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Abstract: Commercially available autonomous photochemical reflectance index (PRI) sensors are a
new development in the remote sensing field that offer novel opportunities for a deeper exploration
of vegetation physiology dynamics. In this study, we evaluated the reliability of autonomous PRI
sensors (SRS-PRI) developed by METER Group Inc. as proxies of light use efficiency (LUE) in an aspen
(Populus tremuloides) forest stand. Before comparisons between PRI and LUE measurements were
made, the optical SRS-PRI sensor pairs required calibrations to resolve diurnal and seasonal patterns
properly. An offline diurnal calibration procedure was shown to account for variable sky conditions
and diurnal illumination changes affecting sensor response. Eddy covariance measurements provided
seasonal gross primary productivity (GPP) measures as well as apparent canopy quantum yield
dynamics (α). LUE was derived from the ratio of GPP to absorbed photosynthetically active radiation
(APAR). Corrected PRI values were derived after diurnal and midday cross-calibration of the sensor’s
532 nm and 570 nm fore-optics, and closely related to both LUE (R2 = 0.62, p < 0.05) and α (R2 = 0.72,
p < 0.05). A LUE model derived from corrected PRI values showed good correlation to measured
GPP (R2 = 0.77, p < 0.05), with an accuracy comparable to results obtained from an α driven LUE
model (R2 = 0.79, p < 0.05). The automated PRI sensors proved to be suitable proxies of light use
efficiency. The onset of continuous PRI sensors signifies new opportunities for explicitly examining
the cause of changing PRI, LUE, and productivity over time and space. As such, this technology
represents great value for the flux, remote sensing and modeling community.
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1. Introduction

The light use efficiency (LUE) model [1,2] has provided an avenue for quantifying the terrestrial
carbon cycle using remote sensing data [3,4]. The LUE model can be conceptualized as being driven
by structural and pigment pool changes in vegetation and, secondly, by the physiological status
described by the vegetation’s photosynthetic process [5]. The structural component is quantified
by the amount of photosynthetically active radiation absorbed by the canopy (APAR); while the
physiological component is described as the efficiency by which the absorbed light, or light use
efficiency (LUE), is used to fix carbon during a specific period. Much work has been done in displaying
a relationship between optical remote sensing and the APAR term, although it is not without error and
complexity [6–11]. However, as LUE variability can be driven by multiple individual and combined
factors, the connection between efficiency and remote sensing signals have been harder to characterize,
leading to considerable uncertainty in many ecosystems [12–14]. Some of the physiological effects on
light use efficiency include changing climatic conditions, temperature, water availability, phenology,
vegetation functional type, and vegetation species [15–22]. These complex interactions confound the
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parametrization of in LUE in global productivity models, and, as such, efforts continue towards the
better accounting of efficiency changes that would, in turn, lead to more accurate CO2 flux estimations.

Developments in proximal and spaceborne remote sensing have led to advances in estimating
vegetation LUE at the leaf level, stand level, and whole ecosystem resolutions [14,23–25]. One of
the main proposed tools to do so is through the use of the photochemical reflectance index (PRI).
First developed in leaf level studies, this vegetation index has been shown to be a proxy of xanthophyll
pigment activity and closely linked to photosystem II (PSII) photochemical efficiency [23,26,27].
During periods of light saturation and excess energy PSII centers remain in a reduced state, leaving
them susceptible to photoinhibitory damage [28]. Non-photochemical quenching (NPQ) performed
through the chemical transformation of carotenoid pigments that compose the xanthophyll cycle
prevent damage to photosynthetic centers. More specifically, NPQ of excess light is done through the
de-epoxidation of violaxanthin to the photoprotective pigment zeaxanthin, with antheraxanthin acting
as a transitional pigment [28–30]. De-epoxidation provides a sink for excess energy and a method of
light regulation that can be measured optically via the PRI [27,31,32]. PRI tracks short-term decreases
in reflectance at 531nm that occur in response to increased zeaxanthin concentrations and shrinking
chloroplast (associated with increased thylakoid pH) resulting from xanthophyll de-epoxidation [23,27].
The index uses reflectance at 570 nm (insensitive to NPQ) as a reference band.

Testing of PRI over seasonal timescales for foliar, canopy and ecosystem level scales has shown
PRI to be a good indicator of physiological efficiency across different vegetation types and scales,
however, with numerous temporal and spatial challenges [24]. Radiative transfer modeling studies
have identified a number of confounding factors including leaf area distribution, soil type, and view
and illumination angles affect the interpretation of PRI [33,34]. Additionally, in situ studies have
shown a strong effect of chlorophyll/carotenoid ratios on seasonal PRI [24]. These changes in pigment
pool sizes can account for a significant proportion of seasonal PRI (constitutive) changes, compared
to those driven by xanthophyll cycle activity (facultative changes), and lead to misrepresentations of
the PRI-photosynthetic relationship [19,35–38]. As such, seasonal studies are needed to characterize
the effects of vegetation structure changes and identify the facultative and constitutive components in
PRI [39]. However, few long-term studies with the necessary dense time-series measurements over
varying ecosystems exist, and some of these rely on satellite-based data with low temporal resolutions
that do not allow the separation of facultative and constitutive effects. Perhaps for this reason,
some comparisons of satellite-based PRI and LUE across ecosystems have resulted in contrasting
PRI-LUE relationships for different ecosystems [40,41].

