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Ticks cause substantial production losses for beef and dairy cattle. Cattle resistance to
ticks is one of the most important factors affecting tick control, but largely neglected due to
the challenge of phenotyping. In this study, we evaluate the pooling of tick resistance
phenotyped reference populations from multi-country beef cattle breeds to assess the
possibility of improving host resistance through multi-trait genomic selection. Data
consisted of tick counts or scores assessing the number of female ticks at least
4.5 mm length and derived from seven populations, with breed, country, number of
records and genotyped/phenotyped animals being respectively: Angus (AN), Brazil,
2,263, 921/1,156, Hereford (HH), Brazil, 6,615, 1,910/2,802, Brangus (BN), Brazil,
2,441, 851/851, Braford (BO), Brazil, 9,523, 3,062/4,095, Tropical Composite (TC),
Australia, 229, 229/229, Brahman (BR), Australia, 675, 675/675, and Nguni (NG),
South Africa, 490, 490/490. All populations were genotyped using medium density
Illumina SNP BeadChips and imputed to a common high-density panel of 332,468
markers. The mean linkage disequilibrium (LD) between adjacent SNPs varied from
0.24 to 0.37 across populations and so was sufficient to allow genomic breeding
values (GEBV) prediction. Correlations of LD phase between breeds were higher
between composites and their founder breeds (0.81 to 0.95) and lower between NG
and the other breeds (0.27 and 0.35). There was wide range of estimated heritability (0.05
and 0.42) and genetic correlation (-0.01 and 0.87) for tick resistance across the studied
populations, with the largest genetic correlation observed between BN and BO. Predictive
ability was improved under the old-young validation for three of the seven populations
using a multi-trait approach compared to a single trait within-population prediction, while
whole and partial data GEBV correlations increased in all cases, with relative
improvements ranging from 3% for BO to 64% for TC. Moreover, the multi-trait analysis
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was useful to correct typical over-dispersion of the GEBV. Results from this study indicate
that a joint genomic evaluation of AN, HH, BN, BO and BR can be readily implemented to
improve tick resistance of these populations using selection on GEBV. For NG and TC
additional phenotyping will be required to obtain accurate GEBV.
Keywords: beef cattle, genomic selection, ticks, tropical adaptation, host resistance
INTRODUCTION

Ticks and tick-borne diseases are among the most important causes
of production losses for beef and dairy cattle. Recent estimates of
those losses range from US$22 to 30 billion per year (1). Cattle host
resistance to ticks is one of the most important factors affecting the
economics of tick control, with host resistance being moderately to
highly heritable and representing a permanent solution requiring no
extra labor or resources (2). However, breeding for host resistance is
largely neglected in tick control programs due to the challenge of
phenotyping for this trait and costs associated with identifying
individual animal variation in resistance.

Genomic selection is typically suggested as a solution for
improvement of traits that are hard or costly to measure.
However, in the case of tick resistance, the trait is so labor
intensive and expensive to measure that only small reference
populations have been recorded in countries where ticks prevail
(3–5). Therefore, for most cases pooling reference populations
across breeds and countries may be the only effective way to
achieve genomic estimated breeding values (GEBV) with
sufficient accuracy to be useful. Pooling reference populations
across countries has previously been demonstrated to improve
accuracy for traits such as dry matter intake (6). In that study,
differences in trait measurement were accounted for by treating
dry matter intake as different, but potentially correlated traits
between countries. Most studies pooling trait and genotype data
across countries have attempted to do so only where the same
breed of cattle is considered. For tropical beef cattle, this is
difficult and would restrict the size of the reference population
greatly, as so many different breeds, crossbreds and composites
are used across the different countries.

In this study, we pool tick resistance phenotyped reference
populations from beef cattle breeds in Australia, Brazil, and
South Africa. Firstly an assessment is made of the extent of phase
org 2
of linkage disequilibrium shared between the breeds, as a
predictor of how much information might be transferred from
breed to breed in genomic predictions when a high density SNP
array is used [e.g. (7, 8)]. We then jointly analyze existing tick
infestation datasets to assess the possibility of improving host
resistance in cattle through multi-population, multi-trait
genomic selection.
MATERIALS AND METHODS

Phenotype, Genotype and Pedigree Data
Cattle Populations and Tick Data
Tick datasets were obtained from seven different cattle
populations generated in Brazil, Australia and South Africa
(Table 1). Tick species infesting cattle in Brazil and Australia
are from the same genus (Rhipicephalus microplus and R.
australis), whereas cattle in South Africa are additionally
infested with the multi-host tick species Amblyomma
hebraeum and Hyalomma rufipes and H. truncatum. Tick
counts in South Africa were obtained from the Rhipicephalus
(53%), Amblyomma (42%) and Hyalomma (5%) species.

