 2014; Zhang et al., 2014) not only
due to its high translation efficiency, but also due to the
predicted structural properties of the poly-GA peptide (Chang
et al., 2016). Indeed, evidence suggests that poly-GA tends
to aggregate into amyloid-like fibrils, which form a parallel
β-sheet structure (Chang et al., 2016; Edbauer and Haass, 2016;
Brasseur et al., 2020). Due to the biophysical similarities between
poly-GA aggregates and Alzheimer’s disease–associated amyloid-
beta peptides, it is proposed that poly-GA DPRs may trigger
TDP-43 pathology in C9ORF72 ALS/FTD in the same manner
as the amyloid-beta neurodegeneration cascade in Alzheimer’s
disease (Edbauer and Haass, 2016). Similar to poly-GA toxicity
observed in cell cultures, poly-GA–overexpressing mice display
motor and cognitive deficits combined with cerebellar atrophy,
astrogliosis, and TDP-43 pathology (Chew et al., 2015; Chang
et al., 2016; Khosravi et al., 2020). Furthermore, consistent
with its biophysical properties, poly-GA induces cellular toxicity
by sequestering different proteins such as Unc119, which
functions to regulate axonal protein trafficking and synaptic
signal transduction (Maduro et al., 2000), or by directly
inhibiting proteasomal activity. May et al. (2014) showed that
sequestration of Unc119 by poly–GA inhibited its function
and contributed to selective neuronal vulnerability in C9ORF72
ALS/FTD. Interestingly, this study reported that proteasomal
proteins were not sequestered by poly-GA and that their
activity was not affected in vitro (May et al., 2014). Contrarily,
other groups have shown that poly-GA directly associates
with and inhibits the proteasome, thereby promoting TDP-
43 pathology (Zhang et al., 2014; Khosravi et al., 2020). The
proteasomal subunit PSMC4 was found to colocalize with GA
aggregates in poly-GA overexpressing mice and in C9ORF72
ALS/FTD patient tissue (Khosravi et al., 2020). Despite the
binding partners of poly-GA remaining unclear, other studies
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report that poly-GA promotes endoplasmic reticulum (ER)
stress and activation of caspase 3–related apoptotic pathways,
as well as proteasome inhibition in vitro (May et al., 2014;
Zhang et al., 2014; Khosravi et al., 2020), leading to reduced
dendritic branching in neuronal cultures overexpressing poly-
GA compared to control cultures. Further evidence of poly-GA’s
proteasomal involvement can be seen by the overexpression
of the proteasome protein HR3B, which partially rescues poly-
GA–induced toxicity (Chew et al., 2015). In addition, the
promotion of proteasome activity through rolipram treatment or
the overexpression of the proteasome protein PSMD11 rescued
poly-GA aggregation and TDP-43 pathology in vitro (Khosravi
et al., 2020).

Besides protein sequestration and proteasomal inhibition,
poly-GA expression was found to decrease the efficiency of DNA
double-strand break repair mechanisms, specifically impacting
non-homologous end joining, single-strand annealing, and
microhomology-mediated end joining processes (Andrade et al.,
2020). Furthermore, mobile poly-GA aggregates can be found in
the axons and dendrites of primary cortical and motor neurons
overexpressing the poly-GA DPR (Jensen et al., 2020). Evidence
indicates that neurons with poly-GA aggregates have increased
Ca2+ influx in response to an external stimulus; nevertheless,
the synaptic release is abrogated in these neurons. This study
proposes that poly-GA aggregates lead to synaptic dysfunction by
reducing the levels of synaptic vesicle–associated protein 2 (SV2),
an essential component of synaptic release machinery that forms
complexes with other vesicle components such as synaptophysin
(Mutch et al., 2011). Indeed, it was confirmed that SV2 levels
are reduced in induced pluripotent stem cell (iPSC) lines of
C9ORF72 ALS patients and in the spinal cord and neuromuscular
junctions of poly-GA–overexpressing transgenic mice. Moreover,
restoring the levels of SV2 in primary cortical and motor neurons
rescues synaptic function and poly-GA–induced cellular toxicity
(Mutch et al., 2011). Although the mechanisms by which poly-GA
induces toxicity are still disputed and potential novel pathogenic
mechanisms are still being uncovered, poly-GA DPRs appear
to be less toxic than arginine-containing DPRs (Mizielinska
et al., 2014; Wen et al., 2014; Freibaum et al., 2015). Hence,
despite being the most readily detected DPR in inclusions, it is
not clear whether poly-GA is toxic at physiologically relevant
levels.