The lack of accessible and cost-effective data, available at meaningful temporal or spatial scales,
has limited the testing of PRI functionality at ecosystem levels. For example, a 16-day MODIS composite
lacks the temporal resolution to resolve short-term xanthophyll cycle changes. This has contributed to
slow integration and comparison to micrometeorological data and ecosystem monitoring networks [42].
However, the recent availability of inexpensive PRI specific narrowband radiometers [43–45] has opened
the possibility of attaining continuous PRI measurements at low cost. The high temporal resolution
of automated optical sensor systems would allow improved accounting of physical and physiological
variables affecting diurnal and seasonal PRI measurements and help interpret LUE changes over a
phenological cycle. Additionally, continuous PRI measurements allow for their integration with eddy
covariance flux measurements, which in turn provides additional ecophysiological validation for PRI as
an LUE proxy at ecosystem scales.

For this study, we utilized newly commercially developed automated PRI spectral reflectance
(SRS-PRI) radiometers and eddy covariance data to explore the LUE dynamics in a deciduous boreal
forest. As such, the objectives of this paper are to (1) determine if automated SRS-PRI values can be
used as a proxy of canopy light use efficiency and apparent canopy quantum yield over an aspen forest
and (2) to explore how continuous PRI measurements can be leveraged to better inform ecosystem
scale LUE models.
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2. Materials and Methods

2.1. Study Area

The study was conducted at the Peace River Environmental Monitoring Super Site (PR-EMSS)
within the Ecosystem Management Emulating Natural Disturbance (EMEND) site, located
approximately 90 km northwest of Peace River, AB, Canada (Figure 1). This region is part of the
Lower Foothills Natural Subregion [46]. The study plot, located at 56◦44′38.10′′ N, 118◦20′38.08′′ W,
with an altitude of 867 m ASL, is characterized as an old growth stand of trembling aspen (Populus
tremuloides). There are two vertical vegetation layers; the understory reaching a height of 3 m, while the
overstory canopy growing to 12–15 m. Its topography is slightly sloping (<2%) in the west direction.
The predominant wind direction is from the west. Mean annual air temperature is 0.6 ◦C and mean
annual precipitation is 436.2 mm, with approximately 29% falling as snow [47]. Soils are primarily
Orthic and Dark Gray Luvisols and have a depth of 1 m on average [48]. The study site has been
monitored since 2013 with an eddy covariance system and meteorological station installed on a 30 m
tower located at the eastern edge of the forest stand. Proximal remote sensing sensors, comprising
of PRI and broadband spot radiometers mounted on the tower allowed the tracking of forest stand
phenology, as well as monitoring the incoming and canopy reflected light. A wireless sensor network
(WSN) continually measured the transmitted photosynthetic photon flux density (PPFD) within
the canopy, providing continuous measurements of fraction of absorbed photosynthetically active
radiation (fAPAR).
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Figure 1. Location of the Peace River Environmental Monitoring Super Site (red star). Red triangle
shows the location of the flux tower at the edge of an old growth deciduous boreal forest. The tower
contains eddy covariance system, meteorological sensors, and proximal remote sensing sensors.
A Wireless Sensor Network (WSN) composing of 36 nodes is located east of the eddy covariance
tower, within the flux footprint.

2.2. Reflectance Measurements and Vegetation Indices

2.2.1. Spectral Reflectance Sensors (SRS)

Spectral data was collected through the use of commercial automated SRS-PRI sensors with
an Em50 datalogger (METER Group. Inc., Pullman, WA, USA). PRI sensors contain photodiodes
with interference filters at selected peak wavelengths 532 ± 2 and 570 ± 2 nm with 10 nm full width
half maximum (FWHM) bandwidths. Photodiode and filter construction was based on prototypes
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reviewed by Garity et al. [43]. Downward looking PRI pairs contain field stops, restricting the field
of view (FOV) at 36◦. Upward looking pairs contain Teflon cosine diffusers allowing near 180◦ FOV.
They provide continuous irradiance measurements used to normalize radiance spectral responses
measured through the downward looking sensor pair. Upwelling and downwelling PRI sensors were
placed on a 25 m tower and positioned 10◦ off-nadir at an approximate distance of 10–12 m from the
top of the canopy, representing a footprint of approximately 50 m2 towards the eddy covariance area
of influence.

Each sensor produced a radiance and irradiance output, for each waveband (532 nm and 570 nm)
at 1-minute intervals throughout the 2015 season. Data points were filtered to remove precipitation
events which caused significant signal noise attributed to water droplets accumulating on the flat
Teflon cosine diffusers of the hemispherical sensor pair. Uncorrected reflectance at each waveband
was expressed as the ratio of measured radiance (r) to irradiance (i) (Equations (1) and (2)) and used to
calculate uncorrected PRI (Equation (3)):

ρ532 =
r532

i532
(1)

ρ570 =
r570

i570
(2)

PRI =
ρ532 − ρ570

ρ532 + ρ570
(3)

where ρ represents reflectance at a specific wavelength. Calculated PRI values were averaged over
30 min to match eddy covariance binned measurements. PRI values were expressed as scaled PRI
(sPRI) using the formula [49,50]:

sPRI =
(1 + PRI)

2
(4)

which transformed PRI values into a 0–1 range commonly used in remote sensing vegetation indices.
Before and after field deployment, the sensors underwent a series of cross-calibration and sensor response
validation experiments. Details of these experiments are outlined in Sections 2.2.2 and 2.2.3 below.

