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Abstract: Lymph node metastasis in breast cancer may be accurately predicted using a DenseNet-169
model. However, the current system for identifying metastases in a lymph node is manual and
tedious. A pathologist well-versed with the process of detection and characterization of lymph
nodes goes through hours investigating histological slides. Furthermore, because of the massive size
of most whole-slide images (WSI), it is wise to divide a slide into batches of small image patches
and apply methods independently on each patch. The present work introduces a novel method
for the automated diagnosis and detection of metastases from whole slide images using the Fast
AI framework and the 1-cycle policy. Additionally, it compares this new approach to previous
methods. The proposed model has surpassed other state-of-art methods with more than 97.4%
accuracy. In addition, a mobile application is developed for prompt and quick response. It collects
user information and models to diagnose metastases present in the early stages of cancer. These
results indicate that the suggested model may assist general practitioners in accurately analyzing
breast cancer situations, hence preventing future complications and mortality. With digital image
processing, histopathologic interpretation and diagnostic accuracy have improved considerably.

Keywords: DenseNet-169; computational histopathology; cancer; whole-slide images; lymph nodes;
FastAI; 1-cycle policy; diagnostic odds ratio

1. Introduction

Breast cancer is a severe illness that will impact one in nine women throughout their
lifetime. It is observed from the surveys that 1 in 32 women may die from breast cancer.
In 2018, breast cancer was expected to account for approximately 1 in 4 cases of cancer
identified in women and amounted to the second-biggest category of new cancer cases.
Breast cancer is the most significant risk factor for cancer in women and the seventeenth
most important cause of mortality worldwide. It is the most prevalent kind of malignancy
among women aged 15–49 years and the third most frequent malignancy in women aged
50–59 years [1].

Despite significant breakthroughs in understanding diseases and implementing treat-
ment options, breast cancer remains the most frequently diagnosed cancer globally. Fur-
thermore, it is the second leading reason behind deaths related to cancer in women [2–5].
Cancers of the lymphatic and blood vessels, which ultimately spread to distant parts of the
body, are the leading cause of breast cancer mortality from metastatic (spread throughout
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the body) sources of breast cancer (MBCs) [6,7]. Even being diagnosed with benign breast
cancer, it is expected that 10 to 50% of patients would ultimately develop metastases [8,9].
Metastasis rate and location are variables that depend on the underlying tumor subtype.
As a result, prognosis, precise diagnosis, and treatment for MBCs remain difficult.

A lymph node examination is essential for diagnosing cancer and determining suitable
therapy choices. Multiple lymph node levels are involved in assessing the prognosis,
and appropriate staging requires meticulous examination of lymph node health. On the
other hand, manually screening several slides may be tiresome and challenging for the
pathologist, and individuals must undergo multiple scans for precise assessment, which
is hazardous. As a result, advances in automated tissue categorization utilize machine
learning techniques that precisely identify metastases over lymph node tissue [10]. The
area of computer-aided diagnosis and digital pathology has progressed dramatically over
the previous decade. Slide digitalization is now possible, with better resolution and spatial
picture quality similar to traditional light microscopy. Digital pathology minimizes human-
prone errors. Digitized WSIs provide many benefits, including viewing samples remotely
for consultation and remote analysis of the slide samples, decreasing the requirement for
on-site expertise [11].

Machine intelligence (MI) has transformed oncological research in recent years. Nu-
merous studies have demonstrated that MI can correctly classify tissue samples as benign
or malignant, particularly on hematoxylin and eosin (H&E) spattered slides. It has been
shown that intelligent models, specifically image interpretation using convolutional neural
networks (CNN), can accurately discriminate between malignant and benign from the
images in prostate biopsies. Additionally, computer-controlled Gleason grading attained
a comparable level of accuracy to that of specialized pathologists performing Gleason
grading. Recent research has demonstrated that CNNs can also detect changes in protein
expression and genetic mutations on H&E slides of cancer samples from various cancer
types, such as prostate cancer, breast cancer, and liver cancer [12]. These findings imply that
genetic mutations alter cell signaling and interaction, resulting in a change in morphology
detectable by CNNs. Thus, MI can identify oncologically significant patterns from H&E
images and use those sequences to predict oncological findings, such as metastasis risk or
tumor recurrence.

A few studies published in peer-reviewed journals illustrate the remarkable func-
tionality of artificially intelligent (AI) techniques through diagnostic models, like the
identification of regions of interest (ROI) or perhaps the characterization and classification
of types of cells, traits, or epithelial tissue [13,14]. For instance, convolutional neural net-
works (CNNs) have gained traction of late in detection and classification tasks because of
their dependence on automated feature extraction techniques [15–17]. On the other hand,
DL approaches have accomplished significant breakthroughs resulting in challenges and
contests in image classification tasks [18]. However, although they are attractive because of
their high accuracy in machine learning (ML) tasks with a massive amount of training data,
there is no method yet for deciphering a DL classification model.