The DPRs poly-GP, poly-PA, and poly-GA are all uncharged;
however, unlike poly-GA, the two former DPRs have a flexible
coil structure and thus are unable to aggregate by themselves
(Lee et al., 2016; Freibaum and Taylor, 2017). Consistent with
the predicted biophysical proteins of such structures, these DPRs
interact with fewer intracellular proteins when compared to
other DPR species (Lee et al., 2016), suggesting that poly-GP
and poly-PA are probably the least toxic species. Indeed, these
DPRs when expressed in Drosophila models were not toxic
(Mizielinska et al., 2014; Wen et al., 2014; Freibaum et al.,
2015; Lee et al., 2016). Contrarily, Yamakawa et al. (2015) found
that, in vitro, poly-GP increases cell death in the presence of
the proteasome inhibitor MG-132 and inhibits degradation of
the reporter construct Ub-G76V-GFP, which was used to assay
the activity of the ubiquitin-proteasome system. Poly-GP levels

detected in the cerebrospinal fluid (CSF) of both asymptomatic
C9ORF72 mutation carriers and symptomatic cases revealed that
poly-GP concentration in the CSF is stable during disease, and
its levels do not correlate with disease onset and clinical scores.
Despite this, CSF poly-GP levels have the potential to be a useful
marker to distinguish C9ORF72-associated disease from other
neurodegenerative diseases and may aid in the identification
of C9ORF72 mutation carriers (Gendron et al., 2017; Lehmer
et al., 2017). Additionally, an ASO targeting the G4C2 transcript
in a cell and a mouse model of C9ORF72 ALS/FTD resulted
in decreased poly-GP levels and inhibited DPR-associated toxic
effects. This suggests that CSF poly-GP levels could be reliably
used to assess the effectiveness of G4C2-RNA therapies as a
surrogate way to measure total DPR load (Gendron et al., 2017).

ARGININE-RICH DPRS

Our current concept of toxicity caused by the DPRs poly-GR
and poly-PR has evolved dramatically in recent years, with
the focus shifting toward toxic mechanisms elicited by their
highly interactive nature. Many disease models that focus on
the overexpression of different DPR species have shown that
poly-GR and poly-PR are toxic to HEK293T cells, primary
neuronal cultures, and iPSC derived cortical and motor neurons
(Wen et al., 2014; Tao et al., 2015; Lee et al., 2016), while the
expression of the other DPRs is not toxic (Mizielinska et al.,
2014; Wen et al., 2014; Freibaum et al., 2015; Lee et al., 2016).
This can partly be explained by their unique positive charge
and high polarity, conferred by arginine. Poly-GR and poly-PR
are noticeably more hydrophilic and less prone to aggregation
than poly-GA (Kwon et al., 2014). Both DPRs can also be easily
transported into the nucleus, as they possibly mimic nuclear
localization signal domains that tend to be rich in arginine
(Kwon et al., 2014). Indeed, in a landmark study by Kwon
et al. (2014), it was shown that exposing cells to synthetic poly-
PR and poly-GR enabled the arginine-rich DPRs to enter the
nucleus, bind to nuclear puncta, disrupt ribosomal RNA (rRNA)
production, and drastically reduce cell viability in U2OS cells.
They thus offered an alternative explanation of poly-GR/PR–
generated toxicity, as previous studies focused on the postulated
toxicity of mainly cytoplasmic poly-GR and poly-PR aggregates,
both in vitro and in patient tissue (Ash et al., 2013; Mori et al.,
2013; Zu et al., 2013). Separately in 2015, multiple studies were
published focusing on the low complexity sequence domains
(LCDs) of RBPs such as hnRNPA1 (Molliex et al., 2015) and
FUS (Murakami et al., 2015; Patel et al., 2015) and demonstrated
both their ability in mediating the liquid–liquid phase separation
(LLPS) of stress granules and their propensity, if mutated, to
undergo irreversible liquid–solid phase transitions. The concepts
of poly-GR– and poly-PR–mediated toxicity and RBPs capable
of facilitating LLPS were then elegantly combined to show that
arginine containing DPRs are able to interact with the LCDs of
RBPs and significantly alter the dynamics of LLPS of multiple
membrane-less organelles (Lee et al., 2016). These findings offer
a mechanistic framework to account for disrupted nucleolar
transport and nuclear pore function in C9ORF72 ALS/FTD
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(Freibaum et al., 2015). Furthermore, these observations opened
up the exploration of diverse mechanisms by which arginine
containing DPRs are able to perturb the physiological LLPS
of different membrane-less organelles, such as stress granules
(Boeynaems et al., 2017; Zhang et al., 2018) and the nucleolus
(Lee et al., 2016; White et al., 2019) in C9ORF72 ALS/FTD.
Indeed, White et al. (2019) were able to confirm the involvement
of poly-GR and poly-PR in the nucleolus and elaborated on
poly-PR’s ability to bind and change the biophysical properties
of the LCD containing nucleophosmin1 (NPM1) and modulate
NPM1’s ability to undergo LLPS with its physiological binding
partners containing arginine-rich motifs. While purified poly-PR
in low concentrations was able to induce the LLPS of NPM1, it
caused droplet dissolution at higher concentrations. Additionally,
poly-PR sequestered NPM1 into large soluble poly-PR–bound
complexes, attributed to its ability to inhibit LLPS. In HeLa cells,
a delocalization of NPM1 out of the nucleolus was observed,
confirming a phenomenon seen in a previously published study
(Farg et al., 2017). This delocalization could not be observed with
NPM1 and its physiological binding partners capable of inducing
the LLPS of NPM1. As NPM1 is heavily involved in ribosome
biogenesis and transport, among many other cellular processes,
DPR binding and displacing NPM1 and, hence interfering
with NPM1’s ability to fulfill its physiological functions, could
significantly contribute to DPR-mediated toxicity.