2.2.2. SRS-PRI Sensor Cross-Calibration

A cross-calibration procedure is required to account for differences in sensor response and
fore-optics [51]. The cross-calibration process allows for the normalization of irradiance and radiance
outputs under varying light conditions. Gamon et al. [44] outlined a procedure for both midday and
diurnal cross-calibration, noting that diurnal calibrations best represent xanthophyll cycle epoxidation
states. Due to the remoteness of our study site and the manual nature of cross-calibration, both
the midday and diurnal cross-calibration procedures were done prior and subsequently to field
deployment, following the general principles outlined by Gamon et al. [44].

SRS-PRI sensors were placed at the height of 30 cm over a 99% reflective white standard panel
(Spectralon, Labsphere Inc., North Sutton, NH, USA), ensuring that the downward-looking sensor’s
FOV covered the standard. The upward-looking sensor simultaneously monitored the sky’s irradiance
conditions. The sensor pair measured continuously over a 23-day period. A pyranometer (SP-110,
Apogee Instruments Inc., Logan, UT, USA) logged on a wireless sensor node (ENV-LINK-MINI,
LORD Microstrain®Sensing Systems, Williston, VT, USA) was used to monitor incident radiation,
sampled at 1-minute intervals. This radiation data was used to characterize the various illumination
conditions over the experimental period, which varied from overcast to clear and sunny conditions.
A solar radiation calculator (SolRad), developed by the Washington State Department of Ecology,
provided modeled global radiation on a horizontal surface using the Ryan-Stolzenbach model [52].
Percent illumination was derived by comparing modeled to measured radiation data throughout the
experiment. The 23-day experimental period allowed us to capture a nearly complete spectrum of
illumination conditions (15–100%) over a full set of diurnal solar elevations (0◦–56◦). Solar elevations,
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defined as the angle between the horizon and the sun, were determined using NOAA’s solar position
calculator (https://www.esrl.noaa.gov/gmd/grad/solcalc/).

Cross-calibration responses as a function of illumination were calculated for every 3◦ solar
elevations bin throughout the diurnal range. Three-degree bins were chosen as they represented
approximately 30 min time intervals during the morning and evening periods where solar elevation
changed most rapidly. A set of cross-calibration functions were derived for each sensor waveband.
Percent illumination and solar elevations were calculated for onsite data collected during the
2015 season. Cross-calibration ratios derived from the set of empirical calibration functions were
used to calculate corrected reflectance (ρcorrected) as follows:

ρcorrected = ρuncorrected
′Cross−calibration ratio′

=
rtarget/isky

rstandard/isky

(5)

where rtarget represents radiance from the canopy, rstandard represents radiance from the white standard,
and isky represents irradiance from sky conditions. Midday cross-correlation functions were also
derived for each sensor waveband and used to calculate midday corrected reflectance following
Equation (5). Diurnal and midday corrected reflectance were used to calculated (diurnal and midday)
corrected PRI following Equation (3). Corrected PRI values were averaged over 30 min to match eddy
covariance data.

2.2.3. Sensor Response Validation

A dual-channel field spectrometer (Unispec-DC, PP-Systems, Amesbury, MA, USA) was used to
validate the spectral response of the SRS-PRI sensors independently. Additionally, diurnal spectrometer
measurements were collected in concert with cross-calibration data to confirm the effect and accuracy
of mid-day vs. diurnal cross-calibration efforts. The Unispec-DC is a high precision spectrometer able
to provide simultaneous measurements of radiance and irradiance, has a spectral range of 310–1100 nm,
and a 3.3 nm FWHM. The upwelling/radiance was collected using a 2 m fiber optic cable (600 µm
HCS LOH, SMA-Custom Ferrule-100 mm, Uni-684, PP Systems) with a 9 mm FOV restrictor providing
a modified FOV of 18◦. For the downwelling/irradiance, a similar 2 m fiber optic cable was used
(600 µm HCS LOH, SMA-Custom Ferrule-25 mm, Uni-686, PP Systems) with the addition of a cosine
head (UNI435, PP Systems) allowing near 180◦ FOV.

Validation experiments consisted of the sampling the diurnal response of a ~1 m tall Populus
tremuloides seedling stand, simultaneously, with the field spectrometer and SRS sensors, throughout a
5-day period. The spectrometer’s radiance fore-optic and SRS-PRI field-of-view pair were placed at
matching height (0.37 m) above the canopy, producing a target footprint of about 1.0 m2. The SRS-PRI
sensors log every minute continuously throughout the diurnal cycle; while the spectrometer
measurements were collected every minute for 10 min on the hour throughout the diurnal cycle.

Spectrometer reflectance data was corrected using a 99% reflective white standard panel
(Spectralon, Labsphere Inc.). Corrected reflectance was expressed as:

ρcorrected =
rtarget

isky
×

isky

rstandard
(6)

where ρcorrected represents corrected reflectance. The first term (rtarget/isky) represents the raw
reflectance, expressed as a ratio of the upwelling radiance to the downwelling irradiance over the
target. The second term (isky/rstandard) represents the cross-calibration value, calculated as a ratio
of the downwelling irradiance to the radiance of the standard panel [44]. Corrected reflectance at
531 nm and 570 nm was used to derive a scaled photochemical reflectance index (sPRI). Corrected
sPRI measurements from SRS-PRI sensors were compared to the spectrometer derived sPRI to validate
the accuracy of these automated sensors.

https://www.esrl.noaa.gov/gmd/grad/solcalc/
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2.3. Broad Band Optical Sensors and Wireless Sensor Network (WSN)

A wireless sensor network (WSN), composing of 36 nodes, was used to measure the fraction
of absorbed photosynthetically active radiation (fAPAR). The WSN sensor nodes were arranged in
a hexagonal pattern, spaced every 20 m over a one-hectare plot located within the flux footprint.
The spatial extent of the WSN footprint accounted for approximately 55% of measured flux measurements.
Additional details on the WSN deployment and technical capabilities can be found in Rankine et al. [53].
Individual nodes were outfitted with an upward and downward facing quantum sensors (SQ-110, Apogee
Instruments Inc.), providing transmitted PPFD and soil reflected PPFD measurements, respectively.
Additional nodes were placed on the flux tower, positioned above the canopy. Upward and downward
looking quantum sensor pairs provided measurements of incident and reflected PPFD, respectively.
The sampling interval of WSN nodes was 15 min. fAPAR was calculated using the equation:

f APAR = 1− t− r + (t× rs) (7)

where t is the fraction of transmitted radiation, r is the reflected radiation from the canopy, and rs is the
soil reflectance component.