The motivation of the present study is to give a detailed one-stop solution for the
early and automatic detection of cancer using whole slide images; early identification
always has advantages. Using advanced ML libraries, we can now prevent the aggravated
malignant state of cancer with minimal effort. Two terms used throughout this work
are FastAI and the 1-cycle policy. FastAI is an open-source DL library [19] built using
PyTorch to provide high-level DL methods for easy training of DL models. In the current
study, each input image is split into smaller tiles of equivalent size, retrieving the necessary
attributes/features. These features are supplied as input to the Machine Learning algorithm
to faster mathematical models and predict the tumorous regions in the image. Python
programming language incorporates several ready-to-use libraries for performing different
MI and image processing tasks. The early detection and prognosis of the cancer type have
become a necessary step in cancer research as they can help in the subsequent clinical
administration of patients [20]. Even so, these days, the growth rate of cancer is increasing.
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Many patients die because the cause of cancer in their bodies is not recognized in time.
To solve this issue, Machine Learning has risen as a promising technique for processing
data with many dimensions, with increasing application in medical decisions for cancer
identification and classification in histopathological images. These images include glass
slide microscope images of lymph nodes stained with haematoxylin and eosin (H&E). The
salient goals of the present study are as follows;

• To precisely identify the presence of metastases from 96 × 96 px digital histopathol-
ogy images.

• To build a model that can precisely predict metastasis growth in early stages for
better treatment.

• Fine-tuning the DenseNet-169 model by batch normalization and weight optimization
strategies for a more precise outcome.

• By incorporating the 1-cycle policy and FastAI, the training rate of the model would
tremendously increase and assist in faster convergence towards the solution.

The entire manuscript is further divided into the following sections: The introduction
presents generalized information about the scope of the study, motivation, and contribution.
The related work presents the past research in Section 2. The Methods and Materials used
in the current study are presented in Section 3, and the Proposed Method along with the
architecture is discussed in Section 4. The observations and the results are discussed in
Section 5, and finally, the Conclusion and Future Scope are presented in Section 6.

2. Literature Review

With the advancement of technology, scientists and researchers worldwide have put in
a lot of effort to develop robust frameworks and methodologies for the early and effective
detection of cancer using image processing (IP) and DL techniques. CT Scans, Ultrasound,
Nuclear Imaging, and MRI scans have been used extensively for cancer detection. However,
none of those techniques have given a highly accurate cancer prediction. Therefore, re-
searchers have shown more interest in histopathological WSI for cancer detection in the past
few years. The application of CNNs to detect different ailments in medical images dates
back to the mid-1990s [21]. Ever since then, CNN architectures have been predominantly
used in the medical image analysis field for various purposes, including but not limited to
neural membrane segmentation in electron microscopy [22], detection and measurement
of carotid intima-media in ultrasound [23], and tumor segmentation in magnetic reso-
nance scans [24]. In addition, histopathological whole-slide images have been previously
used for scoring nuclear atypia [25], discriminating between stromal tissues and epithelial
tissues [26], and breast cancer detection with deep inception and residual blocks [27].

Even though CNNs have proven effective in medical image classification, it still faces
many challenges. A few of these challenges are: (1) due to the excessive deepening of cancer
image classification networks, the number of training parameters increases rapidly, which
leads to the threat of overfitting the model. In addition, many image samples are required
to reduce the risk of overfitting, which is not always possible. Hence, data augmentation
methods are used to enhance the size of the dataset and prevent overfitting the model [28].
(2) Hyperparameters are very important in the effective operation of a CNN. The learning
rate is an important hyperparameter that can make or break the model. During the training
process, it is necessary to adjust the learning rate of the model manually according to the
progression of the training to ensure that optimal model performance is reached. However,
this makes it challenging to use the real-life model by non-professional users [29].

Many recent studies have demonstrated that training a fine-tuned CNN rather than
a new one takes substantially less time, yet these fine-tuned models outperform new
models [30]. This improvement in a fine-tuned CNN happens because the weights in a
fine-tuned CNN are initialized to certain values known from previous knowledge. In
contrast, the weights of a CNN trained from scratch are initialized randomly, thus taking
more time to converge to optimal weights. Different works in IP have ideated that the
initial layers of a DL neural network learn the lower-level features of an image whereas
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the later layers learn the high-level features; these high-level features are specific to the
learning task itself, whereas the lower-level features are more general to all images [31–33].
This conclusion implies that training a neural network (NN) to an abundantly available
image dataset and fine-tuning the weights of the later layers in that model to fit another
dataset would fetch improved and enhanced results.