The downstream consequences of poly-GR and poly-PR
disrupting NPM1 have not yet been fully established. One
factor is that our current understanding of NPM1’s wide
functional repertoire is still not complete. NPM1 has recently
been implicated to also play a role as an integral component
of the nucleolus’s protein quality control machinery (Frottin
et al., 2019). It was shown that exposing cells to heat stress
caused potentially highly interactive and aggregation-prone
misfolded nuclear proteins upon entering the nucleus to become
immobile by reversibly binding to NPM1 (Frottin et al., 2019).
Upon stress resolution, the stored proteins underwent Hsp70-
guided refolding. Both extended intervals of induced stress and
expression of poly-PR compromised the nucleolus’s capacity for
protein quality control (Frottin et al., 2019) and resulted in the
formation of pathological aggregates of misfolded proteins in
the nucleoplasm that sequestered neighboring proteins. Poly-PR
may also diminish NPM1’s role in DNA repair, resulting in a
less efficient mechanism of double-strand break repair (Andrade
et al., 2020), which most likely leads to increased DNA damage
and cell death (Farg et al., 2017).

Nucleolar toxicity of poly-PR and poly-GR, and by extension
their cellular toxicity in general, appears to arise from their
disruption of different vital physiological processes and not by
their aggregation. Although the expression of their toxic nature
seems ostensibly straightforward and to originate in their high
interactivity and ability to interrupt LLPS, their nucleolar binding
partners and binding effects are multifaceted and complex. These
include the inhibition of protein translation through the binding
of the translation initiation factor eIF3η (Zhang et al., 2018),
dysfunctional rRNA processing and impairment of ribosome
biogenesis through the binding of ribosomal subunits (Tao et al.,
2015; Suzuki et al., 2018), and most recently disruption of the

nucleolar protein quality machinery through the interaction
with NPM1.

Despite evidence showing the toxic effects of arginine-
containing DPRs, especially in the nucleus, the relative
contribution of poly-GR and poly-PR to human disease
is still unknown. Furthermore, although these DPRs share
approximately 40% of their interactome with each other, it is
likely that the sense and antisense strands of the C9ORF72
hexanucleotide repeat are not translated at comparable rates (Lee
et al., 2016). Additionally, poly-GR and poly-PR DPRs have been
found to localize in different regions of the cell. While poly-PR
tends to localize in the nucleolus, poly-GR concentrates mostly
in the cytoplasm, which could indicate that poly-GR plays a
more important role in disrupting stress granule dynamics (Wen
et al., 2014; Lee et al., 2016). Furthermore, cytoplasmic poly-GR
was found to localize to mitochondria where it associates with
mitochondrial ribosomal proteins, thereby inducing oxidative
stress (Lopez-Gonzalez et al., 2016).

Nevertheless, the development of mammalian models to
study poly-GR and poly-PR DPRs is essential to understand
how these DPRs contribute to disease manifestation. A recently
developed mouse model expressing C9ORF72 with repeat
expansions via a bacterial artificial chromosome (BAC) displays
motor impairments and neurodegenerative features of ALS/FTD
seemingly associated with detectable poly-PR expression (Liu
et al., 2016). Despite this, it is unknown whether poly-PR is the
most toxic DPR species and how it promotes disease phenotypes
in this model. It was recently shown that arginine-containing
DPRs are able to directly elicit defective intracellular trafficking
of different cargos including mitochondria and RNA granules
by interacting with microtubule and motor proteins (Fumagalli
et al., 2019). However, more evidence is required to determine the
exact roles the arginine-containing DPRs poly-GR and poly-PR
play in the development of the ALS phenotype in vivo.