Brazilian data consisted of log-transformed tick counts.
Measurements were performed on occasions when large
phenotypic variation existed in tick numbers, by manually
counting adult female ticks that were at least 4.5 mm length on
one whole side of the animal’s body (9). One to three subsequent
tick counts on one side of each animal were obtained from Angus
(AN) cattle between 2012 and 2017 from five different herds
associated with the Promebo Breeding Program; from 9
Hereford (HH) and 10 Braford (BO) cattle herds between 2010
and 2018 in the Delta G Breeding Program; and from the
Embrapa South Livestock Brangus (BN) experimental herd
between 2013 and 2018.
TABLE 1 | Tick resistance data according to population.

Population Country of
origin

Phenotype
available

Number of
observations

Mean ± S.D. Min Max Number of
genotyped/

phenotyped animals1

Number of
animals in

validation set

Angus (AN) Brazil Log10 tick counts 2,263 1.54 ± 0.46 0.00 2.49 921/1,156 344
Hereford (HH) Brazil Log10 tick counts 6,615 1.47 ± 0.50 0.00 2.78 1,910/2,802 684
Brangus (BN) Brazil Loge tick counts 2,441 4.32 ± 1.20 1.00 7.69 851/851 300
Braford (BO) Brazil Log10 tick counts 9,523 1.32 ± 0.43 0.00 2.72 3,062/4,095 1,267
Trop.Comp. (TC) Australia Tick scores 229 2.52 ± 0.93 0.00 5.00 229/229 74
Brahman (BR) Australia Tick scores 675 0.67 ± 0.74 0.00 4.00 675/675 216
Nguni (NG) South Africa Averaged loge tick counts2 490 0.50 ± 0.17 0.02 0.95 490/490 157
June 2021 | Volume 12 |
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For South African Nguni (NG) cattle, adult ticks were
counted from the perineum body part under natural grazing
for a continuous period of two years (2012 to 2014) from 490
Nguni animals. At least 23 tick counts were conducted for each
animal throughout a two-year period, meaning at times there
was little phenotypic variation for tick counts across animals.
Tick counts (x) were log transformed using log10 (x + 1) to
approximate normality. Data available for NG cattle was
summarized as the average animal tick effect obtained in
ASREML (10) after accounting for the following fixed effects:
farm, month, year, sex, interaction between farm and month, and
age, fitted as a covariate.

The Australian Brahman (BR) and Tropical Composite (TC)
animals had estimates of tick counts derived from tick scores.
Tick scores of adult female ticks that were > 4.5 mm in diameter
on the left side of each animal, were on a 0 - 5 scale where 0 was
no ticks, 1 was ≤ 10 ticks, 2 was 11 - 30 ticks, 3 was 31 - 80 ticks,
4 was 81 - 150 ticks, and 5 > 150 ticks. Tick scores are less
accurate and less informative than tick counts, however there is a
high genetic correlation between the two (11). Statistics of the
different datasets (numbers, means and distributions) are also
presented in Table 1.

Genotypes and Pedigree
Pedigree information were available and used in the analyses of
the Brazilian populations only. All populations were genotyped
using the Illumina SNP BeadChip technology (Illumina Inc., San
Diego, CA, USA) with marker densities varying from 27k to 150k
given by commercially available chips. Genotype quality control
(QC) was implemented for all populations. In the case of
Brazilian data QC was performed by R/SNPStats package (12).
Samples with genotyping rate (call rate - CR) < 0.90,
heterozygosity rate – calculated as the proportion of
heterozygote genotypes within all autosomal markers of an
animal – with 3 SD above or below the observed population
mean, mismatching sex, and duplicate records were removed.
These per animal QC criteria were applied to assure sample DNA
high quality, lack of contamination or misidentification. Only
SNPs mapped to autosomes with CR > 0.98, minor allele
frequencies (MAF) > 0.03, and not in highly significant
deviation Hardy–Weinberg equilibrium (P > 10−7) were
considered in the analyses. In addition, only the SNP with
highest MAF was retained when SNPs were observed in the
exact same position or the genotypes were highly correlated (r >
0.98). Similar quality control steps were applied to the Australian
populations and NG, with the addition that genotype calls with a
GC score below 0.6 were set to missing and were filled in with
imputation using FImpute (13). After quality control, genotypes
from all populations were imputed to a common high-density
panel of 332,468 markers distributed throughout the 29 bovine
autosomal chromosomes. Brangus, Braford and Hereford
populations were imputed using the FImpute software (13)
and an HD sample of 340 animals available at Embrapa
datasets for these breeds. Angus, Brahman, Nguni and Tropical
Composites were imputed using the 1,000 bull genome project
reference, which includes 305, 122, 0 and 30 sequences
Frontiers in Immunology | www.frontiersin.org 3
respectively from those imputed breeds and 2,603 in total from
107 breeds (13), and findhap software (14).

Population Genomic Parameters
Linkage Disequilibrium
Linkage disequilibrium (LD) was estimated for each
chromosome between adjacent pairs of SNPs as the squared
correlation statistic (r2) (15), which can be calculated as follows:

r2 =
rABrab − rAbraBð Þ2 

rArarBrbð Þ (1)

where rA, ra, rB and rb are the frequencies of alleles A, a, B and
b, respectively; rAB, rab, rAb and raB are the haplotype
frequencies among alleles in the population.