In light of the fact that breast cancer is among the most frequent cancers, most samples
evaluated in cancer pathology are obtained from victims of this disease [34]. Pathologists
employ a few common procedures to evaluate these materials, such as immunohistochemistry
(IHC) to determine the histological grade and the state of the hormone receptor. These
procedures, however, may be time-consuming and limited by human mistakes and observer
variability [35,36]. Tumor grade is often assessed using the Bloom-Richardson technique.
This approach assesses tubule development, miotic activity, and nuclear atypia in a semi-
quantitative manner [37,38]. The analysis of IHC-stained slides entails estimating the number
of positive cells for a certain antigen and the level of positivity [39,40]. A major challenge in
bioinformatics is developing automated cancer diagnosis systems (CAD systems) that can
classify a huge corpus of images in real-time to provide an accurate cancer diagnosis while
being robust enough to consider the biological variations between different patients.

The 1-Cycle policy [20] has been mentioned widely in different domains of DL and
IP. The 1-Cycle policy has developed a novel activation function [30]. The authors used
the 1-Cycle policy to compare their proposed activation function (Mish) with another
prominent function (Swish) and proved that it outperformed Swish when the 1-Cycle
policy was applied. The authors who proposed the concept of super-convergence [31]
used the 1-Cycle policy to train the Densenet model and conclusively proved that super-
convergence can be achieved much faster when the 1-Cycle policy is used (20 Epochs with
1-Cycle vs. 100 Epochs without 1-Cycle). The 1-Cycle policy was also used to validate the
effectiveness of a fabricated large chest X-Ray image dataset [41,42]. Multiple CNNs with
and without the 1-Cycle policy were trained on the fabricated dataset. The 1-Cycle policy
has also been used to develop a DL framework for the semantic segmentation of remotely
sensed data [43] and much more. The idea behind 1-Cycle Policy is to use the learning rate
as a regularization method to prevent overfitting when the learning rate is highest during
the middle of a learning cycle. It has effectively improved the performance of different
Machine Learning models, which only encouraged us to incorporate them into this work.

One of the most widely used DL frameworks/libraries, FastAI, is undoubtedly one of
the most prominent paradigms in the DL world. It has been used for numerous works in
DL research. Multiple DL libraries within FastAI were used to detect malicious URLs [44].
FastAI has also been used to classify cotton pests using field-based images [45]. The
authors used different custom models and activation functions to classify cotton pests.
For automated pavement crack segmentation [46], the authors used different entities from
the FastAI library. This library was also used for detecting sarcasm using a contextual
neural network [47]. From a medical image analysis perspective, the FastAI framework
has been used in numerous works, from analyzing tumor microenvironments in colon
adenocarcinoma whole-slide images [48] to the most recent development of COVID-ResNet,
a novel and fast DL framework to classify COVID-19 from radiographs [49]. The power of
the FastAI library has been used in many other past works of DL. The details of various
existing models are presented in Table 1 for better comprehensibility.
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Table 1. A detailed description of the various models in image processing.

Approach Objective Challenges of the Approach

Genetic Algorithm (GA) [50,51]

A genetic algorithm selects the beginning
population at random through a

probabilistic approach. It performs
crossover and mutation processes

concurrently until the necessary portions
are reached.

The algorithm fails in producing the best
output and is more time-consuming.

Fully Convolutional Residual Network
(FCRN) [52]

FCRN technique employs encoder and
decoder layers for image classification
that use low-high level features. The
feature processing is exceptionally

important for the appropriate
classification.

A completely Conventional Layer
handles overfitting well, yet the model is
complex in design and implementation.
Adding batch normalization might also

make the model less efficient.

Decision Tree (DT) [53,54]

Handling discrete data necessitates the
usage of models based on decision trees

which is a rule-based technique for
predictions. It is effective in dealing with

non-linear factors.

The Decision Tree model is unreliable if
the input data is changed even by a small
proportion, and at times DT models will

lead to overfitting while training.

Bayesian Learning (BL) [55–57]

The Bayesian Learning technique
effectively manages continuous and

discrete data by avoiding the incorrect
binary and multi-class classification

characteristics.

The Bayesian Classifier is often an
improper probabilistic model since it is

unsuited for unsupervised learning
applications.

Deep Neural Networks [58,59]

Deep Neural Networks may process
structured and unstructured data.

Models are capable of working with
unlabelled data and delivering the

expected results.

DNN model is a black-box decision
model, and models are complex and need

tremendous development efforts.

K-Nearest Neighbourhood [60]

KNN based models work on unlabelled
data and classify data into different

categories using feature selection and
similarity matching. These models use
the distance between two instances to

identify their correlation.

The trained model’s accuracy is closely
related to the quality of the data used to
train it. In addition, the time needed to
make a forecast may be much longer if

the sample size is bigger.