DPR PATHOLOGY AND ITS
CORRELATION TO NEURONAL
TOXICITY: CURRENT CLUES FROM
HUMAN PATIENTS

One major challenge facing C9ORF72 ALS/FTD research today
is reconciling the apparent discrepancy between the pattern of
DPR pathology seen in human postmortem tissue and in different
animal and in vitro models. The first human pathological
reports identified cardinal features such as the presence of
phosphorylated TDP-43 inclusions (Murray et al., 2011; Boeve
et al., 2012; Cooper-Knock et al., 2012; Gijselinck et al., 2012;
Solomon et al., 2018) as well as p62 and ubiquitin-positive, but
TDP-43–negative, neuronal cytoplasmic inclusions, in human
C9ORF72 ALS/FTD tissue (Al-Sarraj et al., 2011; Boxer et al.,
2011; Mahoney et al., 2012; Bigio et al., 2013). After the discovery
of RAN translation in different microsatellite disorders (Zu et al.,
2011), RAN-translated proteins were also confirmed in C9ORF72
ALS/FTD via positive immunostaining for different DPR species,
throughout the central nervous system in C9ORF72 patient
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neurons (Ash et al., 2013; Mori et al., 2013; Zu et al., 2013).
Multiple clinicopathological studies hereafter were published,
with significant differences concerning methodology, antibodies
used, and regions of the nervous system extensively tested (Al-
Sarraj et al., 2011; Cooper-Knock et al., 2012; Mahoney et al.,
2012; Troakes et al., 2012). Further extensive characterization
of the anatomical localization of individual DPR species was
compiled in a systematic neuropathological review by Schipper
et al. (2016), where authors appraised 42 studies surveying a
total of 262 patients. The analysis revealed that DPRs were
most commonly found in the frontal lobe (97.2%), hippocampus
(97.1%), temporal lobe (92.5%), and cerebellum (90.9%) and
only to a lesser extent in the spinal cord (49.8%) in C9ORF72
positive patients (Schipper et al., 2016). The question thereafter
emerged: To what extent does the production of DPRs confer
neurodegeneration in vivo, and subsequently, which DPR species
contributes the most to the toxicity process? In a study by
Davidson et al. (2014), analysis of their pathological data revealed
that neither the anatomical location nor the amount of poly-
GA correlated with the clinical phenotype or the extent of
TDP-43 pathology. Similar observations were echoed by another
pathological study that also could not detect a clear correlation
of any DPR inclusion with neurodegeneration (Mackenzie et al.,
2015). In contrast, cellular models and animal models seem to
indicate that the arginine-rich DPRs are quite toxic (Wen et al.,
2014; Tao et al., 2015; Lee et al., 2016) with poly-GA exhibiting
less fulminant toxicity or none at all (Wen et al., 2014). It
remains to be fully explored why no correlation between the
degree of DPR pathology and neurodegeneration could be seen,
when different C9ORF72 disease models strongly suggest some
contribution of DPRs to disease burden. Study methodology of

the pathological tissue may play a crucial role, demonstrated
by a study that stratified the brain in disease-related (frontal
cortex, motor cortex, anterior horn of the spinal cord) and
disease-unrelated (parietal cortex, occipital cortex, posterior horn
of the spinal cord) regions. Such an approach revealed that
the abundance of cytoplasmic poly-GR robustly correlated with
cellular and neuroanatomical pathology (Saberi et al., 2018).
This indeed was somewhat confirmed by another study a year
later, wherein a strong correlation was found between poly-
GR density and neurodegeneration in the frontal cortex using
quantitative digital microscopic methods (Sakae et al., 2018).
In contrast, a recent study identified an association of DPR
inclusions in muscle, mostly poly-GA and poly-GP, but not poly-
GR with muscle atrophy in C9ORF72 ALS patients implying
that DPRs in muscles may also contribute to ALS pathology and
that DPR pathology is not exclusive to neurons (Cykowski et al.,
2019). However, different studies have implicated poly-GR as the
DPR species that is associated with neurodegeneration (at least
in disease-affected areas) in postmortem C9ORF72 ALS tissue.
Nevertheless, definitive consensus regarding the DPR species that
provides the most robust correlation with neurodegeneration is
still missing (Table 1).

Despite p62-positive cytoplasmic aggregates being the most
prominent pathological hallmark in the frontal cortex of
C9ORF72-associated diseased patients, some postmortem studies
describe the presence of p62-negative paranucleolar bodies
(Schludi et al., 2015) and poly-PR DPR localization to
intranuclear aggregates (Wen et al., 2014), which suggests
that DPR-positive inclusions also localize to the nucleolus
in C9ORF72-associated disease. Furthermore, various studies
indicate that DPR pathology predates TDP-43 pathology

TABLE 1 | Summarizing the detection of DPRs in different human brain regions according to various neuropathological studies examining postmortem brain tissue.