Persistence of Phase Across Breeds
To investigate the LD phase between two specific breeds, the
Pearson correlation rij(A) and rij(B) for a common set of adjacent
SNPs between populations A and B was calculated using the
following equation (16):

RA,B =  
S(i,j)∈l rij(A) − �rA

� �
rij(B) − �rB
� �

SASB
(2)

where RA,B is the correlation of phase between rij(A) in population
A and rij(B) in population B, SA and SB are the standard deviation
of rij(A) and rij(B) respectively, and �rA and �rB are the average rij
across adjacent SNP i and j within the interval l for populations A
and B for a common set of markers. The r2 and r values were
estimated using adjacent SNPs with the ld_estimate R
scripts (16).

Allele Frequencies and Principal Components
Additionally, Pearson correlations were calculated between allele
frequencies of all populations across the 332,468 SNP markers
used in the present study and a principal components analysis
(PCA) plot of all animals by breed was obtained from genotype
data using PreGSf90 software (17).

Statistical Models and Analysis
Multivariate Genomic BLUP
Data quality checks for the Brazilian populations were performed
using R program (18). Contemporary groups (CG) were formed
by animals from the same farm, sex, year and season of birth, sex
and management group and date of tick count evaluations.
Contemporary groups with less than five animals and data
exceeding 3.5 SD above or below the mean of the CG
were excluded.

The statistical models for all populations except NG included
the fixed effect of contemporary groups; the linear covariate
effects of individual zebu breed composition and heterozygosity,
according to their expected values based on pedigree
information, and the linear and quadratic covariate effects of
animal age. For pre-adjusted NG data only an overall mean was
fitted as fixed effect. Additionally, direct additive genetic,
permanent environmental and residual random effects were
June 2021 | Volume 12 | Article 620847
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included for the Brazilian populations that had repeated tick
count measures and only the direct additive genetic and residual
effects were considered for Australian and South African
populations with single measurements. The models can be
represented in matrix notation by the following equations:

yAN

yHH

yBN

yBO

yTC

yBR

yNG

2666666666666664

3777777777777775
=

XAN 0 ⋯ 0

0 XHH … 0

… … ⋱ …

0 0 ⋯ XNG

2666664

3777775

bAN
bHH
bBN
bBO
bTC
bBR
bNG

2666666666666664

3777777777777775
+

ZAN 0 ⋯ 0

0 ZHH … 0

… … ⋱ …

0 0 ⋯ ZNG

2666664

3777775

uAN

uHH

uBN

uBO

uTC

uBR

uNG

2666666666666664

3777777777777775

+

WAN 0 ⋯ 0

0 WHH … 0

… … ⋱ …

0 0 ⋯ 0

2666664

3777775

pAN

pHH

pBN

pBO

0

0

0

2666666666666664

3777777777777775
+

eAN

eHH

eBN

eBO

eTC

eBR

eNG

2666666666666664

3777777777777775
,

(3)

where: the yb’s are vectors of the tick infestation trait for each bth
breed, b=AN, HH, BN, BO, TC, BR, and NG, respectively for
Angus, Hereford, Brangus, Braford, Tropical Composite,
Brahman and Nguni breeds. Similarly, for each bth breed, bb’s
are the vectors of systematic effects, ub’s are the vectors of
random direct additive genetic effects, pb’s are the vector of
random permanent environmental effects (only pertaining to
AN, HH, BN and BO that have repeated measures), and the eb’s
are the corresponding vectors of random residual effects.
Additionally, each bth breed also has its own incidence
matrices of systematic, direct additive genetic, and animal
permanent environmental effects, respectively represented by
Xb’s, Zb’s, and Wb’s.

As Brazilian populations had ungenotyped individuals
with phenotype, we used a multi-trait single step genomic
BLUP (ssGBLUP) approach (19, 20), with the following
assumptions about the prior distributions of the model
random parameters:

uAN

uHH

uBN

uBO

uTC

uBR

uNG

2666666666666664

3777777777777775
eN

0

0

0

0

0

0

0

2666666666666664

3777777777777775
,

s 2
uAN suAN ,HH

suAN ,BN
suAN,BO

suAN ,TC
suAN ,BR

suAN ,NG

s 2
uHH

suHH,BN
suHH,BO

suHH,TC
suHH,BR

suHH,NG

s 2
uBN suBN,BO

suBN ,TC
suBN ,BR

suBN ,NG

s 2
uBO suBO,TC suBO,BR suBO,NG

s 2
uTC suTC,BR suTC,NG

Symm : s 2
uBR suBR,NG

s 2
uNG

26666666666666664

37777777777777775
⊗H

0BBBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCCA
,

(4)

where s 2
ub is the additive genetic variance of the bth breed, sub,c

the additive genetic covariance between the bth and cth breeds,
⊗ denotes the direct product between the matrices, and H is a
relationship matrix constructed by combining the pedigree and
Frontiers in Immunology | www.frontiersin.org 4
genomic relationship matrices (20–22). Although H is complex
(22), its inverse, which is needed in the computations, has the
simpler form (19):