Support Vector Machine [61,62]
Support Vector Machine is a data

processing system that uses as little
computing and memory as possible.

It is difficult to determine the
feature-based parameters using the

Support Vector Machine method, which
is inefficient for noisy data.

Artificial Neural Networks [63,64]

Linear relationships between dependent
and independent parameters may be

easily recognized using Artificial Neural
Networks, storing data across the

network nodes.

Using Artificial Neural Network models
is a good way to deal with a lack of

knowledge of the issue. There is a good
chance that the ANN will miss the spatial

elements of the picture. The gradient’s
diminishment and explosion are also

major concerns.

3. Methods and Materials

This section presents the different concepts, models, and algorithms used in this
study. Essentially, this section talks about the following: FastAI deep learning framework,
DenseNet-169 model architecture, the 1-Cycle Policy, and the gradient-weighted class
activation mapping (Grad-CAM).

3.1. FastAI

FastAI is a profound DL library [19] that furnishes experts with high-level libraries
and modules, giving rapid and effective best-in-class results in the domain of DL. In
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addition, it provides scientists with low-level features that can be blended and matched
to build new models and algorithms. FastAI is the maiden DL module to give the users a
relied interface to all the most utilized DL applications for time-series, computer vision,
collaborative filtering, tabular data, and text. FastAI is developed around these essential
design objectives: rapidly productive, easily configurable, and flexible framework. It sits
on top of a set of lower-level APIs, which act as the building blocks for FastAI. In this way,
a client wanting to rewrite parts of the high-level API or add specific behavior to suit their
requirements does not need to understand how to use the lower-level APIs.

3.2. 1-Cycle Policy

The 1-cycle policy [18] improves the learning rate from a predefined value to a high
learning rate and then from that high value to some minimal learning rate, a lot lower than
the predefined learning rate. This strategy was first depicted in Super-Convergence [33].
The 1-cycle learning rate strategy changes the learning rate after each training batch.
Therefore, the learning rate step must be called after a single batch has been utilized for
training. A cycle can be described in one of the two following ways:

An incentive for total steps is mentioned explicitly.
A few epochs and a few steps for every epoch (steps_per_epoch) are given. As shown in

the following Equation, the instances of incremental steps are evaluated in this situation.

total_steps = epochs× steps_per_epoch (1)

A value must be offered for the total steps, or a discount must be given for the epochs
and the steps_per_epoch. The default behavior of this scheduler follows the FastAI-defined
execution of the 1-cycle policy. Naturally, it is useful to shift the learning rate towards a
higher magnitude to help escape saddle points. If the saddle point is a plateau, the lower
learning rates will probably not be easily escapable.

3.3. Gradient-Weighted Class Activation Mapping (GRAD-CAM)

Gradient-weighted class activation mapping (Grad-CAM) [65] uses class-specific
gradients input reaching the final convolutional layer of a CNN to generate an approximate
localization map of the image’s key areas. Grad-CAM is a class-discriminative localization
approach that generates visual explanations to make any CNN model more understandable.
Grad-CAM is a generalization of Class Activation Mapping; it requires no retraining and
applies to any CNN-based model. It fabricates Grad-CAM (and/or Guided Grad-CAM)
with visual explanations to more readily comprehend image captioning, visible question
answering (VQA) models, and image classification. Utilizing Grad-CAM, we can visualize
where our model is looking, verifying that it focuses on the appropriate patterns in the
picture and activates around those patterns. Assuming the model is not activating around
the appropriate patterns in the picture, it could be one of the listed reasons. The proposed
model has not learned the correct insights from the training dataset.

• Our training method must be looked at
• We might have to collect additional data
• Maybe the model is not prepared yet for deployment

4. Proposed Method

This section gives an overview of the architecture of the proposed model, the dataset
used, weight assignment and optimization, the hyperparameters used to validate the
model’s performance and the implementation environment. The initial stage of the pro-
posed DenseNet-169 encompasses the data pre-processing task. Upon performing the data
pre-processing, the images are divided into the train and test instances, where the training
data would be sent to the CNN Model. Finally, validation of Fine-tuned DenseNet-169
is performed over the test data. Figure 1 presents the block diagram that illustrates the
phases involved in the current study.
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Figure 1. Image denoting the block diagram of the proposed model.

4.1. Data Set Description and Pre-Processing

The dataset used in this work is a filtered version of the pcam dataset. The main
difference between the pcam dataset and the dataset used in this work is that all the
redundant pictures in the pcam dataset have been removed (filtered out). The pcam dataset
was extracted from the Camelyon16 Challenge dataset, containing 400 H&E-stained images
of sentinel lymph node zones procured and digitized at two distinct centers utilizing a 40×
objective. The pcam’s dataset utilizes 10× under-sampling to expand the field of view, with
a pixel resolution of 2.43 microns. From the data description, the positive and negative
data instances are equally balanced for the training and testing portions of the dataset. The
training dataset has an approximate 60–40 negative-positive distribution. A positive label
implies at least one pixel of tumorous tissue in the picture’s central portion (32 × 32 Th px).
Tumorous tissue in the external area of this patch does not impact the label. This means that
a negatively labeled image might have metastases on the outside. As a result, cropping the
photographs to the center section might be a suitable option. The pcam dataset is described
in full in Table 2.