A broadband normalized difference vegetation index (NDVI) was derived from upward and
downward looking quantum and pyranometer pairs installed on the flux tower, positioned above the
canopy. Spot radiometers had a sampling interval of 10 min. Broadband NDVI was calculated using
the equation:

NDVI = (ρPYR − ρPPFD)/(ρPYR + ρPPFD) (8)

where ρPYR is the solar radiation reflectance calculated from the upwelling:downwelling radiation from
pyranometer pairs; and ρPPFD is the total reflectance of PPFD derived from upwelling: downwelling
PPFD sensor pairs. Broadband NDVI values have been shown as adequate proxies of narrowband NDVI
measurements [54]. Seasonal NDVI values were used to identify phenologic stages. A second derivative
function was used to identify the transitions from maturity to leaf senescence (21 August 2015).

2.4. Light Use Efficiency Calculations

LUE was derived following traditional remote sensing methodology through the rearrangement
of the LUE model as follows:

LUE =
GPP

( f APAR× PPFD)
=

GPP
APAR

(9)

where GPP is the gross primary productivity, derived from eddy covariance measurements, and the
absorbed photosynthetically active radiation (APAR) is the product of f APAR and PPFD. LUE values
were derived at both diurnal and seasonal time scales. LUE values were expressed as 30 min.
binned averages.

2.5. Micrometeorology Measurements

2.5.1. Micrometeorology Instrumentation and Processing

The eddy covariance (EC) method [55–57] was used to measure net ecosystem CO2 exchange (NEE)
(µmol m−2 s−1), (latent heat (LE) (W m−2), and sensible heat (H) (W m−2) fluxes during the 2016 growth
cycle. This consisted of a fast response (20 Hz) closed-path infrared gas analyzer (IRGA) (model EC155,
Campbell Scientific Inc., Logan, UT, USA) and a three-dimensional sonic anemometer (model CSAT-3A,
Campbell Scientific Inc.). The system was installed on a scaffold tower at 25 m above the forest floor.
The sonic anemometer and IRGA share integrated electronics and communications to reduce logging
lag, as part of the CPEC200 EC system (Campbell Scientific). Both sensors have a sampling frequency
of 20 Hz, logged with a CR3000 datalogger (Campbell Scientific, Logan). A complete weather station
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(model HOBO U-30-NRC Weather Station, Onset Computer Corp., Bourne, MA, USA) provide ancillary
meteorological variables including temperature (Tair), relative humidity (RH), vapor pressure deficit
(VPD), precipitation, soil temperature, soil volumetric water content (VWC), soil heat fluxes, and net
radiation. Remote communication to all micrometeorological instrumentation was provided through an
Iridium satellite connection (Upward Innovations Inc., East Falmouth, MA, USA).

High-frequency eddy covariance data was processed using EddyPro® software (LI-COR
Inc., Lincoln, NE, USA) and IBM streams® (IBM, Armonk, NY, USA). Vertical CO2 flux (NEE)
(µmol m−2 s−1) was expressed as the product of mean air density and the covariance between
instantaneous vertical wind velocity and concentration fluctuations.

NEE = −ρaw′s′ (10)

where ρa is the dry air density (mol m−3), w is the instantaneous vertical wind speed (m s−1), and s
is the molar mixing ratio (mol mol−1 dry air). The negative sign follows meteorological notation,
where negative NEE values represented net CO2 uptake into an ecosystem, and positive values
represent net CO2 release into the atmosphere.

Eddy covariance data corrections included time lag correction [58], despiking data outliers [59],
double coordinate rotation [60], high-pass and low-pass filtering [56,61], and Webb-Pearman-Leuning
(WPL) correction [62]. Fluxes were calculated at 30-minute block averages. Flux-footprint analysis’
were performed following the Kljun et al. [63] parametrization. Precipitation events were not explicitly
removed from the dataset. However, diagnostic/error flags associate with IRGA and SAT instrument
failure, including during heavy rainfall, were used as a filter. A requirement of 80% data coverage was
applied for each 30-minute averaging interval.