H−1 = A−1 +
0 0

0 0:95G + 0:05A22ð Þ−1 −  A−1
22

" #
(5)

Here G is the genomic relationship matrix constructed as
shown in the first method proposed by VanRaden (23) using
current allele frequencies averaged across breeds. While
theoretically correct for multiple breed populations, adjusting
for breed specific allele frequencies was not performed because
it has been shown to have negligible impact on prediction
accuracy (24). Moreover, A-1 is the inverse of the numerator
relationship matrix and A22 is the numerator relationship
matrix for genotyped animals only. Since, there were no
genetic ties between populations through pedigree, all the
relationship between populations was genomic and given by G.

Furthermore,

pAN

pHH

pBN

pBO

2666664

3777775eN
0

0

0

0

2666664

3777775 ,  

s 2
pAN 0 0 0

s 2
pHH 0 0

s 2
pBN 0

Symm : s 2
pBO

2666664

3777775⊗ I

0BBBBB@

1CCCCCA (6)

and

eAN

eHH

eBN

eBO

eTC

eBR

eNG

2666666666666664

3777777777777775
eN

0

0

0

0

0

0

0

2666666666666664

3777777777777775
,

s 2
eAN 0 0 0 0 0 0

s 2
eHH 0 0 0 0 0

s 2
eBN 0 0 0 0

s 2
eBO 0 0 0

s 2
eTC 0 0

Symm : s 2
eBR 0

s 2
eNG

2666666666666664

3777777777777775
⊗ I

0BBBBBBBBBBBBBB@

1CCCCCCCCCCCCCCA
, (7)

where s 2
pb and s 2

eb are respectively the permanent environmental
and residual variances of the bth breed, and I represents an
identity matrix. These permanent environmental and residual
effects were necessarily uncorrelated between traits due to the
mutually exclusive assignment of individuals to breeds.

The (co)variance components and genetic parameters were
estimated using Bayesian inference by Gibbs sampling, with the
Gibbs2f90 program (25) in multi-trait analysis and using a linear
animal model, considering the phenotypic measurement of tick
infestation in each population as a different trait that is
potentially genetically correlated among populations. Analyses
consisted of a single chain of 1,000,000 cycles, with a burn-in
period of 100,000 cycles and a thinning interval of 50 cycles. The
posterior estimates were obtained using the Postgibbsf90
program (25) and the R/coda package (26). These estimated
(co)variance components were used to obtain best linear
unbiased predictions (BLUP) of tick resistance breeding values
under multi- and single-trait scenarios using the Blupf90
software (25).
June 2021 | Volume 12 | Article 620847
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Univariate Genomic BLUP
Univariate breed-specific analyses were performed considering
the records and the marginal model for each bth breed derived
from multi-trait model described above (Equation [3]), as
follows:

yb = Xbbb +  Zbub +  Wbpb + eb : (8)

Similarly, the marginal distributional assumptions were
derived from equations [4], [6], and [7] as:

ub eN 0,Hs 2
ub

� �
, pb eN 0, Is 2

pb

� �
,   and   eb eN 0, Is 2

eb

� �
: (9)

These single trait/breed analyses were used as controls to check
the advantages of jointly analyzing all breeds, and they used the
same variance component estimates as the multi-trait analyses to
maintain equivalent dispersion of breeding values for each breed
under both strategies (single and multi population predictions).

Validation of Genomic Predictions
The utility of our reference populations to predict tick resistance
and future phenotypes in single and multiple trait/breed genomic
analyses was evaluated using the linear regression (LR) approach
proposed by Legarra and Reverter (27). This method measures
the correlation of estimated breeding values (u)̂ between whole
(w) and partial (p) datasets between subsequent genetic
evaluations when phenotypes are added for validation animals,

rw,p =  
cov ûw,û p

� �ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
var ûwð Þvar û p

� �q ,

which is a function of the prediction accuracy with expected value
of E(rw,p)≈ accp/accw. Here acc is the “population accuracy”, i.e.
the correlation between true and estimated breeding values in the
candidates for selection, which is a property of a population, not of
an individual (27). Here, the whole dataset w included the
combined set of all genotyped and phenotyped animals for all
breeds (ranging from 229 to 3,062 individuals) in the multivariate
analyses and the full set of genotyped and phenotyped animals for
each breeds for univariate analyses. The partial datasets were
derived for each population by two strategies, the first was the
old-young where only 2/3 of the phenotypes pertaining to the
older animals were retained in the partial data and the remaining
1/3 younger animals had their phenotypes set to missing and
served as the validation group in both, uni and multivariate
analyses. Additionally, for multivariate analyses only, a second
strategy referred as other-pops consisted of removing from the
analysis all phenotypes of the target population for validation and
deriving predictions exclusively from the genetic correlations of
the target with the other populations/breeds with full datasets
included. When the Pw,p is large (closer to one), the partial data
reliably predicts the whole data. As additional validation statistics,
we calculated the predictive ability defined as the correlation
between phenotypes adjusted for fixed and permanent
environmental effects (y*=yb-Xbbb-Wbpb) and up̂ (r(y*,ûp)) (28),
where ûp is the GEBV with partial data; and the slope of the
regression of ûw on ûp (bw,p), which was used to evaluate the
degree of inflation/deflation of the genomic predictions.
Frontiers in Immunology | www.frontiersin.org 5
RESULTS AND DISCUSSION