Studies Frontal lobe Temporal lobe Basal ganglia Brainstem Cerebellum Spinal cord Skeletal muscle

Mori et al. (2013) N/A GA, GR, GP N/A N/A GA, GR, GP N/A N/A

Gendron et al. (2013) PA, PR, GP PA, PR, GP N/A PA, PR, GP PA, PR, GP N/A N/A

Mann et al. (2014) N/A GA, GP, GR,
PR, PA

N/A N/A GA, GP, GR,
PR, PA

N/A N/A

Zu et al. (2013) GA, GP, GR,
PA, PR

GA, GP, GR,
PA, PR

N/A N/A N/A GP, GA(–), GR(–),
PR(–), PA(–)

N/A

Mackenzie et al. (2013)* GA GA GA GA GA GA N/A

Gomez-Deza et al.
(2015)

N/A N/A N/A N/A N/A GA, GR, GP, PA,
PR

N/A

Mackenzie et al. (2015) GA, GP, GR,
PA, PR

N/A N/A N/A GA, GP, GR,
PA, PR

GA, GR, GP, PA,
PR

N/A

Schludi et al. (2015) GA, GR, GP,
PR

GA, GR, GP,
PR

GA, GR, GP GA, GR, GP GA, GR, GP,
PR

GA, GR, GP, PR(–) N/A

Davidson et al. (2014) GA, GP, GR GA, GP, GR, PA
(–), PR (–)

N/A N/A GA, GP, GR,
PA(–), PR(–)

GA, GP, PR, PA** N/A

Saberi et al. (2018) GA, GP, GR,
PA, PR

GA, GP, GR,
PA, PR

N/A N/A GA, GP, GR,
PA, PR

GA, GP, GR, PA(–),
PR(–)

N/A

Cykowski et al. (2019) N/A GA N/A N/A N/A N/A GA, GP, GR (–)

Sakae et al. (2018) GA, GP, GR GA, GP, GR N/A N/A N/A N/A N/A

(–) indicates that the DPR was tested for but not detected.
*Poly-GA was the only DPR tested using a monoclonal poly-GA antibody.
**Positive poly-PR and poly-PA staining was found also in the control anterior horn cells.
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(Baborie et al., 2015; Vatsavayai et al., 2016), which suggests that
DPR-related toxicity may be responsible for the early progression
of the disease.

In addition, while clinicopathological studies are vital in
contextualizing in vitro and animal models of disease, a bias
may be present when analyzing tissue from already deceased
individuals, as a pathological still image of the end-stage disease
may not be accurately portraying the chain of events leading
to neurodegeneration. Information is lost concerning neurons
that have already perished before pathological analysis, and
some DPR-positive neuronal inclusions observed may be mere
bystanders and may not have been central to pathological
neuronal decline. Furthermore, the pathological contribution of
soluble DPRs may be underrepresented, as soluble protein species
can be difficult to observe and analyze in fixed tissue. In line
with this, Quaegebeur et al. (2020) used protein fractionation
and immunoassay to quantify both soluble and insoluble DPRs
in brain homogenates of FTD patients with C9ORF72 repeats
and found that clinically affected areas have less soluble DPRs
compared to the cerebellum, which is unaffected in C9ORF72
FTD. The exact role DPRs play in shaping the course of events
leading to neurodegeneration thus remains elusive and cannot be
satisfyingly answered by solely analyzing postmortem tissue from
C9ORF72 ALS/FTD patients.

INSIGHTS INTO RAN TRANSLATION
AND PRODUCTION OF DPRS

Considering the increasing importance RAN-translated proteins
have in C9ORF72 ALS/FTD pathology, recent studies have also
focused on understanding the mechanisms governing G4C2-
mediated RAN translation. Translation of G4C2 occurs in both
a 5′ cap-dependent manner (Green et al., 2017) and/or cap-
independent manner (Cheng et al., 2018) (albeit less efficiently)
and can exhibit many other properties of canonical translation
initiation such as involvement of methionyl-initiator tRNA
(tRNAi

Met) and translation initiation factors (eIF4E, eIF4G, and
eIF4A) (Tabet et al., 2018). In the sense strand, DPR production
is likely initiated through a near-cognate CUG codon present
24 nucleotides upstream of the G4C2 repeat expansion in the
GA reading frame and in an optimal Kozak sequence. Poly-GA
is therefore mostly translated through a conventional ribosomal
scanning mechanism (Tabet et al., 2018; Figure 2). In contrast,
poly-GP, which is in the + 2 reading frame, has a UAG stop
codon in its reading frame located at the beginning of the
G4C2 repeat expansion, implying that production of poly-GP
is enabled either directly through RAN translation initiation
within the repeat itself or indirectly by translation initiation in
the poly-GA reading frame followed by a ribosomal frameshift
to the poly-GP frame. Indeed, mutations in the CUG codon
prevented the formation of all three DPRs encoded from the
sense strand [poly-(GA, GP, GR)] and therefore gave support
to ribosomal frameshifting mechanisms for the production of
poly-GP and poly-GR from different reading frames (Tabet
et al., 2018). Furthermore, translation efficiency of GA was
the highest as the production of the other DPRs requires at

least one frameshifting event, thereby confirming the results of
previous clinicopathological studies, wherein poly-GA has been
found to be the most abundant DPR (Mackenzie et al., 2015;
Lee et al., 2017).