2.5.2. Flux Partitioning

Eddy covariance NEE measurements were partitioned into gross ecosystem productivity
(GPP) (µmol m−2 s−1) and respiration (Reco) (µmol m−2 s−1). Reco was calculated using the
Reichstein et al. [64] partitioning algorithm. Periods of poor mixing, identified by low frictional
velocity (u* < 0.21 m s−1) and representing possible unreliable NEE measurements, were removed.
A light-response curve model [65–68] was used as an independent method for GPP derivation and
calculations of apparent quantum yield. This method uses rectangular hyperbolic functions to express
the response of photosynthesis to radiation, using the general expression:

NEE = −
(

Amax·α·PPFD
Amax + α·PPFD

)
+ R10Q(Tair−10)/10

10 (11)

where Amax is the maximum carbon assimilation, or GPP, (µmol m−2 s−1) at maximum photosynthetic
photon flux density (PPFD) (µmol m−2 s−1); α is the apparent quantum yield calculated from the initial
slope of the light-response curve (mol CO2 mol−1 PPFD); R10 is the ecosystem respiration rate at 10 ◦C
(µmol m−2 s−1); Q10 is the respiration temperature response coefficient during temperature changes
of 10 ◦C; and Tair is the air temperature (◦C). Amax, α, R10 and Q10 variables are resulting outputs of
the non-linear least square, Gauss-Newton, regressions applied (using the statistical package Systat10,
Systat Software, Inc., San Jose, CA, USA, 2000), of the input diurnal meteorological (PPFD and Tair)
and NEE flux data. Before light-response curves were derived, NEE data was binned over two days to
derive representative diurnal patterns.

3. Results

3.1. Sensor Calibrations and Validation

For each of the SRS-PRI sensor pairs (532 nm and 570 nm), cross-calibration ratios showed a
strong linear relationship to illumination but varied in response to solar elevation. At low elevations,
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functions had steeper slopes and, therefore, showed higher sensitivity to illumination changes (Figure 2a).
Illumination sensitivity decreased as solar elevation increased and functions were near horizontal at
solar elevations of >52◦, which represented peak solar noon elevations at our site. For both the 532 nm
and 570 nm pairs, the difference in signal (radiance − irradiance) between the hemispherical and
field stop fore-optics over the white balance (Figure 2b) decreased with diffused light observed cloudy
conditions. This effect leads to calibration functions with negative slopes where cross-calibration ratios
were higher during low illumination than high illumination. Boxplot distributions of cross-calibration
functions (Figure 3) show an overall decrease in variability as sun elevation increased towards higher solar
elevations. This was expected as low sun angles cause higher specular reflectance. However, generally,
cross-calibration ratios were within range of theoretical radiance/irradiance ratio value of 0.318 [69].
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Figure 2. (a) Example of midday and diurnal cross-calibration functions for the 532 nm SRS-PRI
fore-optic. Cross-calibration ratios are shown as a function of sun elevation (binned every 3◦).
Illumination of 100% represents clear and sunny sky conditions. (b) Example of the observed signal
difference (radiance − irradiance), in machine units, as a function of illumination percentage for the
41◦–43◦ solar elevation bin. Radiance and irradiance measurements were collected from the 532 nm
SRS-PRI sensor pair.

The diurnal corrections were applied by first matching the empirical cross-calibrations functions
with the solar elevations of each SRS-PRI data points. Then, the derived percent illumination of each
point was used to automatically determine the cross-calibration multipliers and derive new corrected
reflectance SRS-PRI values. Scaled photochemical reflectance index (sPRI) values were derived from
corrected SRS-PRI. A similar process was applied for the midday correction procedure; however,
instead of accounting for continuous changes in solar elevation, only daily solar noon elevations were
used to select the appropriate empirical cross-calibration response. Solar noon elevations at our site
varied from 24.28◦ to 56.36◦ (fall and summer, respectively). Both diurnal and midday cross-calibration
procedures (Figure 4a) had a significant effect on the sPRI diurnal pattern. Each of the corrections
caused a downward shift in midday sPRI values as well as a sharper recovery during the start and end
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of the day. These patterns more closely represented the spectrometer derived sPRI diurnal pattern
than that formed by the uncorrected SRS-sPRI values. In particular, the dynamic pattern of the diurnal
cross-calibration best represented the reference spectrometer shape. Regression analysis (Figure 4b) of
diurnal corrected SRS-sPRI values and spectrometer sPRI showed a strong linear correlation (R2 = 0.78,
p < 0.05). Diurnally corrected and uncorrected values were also significantly correlated to spectrometer
sPRI (R2 = 0.72, p < 0.05 and R2 = 0.62, respectively).Sensors 2018, 18, x 9 of 23 
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3.2. Meteorological and Carbon Flux Data

Seasonal time series of net ecosystem exchange (NEE), gross primary productivity (GPP),
and respiration (Reco) were compared to meteorological variables and allowed the identification of
climatic drivers directing intra-seasonal variability in carbon fluxes. Key connections between carbon
fluxes and meteorological variables provided indications of the underlying mechanisms affecting
vegetation efficiency over the season and during individual phenologic stages (maturity and leaf
senescence). A more detailed analysis of carbon fluxes and meteorological data can be found in
Appendix A. PPFD appeared to be a strong driver of productivity during maturity. Comparison of
diurnal patterns of GPP and PPFD (Figure 5) showed significant correlations during the months of June
(R2 = 0.91, p < 0.05), July (R2 = 0.90, p < 0.05), August (R2 = 0.85, p < 0.05), and September (R2 = 0.80,
p < 0.05). Productivity during the leaf senescence months, April and October, showed no association to
PPFD conditions.Sensors 2018, 18, x 11 of 23 
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A combination of meteorological factors affecting apparent quantum yield (α) made it hard to
determine the proportion of effect of each variable and how these may change over the growing
season. However, some key components were identified and further discussed in the Appendix A.
Seasonal comparison of GPP and α (Figure 6a) were poorly correlated (R2 = 0.33) over the whole
season. However, during leaf senescence, (Figure 6b) as GPP starts to decline, GPP and α showed
similar temporal changes and were significantly correlated (R2 = 0.73, p < 0.05).
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Figure 6. (a) Time series and (b) regression analysis of gross primary productivity (GPP) and apparent
canopy quantum yield (alpha). Correlation between GPP and alpha was analyzed for the whole season
(black), maturity (green), and leaf senescence (brown).