Table 2. Dataset descript associated with pcam.

Description Specification

Format TIF
Input Size 96 × 96

Number of Channels 3
Bits per Channel 8

Data Type Unsigned Char
Image Compression Approach Jpeg

The sample raw images that are part of the pcam dataset are presented in Figure 2.
The raw images are then processed to focus on the region of interest for better insight into
the features and precise prediction using the data augmentation technique.
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Figure 2. Random sampling of the dataset.

4.2. Data Pre-Processing and Augmentation

The image label is influenced only by the center region (32 × 32 px), so it would make
sense to crop our data to that region only. However, there is always the loss of valuable
information around the image. Data augmentation, data regularization, and simpler model
designs might be utilized to prevent overfitting the model. The approaches for picture
augmentation were immediately included in the image loader function. Additionally, test
time augmentation (TTA) improved the outcomes and average forecasts throughout the
testing phase, as seen in Figure 3.

Figure 3. Cropped histopathological scan image.

Data Augmentation is used in image processing tasks to create new examples from
the existing training data. The model can learn from an extended range of examples and
generalize well to different possible orientations of the input images. Adding to that, a small
dataset size usually leads to the overfitting of the model. Hence, creating more data using
data augmentation introduces variety to the input data and helps avoid the overfitting of
the model. The data augmentation techniques used in the current work include random
rotation, random crop, random flip, and random light, which are elaborated on in the
current section.

4.2.1. Random Rotation

Random rotation encompasses rotating the training images to different angles so that
the essential meaning of the image does not change, however, it gives a new point of
view to the model being trained. When a model may be utilized in a non-fixed location,
rotating the picture (e.g., through a mobile interface) is crucial. Rotating a picture may be
problematic since graphical glitches on the image’s edges might be problematic.
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4.2.2. Radom Crop

Cropping is essentially selecting a region of the image and saving it as a new training
instance. This cropping region might be chosen randomly or based on some strategy.
Cropping also involves making an image square by expanding existing dimensions to suit
a square or maintaining the existing aspect ratio and adding additional pixels to fit in the
newly produced empty spaces.

4.2.3. Random Flip

Randomly flipping a picture around its x- or y-axis (while maintaining the image’s
core structure and meaning) drives our model to realize that an item does not always have
to be interpreted either left to right or up to down.

4.2.4. Random Lighting (Brightness, Contrast)

If a model must perform in various lighting conditions, adjusting image intensity to
be arbitrarily brighter and darker is most beneficial. Changing the intensity to match the
situations the model will encounter in production, instead of the pictures provided for
training, aids with generalization. The random augmentation of WSI is shown in Figure 4.

Figure 4. Random augmentation of cropped scan images.

4.3. Layered Architecture

DenseNet-169 is one of the architectures of the DenseNet family with 169 layers and is
a widely used architecture for DL classification tasks. It has far less trainable parameters
when compared to its fellow DenseNet architectures with fewer layers. DenseNet-169
and the other DenseNet architectures have the ability to overcome the vanishing gradient
problem, have a strong feature propagation strategy, minimize the number of trainable
parameters, and encourage the reuse of features, thus making them a family of very reliable
DL architectures. DenseNet models can be found in Tensorflow (Keras) and PyTorandes.
The layered architecture of the DenseNet-169 used in the current study is presented in
Figure 5.

Figure 5. The architecture of DenseNet-169 used to implement the proposed method.
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The architecture involves convolutional layers, maxpool layers, dense layers (fully
connected layers), and transition layers. The model uses the ReLU activation function
throughout the architecture and uses SoftMax activation for the final layer. The con-
volutional layers extract the features in the image, and the maxpool layers reduce the
dimensionality of their inputs. The fully connected layers follow the flatten layer, which
acts as an artificial neural network with a single array input coming from the flatten layer.
The details of the layered architecture are depicted in Table 3.

Table 3. DenseNet-169 layered architecture.