Population Genomic Structure
and Diversity
Genomic Diversity
Based on the dispersion of individuals according to the first and
second principal components (PC) of the Gmatrix (Figure 1), it
is possible to identify the distinct genotypic constitution of the
breeds included in the present study and the magnitude of
genetic distance among them. If we analyze this PCA plot
(Figure 1) from a perspective of a triangular form, we would
place BR, HH and AN animals at the vertexes, respectively
located at the lower left, the lower right and upper right
regions of the plot. The composites BO and BN animals are
respectively scattered on the lower and upper sides of the triangle
that connect their founder breeds vertexes. Therefore the first PC
mostly discriminates the percentage of indicine origin while the
second PC genetically distinguished the AN and HH origin. The
TC animals that are an admixture of Brahman, Sanga
(represented mainly by Afrikaner but also some Tuli) and
British/European (primarily Shorthorn and Hereford with
some Charolais) breeds were scattered at the center of the
triangle. Finally, the NG that is also part of the Sanga breed
grouping fell in the PCA plot relatively close to TC samples
towards the center upper left of our perspective triangle.

The clusters for the NG and AN samples have low dispersion
reflecting their genetic homogeneity as opposed to more
scattered and therefore heterogeneous samples of composite
breeds (BN, BO, BR and TC) and HH (Figure 1). However,
this could also reflect some ascertainment bias in the SNP on the
Bovine HD array. The BO was the most genetically diverse breed
group and had partial overlap with the HH samples. This was not
surprising because the Delta G population from which records
FIGURE 1 | Dispersion of individuals according to the first and second
principal components of the G matrix, colored by breed.
June 2021 | Volume 12 | Article 620847
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were derived for the present study is a joint Breeding Program
for purebred (as opposed to full blood) Herefords and Brafords
that range from 1/16 to 7/8 of zebu proportion (29).

Linkage Disequilibrium
The mean ± standard deviation r2 between adjacent SNPs ranged
from 0.24 ± 0.34 to 0.37 ± 0.35 across all chromosomes for cattle
populations from Brazil, Australia, and South Africa. The r2

among chromosomes was similar within all breeds as observed
in Figure 2.

The Brazilian populations of British origin, AN (0.33 ± 0.35)
and HH (0.37 ± 0.35), had higher LD values than the other
populations. The composite breeds from Brazil, BN (0.30 ± 0.28)
and BO (0.31 ± 0.27) and TC (0.30 ± 0.29) from Australia had
intermediate r2 values. Conversely, the NG (0.24 ± 0.34) and BR
(0.24 ± 0.27) breeds had lower r2 among the studied breeds.
Lower LD estimates at short distances are an indication of large
ancestral population sizes and have been reported for indicine
cattle compared to taurine cattle (30–32). This is consistent with
LD estimates in the present study and in the case of NG, an
African taurine population of the Sanga group, a previous report
has also found lower short distance LD compared to European
taurine cattle (33).

Furthermore, the r2 was > 0.3 for more than 40% of
neighboring SNPs only in HH and BO breeds (data not
shown). In relation to the other breeds, the mean r2 > 0.3 were
about 30% for NG and BR and, around 38% for BN, AN, and TC.

Genomic selection relies on LD between QTLs and flanking
SNPs and simulation results demonstrated that, to obtain
sufficiently accurate GEBVs to be useful for breeding decisions,
an average r2 between adjacent markers of 0.20 would suffice [e.g.
(34)]. This was achieved for all chromosomes within all studied
breeds with our 332k SNP panel (Figure 2).
Frontiers in Immunology | www.frontiersin.org 6
Persistence of Phase Across Breeds
The correlations (RA,B) of linkage phase were used to estimate the
haplotype-sharing between pairs of adjacent SNPs across breeds
(Table 2 and Figure 3). The RA,B statistic is useful because the
accuracy of genomic selection across breeds relies on persistence
of the LD phase, though not actually between pairs of SNPs but
between SNP and QTL (7, 8). If the correlation between pairs of
adjacent SNPs is high, then the correlation between the QTL and
SNP should be high as well. In general, if two populations have a
high positive RA,B value, it suggests high LD and the same
haplotype phase in both populations; however, a high negative
value indicates high LD but with reverse linkage phase (7).