3.3. Comparison of Light Use Efficiency Parameters and Canopy Structure Parameters

SRS-sPRI values were compared to LUE and α to determine its suitability as a proxy of light use
efficiency. Comparison of SRS-sPRI and LUE time series (Figure 7a) showed similar seasonal patterns
and were significantly correlated (R2 = 0.62, p < 0.05). PRI was also able to resolve periods of high
LUE changes.

However, smaller fluctuations observed throughout the LUE time series were not as clearly
resolved by the SRS sensors. Further separation of the LUE–SRS-sPRI relationship by phenologic
stages (Figure 8a) showed higher correlation during maturity (R2 = 0.54) than during leaf senescence
(R2 = 0.43). Also, higher variability in SRS-sPRI values was observed during maturity (σ = 0.15) than
during leaf senescence (σ = 0.069). Correlation analysis of SRS-sPRI and α (Figure 7b) showed a strong
significant correlation (R2 = 0.72, p < 0.05). Temporal dynamics of α were also able to be better tracked
by SRS-sPRI, especially during maturity (Figure 8b) (R2 = 0.67). During leaf senescence (Figure 8b),
SRS-sPRI started to increasingly depart from α values leading to a weaker relationship (R2 = 0.51).
Comparison of LUE and α (Figure 7c) resulted in highly correlated arrays (R2 = 0.88, p < 0.05). The α

time series followed the dynamic changes in LUE but with less short term variations, likely due to the
2-day temporal binning methodology used to calculate the α term.
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Figure 7. Time series (left panels) and regression plots (right panels) of (a) light use efficiency (LUE)
and scaled photochemical reflectance index from SRS sensors (SRS-sPRI), (b) apparent quantum yield
(alpha) and SRS-sPRI, and (c) LUE and α. Dotted lines in regressions plots (right panels) show linear
regressions fitted to the data.
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Parametrization of light use efficiency must be done on the basis of green vegetation [5].
As collected fAPAR values represented the total light conditions of the forest stand, an NDVI-f APAR
relationship (Figure 9) was established to ensure that fAPAR was, in fact, a good proxy of vegetation
greenness changes. Daily NDVI and f APAR values strongly correlated (R2 = 0.96, p < 0.05), but the
relationship was non-linear. NDVI was seen to saturate as values reached above approximately
0.65 (f APAR ≈ 0.75). The effect of canopy structure and pigment pool changes on the PRI signal was
evaluated by comparing SRS-sPRI values with measured f APAR. Analysis of the seasonal relationship
(Figure 10a) showed f APAR and SRS-sPRI as being poorly correlated (R2 = 0.14, p > 0.05). The seasonal
time series was further divided into maturity and leaf senescence, and correlations were derived
(Figure 10a). During maturity, we observed a poor relationship between f APAR and SRS-sPRI values,
suggesting a minimal effect of canopy structure on PRI signals. However, during leaf senescence,
a linear relationship (R2 = 0.52, p < 0.05) formed between f APAR and SRS-sPRI values. To confirm the
effect of canopy structure on efficiency during maturity and leaf senescence, the same comparisons
were performed using LUE values, and lead to comparable results (Figure 10b).Sensors 2018, 18, x 14 of 23 
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Figure 9. NDVI-f APAR relationships derived from daily values. NDVI was calculated from broadband
spot radiometer sensors. f APAR was derived from the wireless sensor network (WSN) composing of
36 nodes measuring canopy transmitted light. Dotted line represents polynomial regression fitted to
the data: y = −1.9596 χ2 + 2.954x − 0.3484, R2 = 0.96.
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Figure 10. Relationship between fraction of absorbed photosynthetically active radiation (f APAR) and
(a) scaled photochemical reflectance index from SRS sensors (SRS-sPRI), and (b) light use efficiency
(LUE). Comparisons are shown for the combined season (black) as well separated into maturity (green)
and leaf senescence (brown) phenologic stages.
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3.4. Light Use Efficiency Models

SRS-sPRI and α values were used to derive light use efficiency models and compared to GPP to
assess each model’s accuracy. APAR values were also compared to GPP (Figure 11a) to determine
its contributing proportion to the overall model. APAR closely tracked temporal changes in GPP
throughout maturity, however, during leaf fall GPP and APAR show differing paths. The LUE model
constructed from α values (Figure 11b) was significantly correlated to GPP (R2 = 0.79, p < 0.05).
The model’s closest association to GPP occurred during leaf senescence, as GPP started to decline.
The light use efficiency model driven by the SRS-sPRI dataset (Figure 11c) had very similar results
to that of the α based model and showed significant correlations to GPP (R2 = 0.77, p < 0.05). Again,
the GPP and models’ paths were most closely associated during senescence, as leaf fall initiated.
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Figure 11. Time series (top panels) and regressions (bottom panels) of (a) absorbed photosynthetically
active radiation (APAR) and gross primary productivity (GPP), (b) light use efficiency (LUE) model
driven by apparent quantum yield (α) and GPP, and (c) light use efficiency (LUE) model driven by
scaled photochemical reflectance index from SRS sensors (sPRI) and GPP.