Layer Kernel Size Parameters Tensor Size

Convolution 7 × 7 (Conv) Stride = 2, ReLu 112 × 112
Pooling 3 × 3 (MaxPool) Stride = 2 56 × 56

Dense-1 Layer 1 × 1 × 6 (Conv)
3 × 3 × 6 (Conv) Dropout = 0.2 56 × 56

Transition-1 Layer 1 × 1 (Conv)
2 × 2 (AvgPool) Stride = 2 56 × 56

28 × 28

Dense-2 block 1 × 1 × 12 (Conv)
3 × 3 × 12 (Conv) Dropout = 0.2 28 × 28

Transition-2 Layer 1 × 1 (Conv)
2× 2 (AvgPool) Stride = 2 28 × 28

14 × 14

Dense-3 Layer 1 × 1 × 32 (Conv)
3 × 3 × 32 (Conv) Dropout = 0.2 14 × 14

Transition-3 Layer 1 × 1 (Conv)
2× 2 (AvgPool) Stride = 2 14 ×14

7 × 7

Dense-4 Layer 1 × 1 × 32 (Conv)
3 × 3 × 32 (Conv) Dropout = 0.2 7 × 7

Classification Layer 1 × 1 (Global AvgPool)
1000D (fully-connected softmax) 1 × 1

Convolution Layer: A convolutional layer, in basic words, applies a filter to an input,
resulting in the activation. When the filter is applied repeatedly to an input, the result is a
feature map representing the intensity of the discovered features at different positions in
the input. Once a feature map is created using multiple filters, it can be passed through
activation functions such as ReLU. The filter used in a convolutional layer is smaller than
the input data, and, generally, the operation performed between these two entities is a dot
product. Assume a P× P square neuron component followed by a convolutional layer
and a filter of size m×m, the corresponding output of the convolutional layer would be
(p−m + 1)× (p−m + 1). To find out the non-linear input to the unit xl

ij, the contributions
from the previous layer cells must be summed up as shown in Equation (2).

xl
ij = ∑m−1

a=0 ∑m−1
b=0 µabyl−1

(i+a)(j+b) (2)

The convolutional layer applies the assessed non-linearity as shown in Equation (3).

yl
ij = λ

(
xl

ij

)
(3)

MaxPool Layer: The main purpose of using a maxpool layer in a CNN is to minimize the
dimensionality of the feature map. Like a convolutional layer, the maxpool layer also runs
a filter over the feature map and summarizes the features within the region covered by
the pooling filter. Assume a feature map has dimensions nh × nw × nc that represent the
height, width, and channels of the feature map, respectively. The dimensions of the feature
map after applying the maximum pooling (maxp) over the filter of size f and the stride s is
defined in Equation (4)

maxp =
(nh − f + 1)

s
× (nw − f + 1)

s
× nc (4)
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Dense Layer: A dense layer in a neural network is deeply connected with its preceding
layer, i.e., each neuron of the dense layer has a connection with each neuron in its preceding
layer. The neuron in the dense layer receives inputs from each neuron in its previous
layer and performs a matrix-vector multiplication. Following is the standard formula for a
matrix-vector multiplication as shown in Equation (5)

M · λ =

m11 m12 . . . . . . . . . m1y p1
m21 m22 . . . . . . . . . m2n p2

...
...

...
...

...
...

...
...

mx1 mx2 . . . . . . . . . mxy py

(5)

From the above Equation, the variable M denotes a matrix of dimensions x× y, and
other matrix p whose dimensions are 1 × y. The variable λ matrix is the parameters
(trained) of the preceding layer, and these can be updated using backpropagation during
the training process. Using backpropagation, the weights associated with the layer ly
identified by ωly and bias identified by the variable Bly of the neural network are adjusted
using Equations (6) and (7) over the learning rate that is identified by α.

ωly = ωly − α× dωly (6)

Bly = Bly − α× dBly (7)

The dω and db are calculated based on a chain rule (from the output layer through the
hidden layers to the input layer). dω and db are the partial derivatives of the loss function
of ω and b. dω and db are calculated using Equations (8)–(11).

dωly =
∂L

∂ωly =
1
n

dZly A[ly−1]T (8)

dBly =
∂L

∂Bly =
1
n ∑n

i=1 dZly(i) (9)

dAly−1 =
∂L

∂Aly−1 = W lyT
dZly (10)

dZly = dAly × g′
(

Zly
)

(11)

From the above equations, the variable Zly is the linear activation at layer ly and
g′(Zly) is differential of the non-linear function concerning Zly. Aly is the non-linear
activation function at the same layer.
Transition Layer: A transition layer is used in a CNN to reduce the complexity of the model.
A typical transition layer minimizes the sum of channels by using a 1 × 1 convolutional
layer and decreases the width and height of the input by half using a filter with stride 2.
SoftMax Activation Function: The softmax activation function is a standard non-linear
activation used widely for classification problems in deep learning architectures. The
general form of a non-linear activation function is defined in Equation (12), with weight
identified by the variable w, and the variable b represents the bias over an input vector x.

y = f (w× x + b) (12)

The softmax function is engaged with the output layer of a convolutional neural
network when predicting the probabilities of each output class. By definition, the softmax
function outputs one value for every neuron in the output layer. The output by each
such neuron in the output layer is the likelihood (or probability) of that node being the
output. The softmax function is defined over the softmax function Θ, applied to the input
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υi concerning the input vector’s exponential function identified by eυi and the output vector
exponent function identified by eυo with m instances as defined in Equation (13)

Θ(z)x =
evi

∑m
y=1 evo

(13)

With softmax as the activation function, the loss function used in this work is the
binary cross-entropy loss function. Conventionally, binary cross-entropy is used while
dealing with binary classification problems. Equations (14) and (15) depict the binary
cross-entropy loss function, for a network of n layers.