The RA,B correlation between adjacent SNP pairs across
chromosomes among Brazilian populations ranged from 0.77
(AN vs. BO) to 0.95 (HH vs. BO) (Table 2). The correspondence
of linkage phase among the Brazilian composites (BN and BO)
and Australian populations (BR and TC) was on average 0.80
and the highest RA,B value was 0.89 between TC vs. BO (Table 2).
Among AN, HH and Australian populations, the RA,B values
varied from 0.63 (AN vs. BR) to 0.87 (HH vs. TC). The smallest
values were found for NG vs. all other breeds (Figure 3). As
observed in the LD (Figure 2), the average RA,B values also vary
across chromosomes within population pairs (Figure 3). This
information is useful to choose marker density that should be
determined according to the lower bound of the chromosome RA,B
averages, particularly if those chromosomes harbor mutations
potentially associated with traits of interest.

De Roos et al. (7) pointed out that finding markers in LD with
QTL across divergent breeds, such as Australian Angus and New
Zealand Jersey, would require a panel of approximately 300,000
markers. This is aligned with our choice of marker density (332k),
but even so, RA,Bwas relatively low for several breed pairs, especially
those including the NG breed, and between taurine AN and HH
FIGURE 2 | Heatmap of linkage disequilibrium (r2) between adjacent markers of the 332k SNP panel by breed and chromosome.
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and indicine BR (Table 2), which are the most divergent breed
groups. The highest RA,B value found between HH and BO indicates
the highest proportion of SNP sharing the same linkage phase for
these breeds and was in agreement with previous findings within the
same populations and a 50k panel (32). It is important to point out
however that genomic prediction across-population or across-breed
accuracies rely not only on the persistence of LD phase across
populations, but also on the trait genetic architecture and size of the
reference populations (35).

Allele Frequency Correlations
Differences across populations were seen in terms of allele
frequencies (Table 2) with correlations between populations
ranging from 0.15 (HH and BR) to 0.88 (HH and BO).
Composite breeds had high correlations among themselves and
with their taurine founder breeds (AN with BN and HH with
BO). As expected low correlations were found between the
indicine BR and the taurine AN and HH, moderately high
correlations were observed between BR and composites (BN,
BO and TC) and medium to moderately high correlations of NG
with all the other breeds.
Frontiers in Immunology | www.frontiersin.org 7
Genomic Selection Parameters
Genetic Correlations and Heritabilities
All 39 estimated variance components passed a convergence test
based on the Geweke’s criterion (36). The mean ± standard
deviation effective number of independent samples (37) for the
genetic parameters was 402 ± 857, ranging from 46 to 4,594. This
wide range of values reflects distinct data information content to
estimate the posterior means of genetic correlations and
heritabilities across the different populations (Table 3).
Hereford showed the lowest h2 for tick counts among the
studied breeds, while the other Brazilian commercial
populations had low to moderate values, in line with
heritabilities typically found for this trait (5). The Australian
BR and TC scores and South African NG averaged counts had
larger estimated values around 0.40 in our multi-trait analysis,
and were are considerably higher than previous results obtained
within-population under single trait analyses of 0.15 for BR (11).
Nonetheless, a similarly high h2 value of 0.42 was reported for
another Tropical Composite Australian population, the Belmont
Red (38) and depending on the time of the year h2 for perineum
tick counts ranged between 0.00 and 0.58 (39). The wide range of
TABLE 2 | Average persistence of phase for adjacent markers (above the diagonal) and correlation of allele frequencies (below the diagonal) between different populations.

Population Angus Hereford Brangus Braford Tropical Composite Brahman Nguni

Angus 0.81 0.81 0.77 0.81 0.63 0.27
Hereford 0.72 0.87 0.95 0.87 0.69 0.28
Brangus 0.77 0.60 0.92 0.88 0.82 0.31
Braford 0.69 0.88 0.77 0.89 0.81 0.32
Tropical Composite 0.67 0.69 0.76 0.81 0.83 0.32
Brahman 0.21 0.15 0.60 0.54 0.55 0.35
Nguni 0.48 0.43 0.66 0.64 0.67 0.67
June 2021 |
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FIGURE 3 | Heatmap of correlation of phase between adjacent markers among breeds and chromosomes (332k panel by chromosome).
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h2 estimates for tick resistance in cattle found in the present and
other studies is related to differences in phenotyping,
environmental control and intrinsic population characteristics.
It is also important to highlight that the NG trait is the average of
log transformed tick count over multiple observations. This may
have lowered the environmental variance and, consequently,
inflated the estimated h2 for the NG breed. The estimated
repeatability for the AN, HH, BN, BO populations that had
repeated measures were, respectively 0.30, 0.16, 0.37, 0.28, with
corresponding standard errors (SE) of 0.001 or less.