4. Discussion

As suggested in other studies [70–73], our results show that a cross-calibration must be performed
to properly calibrate automatic optical sensors. Uncalibrated SRS-PRI values did not have good
agreement with spectrometer PRI values. Unlike results from Gamon et al. [44], both diurnal and
midday calibrations noticeably improved the ability to resolve diurnal PRI patterns. Although we do
not know the reason for this difference in calibration outcomes, one possibility may be that our aspen
stand could represent more a heterogeneous structure and illumination conditions. Wind conditions
that are common at our calibration site could help randomize the leaf orientation so that both the
spectrometer and SRS sensors measure similar sunlit and shaded leaf proportions. Our contrasting
results advocate for the importance of characterizing site-specific light fields that can vary in complexity
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between different canopy structures and may affect the ability to resolve diurnal dynamics accurately.
A lack of ability to accurately resolve diurnal PRI patterns becomes problematic when diurnal patterns
of the xanthophyll cycle and light use efficiency is wanted [39,44,74].

Although cross-calibrations provided more accurate PRI values, errors remain. In general, the main
discrepancy between the SRS-PRI sensors and spectrometer measurements occurred as we moved
away from midday. This suggests that the factory SRS sensors sensitivity cannot resolve the full range
of reflectance changes. Uncalibrated SRS sensors result in an overestimation of PRI and LUE and
modeled GPP values if used within a LUE model. To prevent erroneous PRI values that can lead to the
mischaracterization of light use efficiency, we recommend regular calibrations and corrections of SRS
sensors [71,73]. Diurnal cross-calibration procedures confirmed that an offline calibration is possible
and can be used to correct the effects of illumination and solar elevation on radiance and irradiance
measurements. However, it is important to note that our procedure did not account for changes in
solar azimuth that lead to changes in directional reflectance [75,76]. Solar azimuth changes will have a
meaningful impact in high latitude ecosystems as angles will vary significantly from start to peak growing
season. Real-time calibrations would account from changes in solar azimuth. However, given the constant
manual intervention needed during real-time cross-calibrations, we believe our procedure to be a good
compromise. The offline diurnal calibration was able to resolve diurnal PRI pattern (and xanthophyll cycle
changes) more accurately than midday calibrations. The diurnal cross-calibrations results corroborate
previous findings showing the effect of sun-canopy-sensor geometry on PRI values [33,43,77,78].

The strong correlation between SRS-sPRI and LUE (R2 = 0.62) show that automated SRS-PRI
sensors can be used as a proxy for light use efficiency. It is important to note the observed relationship
between SRS-sPRI and LUE was stronger than the mean of 27 broadleaf forests reported correlations
(R2 = 0.59) reviewed by Zhang et al. [24]. Comparison between SRS-sPRI and apparent canopy
quantum yield showed an even stronger correlation with an R2 = 0.72 that represents the upper third
quartile boundary of the broadleaf forest PRI-LUE correlation meta-analysis. Although quantum yield
is not equivalent to light use efficiency, the strong correlation between α and LUE (R2 = 0.88) show that
α can be used as an adequate proxy of LUE when PPFD is the primary driving variable of productivity.
As such, the strong correlation of between SRS-sPRI and α provide even more evidence that PRI values
from the SRS sensors can serve as a proxy for efficiency.

Although sPRI was well correlated to light use efficiency parameters, their association appeared to
vary within different developmental stages. The close correlation between sPRI, LUE (R2 = 0.54) and α

(R2 = 0.67) during maturity show ability to track the facultative changes of xanthophyll cycle pigment
pools. This was further supported by the weak correlation between f APAR and sPRI (R2 = 0.14),
indicating the low effect of vegetation structure that drives constitutive pigment pool changes [38].
During leaf senescence sPRI was less strongly correlated to efficiency parameters (light use efficiency R2

= 0.43, quantum yield R2 = 0.51) and correlated with f APAR (R2 = 0.52), suggesting that the PRI signal
is influenced by canopy changes. In deciduous vegetation, senescence marks a period of substantial
changes in canopy structure composition as leaves start to senesce and fall. During this marked
period of structural variation, senescence PRI would most likely represent a mixture of facultative
and constitutive changes, with constitutive changes confounding the physiological signal from leaves.
This aligns with studies [79,80] suggesting that dominant effects of canopy structure can confound
physiological leaf traits detection. Future parametrization of LUE models will need to take into
account PRI’s contrasting effect on photosynthetic activity during different time periods [21]. The high
temporal resolution of the automatic SRS-PRI sensors and their ability to serve as a proxy of LUE at
different temporal scales could be useful towards the better parametrization of LUE models.

A close analysis of PRI and light use efficiency parameters provided some underlying mechanism
affecting efficiency at our site. The close relationship of α and GPP during senescence indicate that
efficiency changes are influenced by canopy structure, this being the primary driving mechanism of
GPP changes. Coinciding efficiency peaks present in sPRI, LUE and α time series were associated with
high water availability (soil and atmospheric), lower temperatures and low PPFD. In the context of
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PRI, we can infer that periods of low PPFD would account for the little need for non-photochemical
quenching as canopy would not be exposed to saturating light conditions. Diffused light conditions
have been shown to result in higher canopy light use efficiency [81–83] and could explain the increases
in LUE rates. This effect of diffused light on light use efficiency rates has been difficult to account for
in remote sensing modeling as most of the driving data come from non-continuous satellite-based
imagery. Continuous PRI measurements have the potential to solve this, as illumination can be used to
classify continuous datasets into illumination groups and used to empirically describe the effects of
different light conditions on LUE through time.