Although the DPRs produced from G2C4 antisense
transcripts, poly-PA, poly-PR, and poly-GP are present in
postmortem C9ORF72 ALS/FTD tissue samples; the exact
translation mechanisms for these antisense transcripts are still
unknown. These antisense DPRs are speculated to be translated
from two open reading frames encoding for poly-PR and
poly-GP, respectively (Figure 2). However, the presence of
poly-PR and poly-GP even in the absence of AUG initiation
sites implicates the expression of antisense DPRs via RAN
translation (Gendron et al., 2013; Zu et al., 2013) as well. This
thus opens the possibility for the formation of three RAN-
translated antisense DPRs and two putative AUG-initiated
antisense DPRs. Poly-GP is translated from both strands;
however, poly-GP translated from the antisense strand is
not identical to that generated from the sense strand. In
the antisense strand, the poly-GP repeat has a stop codon
immediately after the repeat while the sense strand contains a
unique C-terminal sequence. By using an antibody against the
unique C-terminal sequence and poly-GP domain, Zu et al.
(2013) were able to distinguish poly-GP generated from the
sense and antisense strand. They found that the majority of
poly-GP inclusions in neurons were in fact produced from the
antisense strands (Zu et al., 2013). This can be explained by
the finding that in the antisense strand, poly-GP is translated
via AUG-initiated translation as well as RAN translation,
whereas in the sense strand poly-GP is translated through RAN
translation (Zu et al., 2013; Tabet et al., 2018). Intriguingly, the
C-terminal region of RAN-translated proteins can influence
their cellular distribution and relative toxicity (He et al., 2020),
suggesting that poly-GP produced from either the sense or the
antisense strand could have different biochemical properties and
interacting partners.

CELLULAR STRESS AND RAN
TRANSLATION: A POSSIBLE
THERAPEUTIC TARGET

Different cellular stresses, including oxidative stress and ER
stress, induce the integrated stress response (ISR), a process
vital for both cell survival and apoptosis. The ISR is induced
primarily via different kinases such as GCN2 (amino acid
starvation), PERK (ER stress), HRI (oxidative stress), and PKR
(DNA damage) that phosphorylate the α subunit of eIF2, an
initiation factor that mediates the binding of tRNAi

Met to the 40
s subunit of the ribosome, creating a ternary complex with GTP
(Krishnamoorthy et al., 2001). The complex so formed then binds
to the AUG start codon, leading to GTP hydrolysis requiring
eIF2B, a guanine nucleotide exchange factor, to substitute
GDP with GTP, in order to recommence translation initiation
(Webb and Proud, 1997). eIF2B is only able to replace GDP
with GTP in its unphosphorylated state. eIF2B binds with a
higher affinity to phosphorylated eIF2α (p-eIF2α) and, once
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FIGURE 2 | Proposed mechanism for the formation of different dipeptide repeat proteins (DPRs) through the G4C2 repeat expansion in the C9ORF72 gene. Both
sense and antisense strands can be translated through CUG-initiated, conventional AUG, and RAN mediated translation resulting in the formation of different DPRs.
cDPRs are proposed to occur because of ribosomal frameshifting or spontaneous mutations in the G4C2 repeat expansion. X denotes aminoacids present in N- or
C- terminus of DPRs.

bound to p-eIF2α, has its ability to replace GDP with GTP
suppressed (Nika et al., 2001) and thus arrests global protein
synthesis. Activation of the ISR, therefore, ultimately leads to
the cessation of conventional cap-dependent protein translation
via the phosphorylation of eIF2α, thereby drastically reducing
protein synthesis. However, cap-independent translation can still
persist, resulting in expression of selective proteins that are
necessary for cell survival and recovery (Bhattacharyya et al.,
2006; Zhou et al., 2008; Lawless et al., 2009).