K(W, b) =
1
n ∑n

i=1 L
(

a(i), a(i)
)

(14)

L(â, a) = −(a× log â + (1− a)× log(1− â)) (15)

where the variable a represents the output class 1 and (1− a) denotes the output class 0. â
denotes the probability of the output class 1 and the (1− â) denotes the probability of the
outcome associated with class 0.

4.4. Initial Feature Weights Assignments

The primary purpose behind optimal weight initialization is to prevent the explosion
of layer activation functions or the vanishing gradient problem during forwarding propa-
gation in a feedforward network. If one of these two issues occurs, then the gradient loss
will either be too small or too large, and the network will take excessive time to converge
even if it can do so. If the network weights are initialized optimally/properly, then the task
of loss function optimization will be accomplished in minimal time; otherwise, converging
to the minimum using the gradient descent approach will be highly impractical. Since
weight initialization is significant for neural network training in DL, different techniques
can initialize weights for a neural network. The most widely used technique is the random
weight initialization technique.

One of the best practices while initializing weights is using leaky ReLU or ReLU as
the activation function. They are resistant to the exploding or vanishing gradient problems,
and leaky ReLU never has a zero gradient, ensuring continual training. Another good
practice is using heuristics to initialize the weights in a network. While using the ReLU
activation function, the He et al. [66] heuristic is used. In this technique, the randomly
initialized weights identified by the variable Iws is multiplied by the weight matrix ws

over a layer of size layer s and the corresponding bias associated with the layer. If the
size is equivalent to 1, the weight matrix of the dimension size of the layer identified as
(sizely × sizely−1) is defined using Equations (16) and (17).

Iωs =

√
2

size[ly−1]
(16)

ωly = np.randn
(

sizely, sizely−1

)
× np·sqrt(2/size_ly− 1) (17)

4.5. Weight Optimization

Weight optimization involves changing the parameters such that the equation lowers
according to the current instance and its nearby hits and misses at each step. It’s possible to
alter a given instance’s closest neighbors by computing the closest hits and misses of every
selected instance at any given time. For k-nearest neighbors, the method iterates m times,
resulting in Equation (18).

wd = wd −
1

k×m

(
∑k

a=1 ρR
(

eb
d, eba

dhit

)
+ ∑k

a=1 ρR
(

eb
q, eba

qmiss

))
(18)
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where eba
dhit

denotes the dth feature value of the nearest hit of the instance b and eba
qmiss

represents the dth feature value of the ath the nearest miss of the instance b. The variable
ρR denotes the similarity among the instances [67]. Weight optimization can be achieved
from Equation (19), over gradient descent approach having a constant learning rate of 1

k×m .

jR
w = ∑k

a=1 ∑Q
d=1 wdρR

(
eb

d, eba
dhit

)
−∑k

a=1 ∑Q
d=1 wdρR

(
eb

q, eba
qmiss

)
(19)

4.6. Hyperparameters

The hyperparameters that are associated with the fine-tunes DenseNet-169 model,
which include the learning rate and the loss associated with batch processing, are discussed
in the current section. It is desirable to choose the optimal parameters for better training
and testing performances and avoid underfitting and overfitting of the model. The loss
and accuracy of training and testing are discussed in the current study. The ideal learning
rate range is reached at the initial point of divergence of the model. Ideally, at this point,
the loss must still go on decreasing when the learning rate is chosen. As for the L2 penalty
of the optimizer (weight decay), the author [68] proposes to choose the largest learning
rate so that it will still allow us to train at a higher learning rate over the grid-search with
weight decays 0.01, 0.0001, and 0.000001 respectively as shown in Figure 6.

Figure 6. Graph representing the learning rate associated with weight decay.

The above graph in Figure 7, shows the loss of the model as the number of batches
processed increases with the 1-cycle of the learning rate. As it can be seen, the training
begins with a near-zero model loss, but as the instances of training batches increase, the
loss increases up to around 5000 batches. After that, there’s a sharp drop in the loss, and
the training in that cycle ends at a near-perfect zero loss.