Many described canopy scale variables have been described that can confound PRI signals including
canopy structure, view and illumination angles, soil types, shadow fractions, phenology and pigment
pools [19,21,38,84,85]. One approach to mitigate some of these effects is through the normalization of PRI
(calculating daily ∆PRI) [86]. This has been shown to reduce the effects of canopy structure, vegetation
cover, and soil background. Although not applied in this study, PRI normalization is a topic of future
work as it may improve PRI-LUE relationships from continuous sensors. Some of the variables previously
mentioned also impact our sPRI dataset. We can also assume that our continuous measurements will
have a wide range of impacts as the higher temporal resolution will naturally capture more of these
interactions. Although quantifying the individual effect of each impacting variable is difficult, we believe
that continuous datasets provide the ability to explicitly examine the cause of changing PRI over time and
space. This has been a criticism of studies using non-continuous PRI measurements such as those from
satellite platforms, where their low temporal resolution cannot resolve short-term reflectance changes and
instead changes primarily represent changing pigment pools [38,39].

Both the sPRI and α LUE models were able to track the overall progression of GPP. Still, some
of the short-term dynamic changes observed in GPP during maturity were better captured by APAR
the sPRI and α derived LUE models. We can attribute this to the strong association between incident
light and productivity during peak GPP months. During peak GPP months, canopy structure remains
mostly unchanged; thus APAR variability is driven by PPFD dynamics. During leaf senescence, PPFD
was no longer associated with GPP and lead to the differences seen between APAR and GPP trends.
Overall, the α driven LUE model showed to be the most accurate. The sPRI LUE model followed
closely and was able to track seasonal changes in productivity. Evaluation of APAR, sPRI and LUE
model results indicate that construction of LUE models needs to consider the changing contribution
of the individual model variables through time and within different ecosystems. This follows
Garbulsky et al. [14] concept suggesting that canopy efficiency can change between vegetation and
environmental conditions. Exploration of this concept has been hard to test due to lack of continuous
datasets that would allow mechanistic and comparative analysis within and across biomes. Continuous
SRS-sPRI offer new opportunities to explore diurnal and seasonal changes in vegetation physiology.

5. Conclusions

An offline diurnal calibration was able to characterize the optical sensor’s response and allowed us to
resolve diurnal and seasonal PRI patterns. Corrected PRI values from SRS sensor proved to be appropriate
proxies of light use efficiency. Our results contribute to the growing research indicating that continuous
PRI sensors can be used to track diurnal and seasonal changes in efficiency. Still, it is important to define
facultative and constitutive proportions within the PRI observations and how this may change over
different ecosystems and growth stages. Studies on the explicit effect of environmental conditions on PRI
signals will also prove to be important since the higher resolution of continuous measurements will need
to be accurately characterized. In general, we see continuous PRI sensors as having numerous benefits
for explicitly examining the cause of changing PRI, LUE, and productivity over time and space. For this
reason, we see this technology of great value for the flux, remote sensing and modeling community.
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Appendix A

The seasonal time series of NEE, GPP, Reco, and key meteorological variables are shown
in Figure A1. Seasonal patterns of NEE (Figure A1a) are similar to those usually observed in
northern deciduous forests, resulting from the known phenologic cycle. During spring and fall
dormancy, NEE values are in the positive range, suggesting a higher proportion of respiration than
photosynthesis that leads to a net carbon source. As leaf flush occurred, the opposite happens with
productivity outpacing respiration, leading to increasingly negative NEE and net carbon sequestration.
NEE and GPP progressively increased throughout the season (Figure A1a), reaching peak productivity
during July (1.4 ± 0.02 mg m−2 s−1 and 1.8 ± 0.03 mg m−2 s−1, respectively). Peak respiration
(0.80 ± 0.03 mg m−2 s−1) also occurred during July but slightly offset from peak productivity. NEE,
GPP, and Reco showed a gradual decline into leaf senescence. The length of the growing season was
approximately 170 days (± 7 days), spanning from 15 April to 1 October, 2015.
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average net ecosystem exchange and ecosystem respiration, (b) photosynthetic photon flux density
(PPFD), (c) temperature, (d) relative humidity (RH), and (e) vapor pressure deficit (VPD).
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Seasonal trends in temperature (Figure A1c) show a continuous increase from the beginning of
the season to late June, after which temperature progressively decreases until the end of the season
(October). Overall, relative humidity (Figure A1d) increases until mid-June and then remains stable
during the remainder of the growing season. VPD seasonal changes (Figure A1e) showed an initial
increase during the start of the season, followed by a sharp decrease during mid-June and then
remaining low and stable from July until end of the season. Beyond these general seasonal changes,
short-term changes in climatic status directed intra-seasonal variability in productivity. Throughout
the season productivity was linked to air temperature (Figure A1c), particularly during spring
and fall warming/cooling events, where warming was associated with increased GPP and cooling
with seasonal decreases. The largest drops in GPP and Reco values occurred during periods were
temperature reached approached <5 ◦C. VPD (Figure A1e) was principally influenced by temperature
and shared similar patterns and associations to GPP. PPFD appeared to be the principal driver of
productivity throughout large parts of the season (Figures A1b and 5).

A combination of factors appears to affect apparent quantum yield (α) over the course of the
growing season. Periods of low quantum yield occurred during high temperatures (Figure A2a),
which we would expect from a heat-stressed ecosystem. The opposite relationship is observed when
comparing RH and α (Figure A2b). In general, high α values coincide with periods of high relative
humidity, which represent low evaporative demand. Peak α values correspond closely with soil water
moisture (Figure A2b). An exception to this connection was observed during 31 August when a soil
moisture peak is observed but α seems to decrease slightly. This decrease in α is associated with
low PPFD (61.49 µmol m−2 s−1) and Tair (3.7 ◦C), indicating that these variables are limiting during
this period.
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