Cellular stress is a prominent feature of C9ORF72 ALS/FTD
(McEwen et al., 2005; Dafinca et al., 2016; Lopez-Gonzalez
et al., 2016; Kramer et al., 2018; Westergard et al., 2019). RAN
translation in C9ORF72 ALS/FTD is impervious to the inhibitory
protein synthesis effects of eIF2α phosphorylation and is, in
fact, selectively enhanced by the ISR (Green et al., 2017). In
addition, initiation of RAN translation is essentially dependent
on eIF2α phosphorylation under conditions of cellular stress
(Green et al., 2017; Cheng et al., 2018; Sonobe et al., 2018).
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However, it is still unclear which initiation factors are used
in states of cellular stress, and there is tentative evidence that
alternative initiation factors such as eIF5B, eIF2D, and eIF2A
may be partially involved (Starck et al., 2016), at least in the
translation of poly-GA (Sonobe et al., 2018). In C9ORF72
ALS/FTD, the ISR can be engaged by different DPRs primarily
by their ability to elicit ER stress (Dafinca et al., 2016; Kramer
et al., 2018) and oxidative stress (Lopez-Gonzalez et al., 2016),
but can also be induced by excitotoxic stress and repeated
neuronal depolarization (Westergard et al., 2019). In addition, the
formation of stress granules is also known to be eIF2α dependent
(McEwen et al., 2005), and this dependency was shown to also
apply to stress granules formed by G4C2 repeats. Moreover,
C9ORF72 protein itself is also known to play an important role
in stress granule dynamics and has been implicated as a regulator
of the cellular stress response (Maharjan et al., 2017; Chitiprolu
et al., 2018). DPRs (and G4C2 RNA) can not only induce the
formation of stress granules but also enhance RAN translation
and thus their own production, while inhibiting global protein
synthesis, resulting in a feed-forward mechanism mediated
by the phosphorylation of eIF2α. Paradoxically, simultaneous
inhibition of global protein synthesis might indeed also apply to
proteins involved in the degradation of DPRs, thereby further
increasing total DPR load. However, it is yet to be fully explored
how exactly phosphorylation of eIF2α affects the alternative
translation initiation mechanisms that are proposed to enhance
RAN translation, and which form of stress and kinases involved
have the most profound effect on RAN translation.

One cellular stress pathway that has recently received attention
is the activation of the PKR pathway. Although it was initially
posited two decades ago that CUG repeat expansions could
form RNA hairpins that can then activate the PKR (Tian
et al., 2000), definitive evidence implicating G4C2 repeats in
forming RNA hairpins and activating the PKR has been lacking.
However, recent studies show that the PKR pathway regulates
RAN translation both dependent and independent of eIF2α

phosphorylation, as inhibition of the PKR pathway was able to
reduce RAN-translated poly-GA and poly-GP significantly more
than inhibition of p-eIF2α alone in HEK293T cells (Zu et al.,
2020). Metformin has shown remarkable therapeutic promise in
its ability to inhibit the PKR pathway and promote the reduction
of poly-GA and poly-GP levels in C9-BAC mice (Zu et al., 2020).
However, it remains undetermined by which mechanism the
PKR pathway can independently induce RAN translation and to
what extent metformin and other PKR inhibitors would be viable
therapeutic options for patients with C9ORF72 ALS/FTD.

The search for RAN translation modulators has also been
extended to genetic modifiers. Recently, it was shown that yeast
is also able to undergo RAN translation, and via a genetic
screen of different yeast mutants, it was discovered that both
deleting the gene RPS25A in yeast and targeting the mammal
homolog, RPS25, with an ASO were able to reduce poly-
GP levels by 50%. Importantly, this process did not reduce
AUG-mediated global protein synthesis (Yamada et al., 2019).
Yuva-Aydemir et al. (2019) sought out another approach by
demonstrating that the knockout of the translation elongation
factor AFF2/FMR2 rescues axonal degeneration and TDP-43

pathology by decreasing the expression of mutant C9ORF72
allele and consequently, reduced the levels of RNA foci and
DPRs in iPSC-derived cortical neurons from C9ORF72 patients.
Another possible method may involve targeting transcriptional
regulators of the hexanucleotide repeat expansion. Transcription
of the G4C2 repeat in C9ORF72 ALS/FTD is regulated by the
PAF1 complex, which functions as a transcriptional regulator
of RNA polymerase II. Evidence suggests that in Drosophila
PAF1 complex components have a higher affinity for long toxic
repeat expansions rather than shorter non-toxic expansions.
Furthermore, PAF1 is upregulated in cells derived from C9ORF72
patients and following G4C2 repeat expression in Drosophila and
mice (Goodman et al., 2019).

More extensive studies will be needed to determine how
effective both inhibiting DPR-induced stress and/or targeting
different genes important for RAN translation with ASOs will
be, and importantly, which potential side effects these treatment
options may have. While these results sound promising, other
therapeutic targets might revolve around the mitigation of
DPR load by directly targeting the individual species. Our
current understanding, however, of the exact nature and
effects of these individual DPR species is highly dynamic as
researchers try to unravel the novel mechanisms by which they
induce toxicity.