The largest genetic correlation among all studied populations
was observed between BN and BO. These two breeds are
composites with about 3/8 of zebu composition, mostly Nelore
in our samples, and the other 5/8 being taurine of British origin,
Angus or Hereford. This result indicates a very similar additive
genetic mechanism for tick resistance in both populations. The
second largest relationship was observed between AN and its
composite with zebu, the BN breed, and this is not surprising
because the average expected contribution of AN to BN is
approximately 62.5%. Even though AN and BN are more
closely related than BN and BO, the higher genetic correlation
between the latter pair could be related to greater indicine impact
on tick resistance (5, 40, 41). Braford and BR had the third largest
genetic association for tick resistance and the only other with a
value above 0.5. Brangus and BR, BO and TC, and BO and HH
had values around 0.4 showing some level of additive genetic
association, but not strong enough to decisively contribute to the
sharing of information among reference populations designed
Frontiers in Immunology | www.frontiersin.org 8
for tick resistance prediction across breeds. All other breed pairs
showed weak genetic correlations between tick phenotypes,
particularly for the NG breed where there was no useful
association pertaining to the improvement of resistance.

Genomic Predictive Ability
Predictive ability, as a measure of the GEBV to predict the
observed phenotype, was improved under the old-young
validation for three of the seven populations using the multi-
trait approach compared to a single trait within-population
prediction. Moreover, we observed improvement for the partial
and whole data GEBV correlation in all cases by using multi-trait
analysis under old-young (Table 4), with relative improvements
ranging from 3% for BO to 64% for TC. Moreover, the multi-trait
analysis was useful to correct typical over-dispersion of GEBV in
all populations except for the BO breed that had no such issue in
both analyses – uni or multivariate for the old-young validation
strategy (Table 4).

The multivariate validations based on data of other
populations only (other-pops), which were included to evaluate
the possibility of predicting tick resistance for populations that
do not have a reference population for this trait, had in general a
poorer predictive performance compared to uni and multivariate
old-young validations for all parameters evaluated (Table 4).
These results emphasize the importance of having consistent
phenotyping strategies and genotypes for populations in which
improving tick resistance is a goal. Nonetheless, prediction
ability retained estimated values that can be considered useful
TABLE 3 | Posterior mean and time series standard errors for genetic correlations (above diagonal) and heritabilities (diagonal) of tick resistance measures across
different populations.

Population Angus Hereford Brangus Braford Tropical Composite Brahman Nguni

Angus 0.27 ± 0.001 0.32 ± 0.03 0.65 ± 0.001 0.42 ± 0.03 0.15 ± 0.04 0.17 ± 0.03 0.17 ± 0.03
Hereford 0.05 ± 0.001 0.39 ± 0.01 0.35 ± 0.01 0.22 ± 0.04 0.01 ± 0.03 0.05 ± 0.06
Brangus 0.21 ± 0.003 0.87 ± 0.01 0.32 ± 0.02 0.47 ± 0.01 0.29 ± 0.05
Braford 0.17 ± 0.001 0.48 ± 0.02 0.59 ± 0.01 0.14 ± 0.05
Tropical Composite 0.42 ± 0.01 0.28 ± 0.02 -0.01 ± 0.05
Brahman 0.39 ± 0.01 0.18 ± 0.03
Nguni 0.37 ± 0.02
June 2021
 | Volume 12 | Ar
TABLE 4 | Predictive ability1 [r(y*,up̂)], regression coefficient (bw,p) and correlation between genomic breeding values (û) predicted from whole (w) and partial2 (p) data
using uni and multivariate ssGBLUP population analyses.

Population r(y*, up̂) bw,p Dw,p

Uni
old-young

Multi
old-young

Multi
other-pops

Uni
old-young

Multi
old-young

Multi
other-pops

Uni
old-young

Multi
old-young

Multi
other-pops

Angus 0.15 0.16 0.07 0.92 1.06 1.06 0.50 0.58 0.22
Hereford 0.05 0.05 0.04 0.99 1.01 0.65 0.56 0.58 0.40
Brangus 0.22 0.25 0.22 0.88 0.93 1.46 0.67 0.72 0.57
Braford 0.24 0.24 0.17 1.01 1.00 1.45 0.76 0.78 0.56
Tropical
Composite

-0.06 0.00 0.21 0.32 0.53 1.74 0.14 0.23 0.35

Brahman 0.13 0.13 0.20 0.77 0.83 1.44 0.57 0.64 0.43
Nguni 0.04 0.04 -0.04 0.79 1.00 -2.11 0.18 0.20 -0.04
1Correlation between phenotypes adjusted for fixed and permanent environmental effects and ûp.
2Partial datasets derived by two strategies: old-young = excluding phenotypes of 1/3 younger animals as validation group; and other-pops = removing all phenotypes of the target
population for validation.
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for applied purposes for BO and BN, and was improved for TC
and BR (Table 4). These results are an indication that a breed
without reference population for tick resistance but with high
genomic relationship and persistence of LD phase with one or
more of our measured populations could be targeted for selection
through such predictions. The greatest challenge for such
application however is to estimate meaningful trait genetic
correlation parameters with the reference populations.