FUTURE DIRECTIONS AND
CONCLUSION

Although it is accepted that specific DPR species have toxic
effects in cellular and animal models, their precise contribution
to C9ORF72-associated disease progression is still disputed.
Naturally, C9ORF72 ALS/FTD patients are likely to express all
DPRs and not only a single specific DPR. Thus, it is essential to
understand how individual DPRs may interact with each other
at physiologically relevant levels to promote disease pathology.
Nevertheless, this is currently an underexplored area of the
C9ORF72-associated ALS/FTD field.

Recent evidence indicates that DPRs might not be translated
as single dipeptide entities and could instead be translated
in combination due to ribosomal frameshifting (McEachin
et al., 2020a). McEachin et al. (2020a) coined the term
“chimeric DPRs” to describe the nature of these putative
DPRs. They showed that SCA36, an ataxic disorder caused by
an intronic TG3C2 hexanucleotide expansion, also undergoes
RAN translation to produce different DPRs, including the
DPRs poly-GP and poly-PR. As poly-GP also is a product
of C9ORF72 RAN translation, poly-GP generated in SCA36
therefore was expected to possess similar solubility characteristics
to poly-GP from C9ORF72 ALS/FTD. Counterintuitively, poly-
GP was shown to be diffusely expressed in SCA36 neurons,
contrasting the presence of perinuclear inclusions of poly-GP in
C9ORF72 ALS/FTD neurons. This discrepancy was reconciled
with the idea that poly-GA can mediate the aggregation of
poly-GP and supported by the finding that 90% of poly-GP
colocalized with poly-GA in postmortem C9ORF72 ALS/FTD
tissue and C9-BAC mice. Similarly, transfection with GA:GP
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chimeric constructs was able to induce the formation of GA:GP
inclusions, whereas cotransfection with a poly-GA and poly-
GP construct did not induce colocalization (McEachin et al.,
2020a), further strengthening the hypothesis that aggregation-
prone poly-GA contributes to the poly-GP pathology seen
in C9ORF72 ALS/FTD. New insights into the mechanisms
modulating RAN translation, especially ribosomal frameshifting,
and the occurrence of repeat interruptions in G4C2 transcripts
indicated by using long-read sequencing technologies (Ebbert
et al., 2018) lend further mechanistic support to the possibility
of the translation of cDPR species (Figure 2). However, it still
needs to be unequivocally proven that indeed cDPR species
are translated in C9ORF72 ALS/FTD patients and then further
determined to what extent these species may contribute to the
total disease burden.

Several other studies have demonstrated the interaction
between different DPRs. Overexpressing different DPRs in
Neuro2A revealed that poly-GR and poly-PR DPRs might
recruit poly-GA and poly-GP DPRs into cytoplasmic inclusions
(Yamakawa et al., 2015). Similarly, evidence suggests that poly-
GA is also able to recruit poly-GR DPRs into cytoplasmic
inclusions in Drosophila, HeLa cells, and cultured human
neurons. Interestingly, the recruitment of poly-GR into
inclusions by poly-GA DPRs seems to reduce poly-GR toxicity
and restore Notch signaling in Drosophila (Yang et al., 2015).
This study, together with the study by McEachin et al., supports
Lee and colleagues’ proposal that poly-GA is a key mediator
of cytotoxicity and interaction between DPRs. Indeed, poly-
GA was found to be the most toxic DPR species in both
in vitro and in vivo in the chick embryonic spinal cord.
In in vitro and in vivo chick embryo models, poly-GP and
poly-PA, but not poly-GR and poly-PR, are sequestered by
poly-GA aggregates, and curiously, poly-PA seems to reduce
poly-GA toxicity by inhibiting further aggregation of poly-
GA (Lee et al., 2017). Altogether, evidence suggests that

individual DPRs interact with each other and that this may affect
disease pathology.

The advent of new studies unraveling the mechanisms of DPR
translation has opened up the field of research regarding the
possibility of previously unknown DPR species, as demonstrated
by McEachin et al. (2020a) ascertaining the likely possibility
of cDPRs. Identification of new DPR species implies that the
composition of DPRs appears to be much more complicated than
previously speculated. As the immediate sequence surrounding
the repeat region can alter the behavior, localization, and toxicity
of DPRs (He et al., 2020), future work should also consider both
C and N-terminus amino acids to more accurately portray the
role of each DPR in C9ORF72 ALS/FTD pathogenesis. Thus,
to better understand how DPRs contribute to disease, future
research should focus on disease models that express multiple
DPRs, ideally at physiologically relevant levels. However, the
development of such models still requires further advances in our
current understanding of RAN translation to estimate the precise
translated levels of different DPRs in patients.
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