Braford was the breed with highest predictive ability in all
criteria in all analyses: uni or multivariate (Table 4). This was not
surprising since BO has the largest reference population in our
study and moderate trait heritability. Furthermore, the viability
of implementing genomic selection for this breed has been
previously demonstrated with a subset of our BO/HH data (4).
Despite being highly correlated with BN and BR, there was
minor improvement for BO in the old-young multi-trait analysis,
as there was already considerable information for this breed. In
fact BN and BR were the breeds that benefit most in terms of
accuracy in the multi-breed multi-trait analyses, likely through
their genetic linkage to BO tick resistance.

The HH breed with the second largest reference population in
our sample had a low predictive ability (Table 4) in agreement
with the very low h2 for tick counts of this breed (Table 3).
Nonetheless, the estimated correlations of GEBV for whole and
partial data can be considered of medium value and useful
enough to allow practical use of genomic selection to improve
tick resistance of this breed. There was a minor improvement
from old-young uni to multivariate analysis basically attributable
to a medium genetic correlation with the BO breed (Table 3) and
other breeds in the study. In both old-young analyses, HH
predictions can be considered unbiased given the bw,p values
close to 1 in Table 4.

Angus and BN breeds had similar population sizes close to
1,000 animals and over 2,200 records, their tick count h2 were in
the medium range, and in both populations we observed
prediction results that ensure the possibility of improving tick
resistance through genomic selection (Table 4). Brangus had,
however, slightly better predictive abilities and GEBV
correlations for uni- and multi-variate analyses than AN. The
estimated genetic correlations were positive and of strong
magnitude between BN and BO, AN and BN, and AN and BO,
resulting in improvements of practical importance for all
prediction measures in the old-young multivariate validations
for these populations. These results support a joint evaluation to
implement genomic selection for tick resistance. A similar
strategy has been suggested for an international genetic
evaluation of feed intake in dairy cattle for high-input
production systems (6).

The largest improvements were observed for the TC
population (Table 4), which had the smallest reference
population with only 229 individuals. Nonetheless, the genetic
correlation of their tick score phenotypes with other larger
populations (Table 3), particularly the medium value with
Brafords, was not strong enough to yield prediction with useful
correlations to be immediately implemented in practical
genomic selection. The results, however, indicate that perhaps
Frontiers in Immunology | www.frontiersin.org 9
even a modest additional effort of phenotyping in this population
could suffice for future adoption of genomic prediction for tick
resistance of Tropical Composites.

Even though the BR breed had a modest reference population
of 675 animals, it had the third highest GEBV correlations in old-
young uni and multivariate analyses (Table 4) due to the high
heritability of their tick scores. With a high genetic correlation
with the BO and a medium genetic correlation with BN, BR
prediction accuracies and dispersions were improved when using
a joint multi-population evaluation of tick phenotypes.

Finally, the NG breed had low predictive ability and GEBV
correlation (Table 4) likely reflecting modest sample size. These
results were not substantially improved when using the
multivariate analysis due to overall low genetic (Table 3) and
phase (Table 2) correlations of Ngunis with the other
populations in our study. The poorer results and relationships
for Nguni may reflect factors other than the genetic mechanisms
of host tick resistance. For example there are multi-host tick
species in South Africa [e.g. (3)] that are not present in either
Brazil or Australia, so the counts may simply be a reflection of
those different tick species possibly having different mechanisms
of resistance (42).

Another factor that could also explain this lower accuracy of
prediction for NG could be the time and body location of counting.
In the Australian and Brazilian data, tick counts only occurred at
times of the year when there was large phenotypic variation and
assessing one whole side of the animal, while for the NG population
perineum counts occurred throughout the year and the averaged
data used in the present study included counting times that would
not meet the phenotyping requirement of at least 20 ticks per side of
each animal, averaged over at least 15 animals (42). Therefore,
additional phenotyping and genotypingmust be pursued within this
breed before practical genomic selection can be implemented to
increase its tick resistance.

A recent review of the scientific literature identified possibly
simpler, more cost-effective phenotype(s) for tick resistance, which
if developed and validated, could be used to greatly enlarge the
reference populations for genomic prediction and to improve the
accuracy of GEBV for this trait, as well as potentially improving
tick control through cattle management (42).

Even though more extensive phenotyping should be a
continuous effort to improve the accuracy of GEBV for tick
resistance, old-young validation results from this study
(Tables 3, 4) indicate that a joint genomic evaluation of
Angus, Hereford, Brangus, Braford and Brahman using
multivariate genomic BLUP can be readily implemented to
improve tick resistance of these populations using genomic
predictions. The extent of improvement of accuracy of GEBV
for a breed from the multi-population approach largely reflect
the extent of LD phase between the breeds, except for cases such
as BO where the reference population is already relatively large.
Even for these breeds, the accuracy from using multi-breed
information may be further improved if sequence data is used,
provided the same mutations are segregating across the breeds
(which is quite likely in composite breeds), such that correlations
would be essentially 1 (43).
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