Figure 7. Graphs representing the learning rate for 1-Cycle policy.
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As shown in Figure 8, the model’s momentum did not change throughout the training;
it was a constant of 0.9. However, the learning rate shot up after 50 epochs. Figure 9, shows
the learning rate and momentum after fine-tuning the DenseNet-169 model.

Figure 8. Graphs of learning rate and momentum over iterations before fine-tuning DenseNet-169.

Figure 9. Graphs of learning rate and momentum over iterations after fine-tuning DenseNet-169.

The maximum learning rate, which is identified using the variable (max_lr), is reached
in the middle of the learning process. Then it slows down again towards the conclusion of
the image. Because the model cannot settle for narrow and sharp local minima, the larger
rate has a regularizing impact, pushing the model toward broader and more stable ones.
As we near the midpoint of our cycle, we begin to slow down our pace of learning in the
hopes that we have reached a stable state. This signifies that we begin searching for the
area’s smallest values.

Even before fine-tuning the model, the model performs very well during training as
shown in Figure 10. On fine-tuning the model by unfreezing the bottom layers pre-trained
with other data and training the model again with our cancer data, adjusting the weights
of these unfrozen layers further optimizes the model. After unfreezing, we train the model
with a much lower learning rate.
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Figure 10. Loss associated with batches processed before fine-tuning the model.

It can be observed from the Figure 11, the graph that the training and validation losses
remain pretty close throughout the multiple batches. Still, the validation loss increases
slightly at the end (around the 13,000 to 16,000 batches mark). This implies that the model
starts overfitting when the learning rate is low. If the model is trained further, the model
will overfit more, meaning it would just memorize the features of the training set, increasing
the validation performance. Still, the model will not work well on real-world data that has
resulted in concluding the optimal point to stop the training. It can be concluded clearly
from the above two graphs that the model performs significantly well on the data after
fine-tuning the model. The model’s performance is evaluated concerning the training loss
and accuracy measure. Similarly, the testing loss and accuracy with the other state-of-art
models are evaluated and shown in Table 4.

Figure 11. Loss associated with batches processed after fine-tuning the model.

Table 4. The hyperparameter values are associated with various models.

Training Testing

Loss Accuracy Loss Accuracy

CNN [69] 0.124 92.25 0.565 81.93
CNN + Augmentation [69] 0.164 93.82 0.621 82.13

VGG-16 [69] 0.008 99.75 0.290 79.00
ConcatNet [69] 0.108 95.90 0.435 86.23
DenseNet-169 0.152 94.61 0.411 95.57

Fine-tuned DenseNet-169 0.123 95.45 0.125 97.45

It is observed that the fine-tuned DenseNet-169 model has exhibited a better perfor-
mance compared to the other models, and it has proven to exhibit better performance over
the conventional DenseNet-169. The feature weight optimizations have assisted in a much
better way to identify the metastases in lymph nodes precisely.
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4.7. Implementation Environment

This experiment is carried forward over the Kaggle’s compiler (online platform) [70].
The FastAI PyTorch transfer learning frameworks build the in-depth learning technique
discussed in the current study. Python programming language is used to develop the
Densenet-169 DL model. Table 5 presents the environment’s specifications in which the
model was trained.

Table 5. Details of Implementation Environment.

Environment Details Specifications

Operating System Microsoft Windows 11
Processor Intel(R) Core (TM) i7-8750H

Architecture 64-Bit
Memory Allotted 3 GB

GPU Nvidia (TM) 1050 Ti
Language Python

Framework FastAI, PyTorch, DL
Libraries Used Pandas, Numpy, cv2, Matplotlib, Scikit-learn, os

5. Results and Discussions

In the current section, the efficacy of the F=fine-tuned DenseNet-169 model for metas-
tases in lymph nodes is evaluated across various metrics like the sensitivity, specificity,
accuracy, and F1 score. The performances are analyzed against the other state-of-art models
like logistic regression (LR), neural network (NN), random forest (RF), support vector
machine (SVM), CNN, and DL models like VGG-16 and ConcatNet. The proposed model
has outperformed the various approaches with reasonable performance discussed in the
current section. The other parameters like the receiver operator characteristic curve and
the test time augmentation are discussed for better comprehensibility of the model.

5.1. Confusion Matrix

The confusion matrix is a table that depicts the instances of true positives (TruP), true
negatives (TruN), false positives (FlsP), and false negatives (FlsN) [71]. An output is called
TruP when the model recognizes the instance as positive (or 1), and the actual output is
positive. An output is called TruN when the model recognizes the instance as negative (or
0), and the actual output is negative. An output is called FlsP when the model recognizes
the instance as positive (or 1), and the actual output is negative. An output is called FlsN
when the model recognizes the instance as negative (or 0), and the actual output is positive.
It can be concluded, that the more TruPs and TruNs (or fewer FlsPs and FlsNs), the more
accurate the model is. The correct identification of a tumor in a slide is considered true
positive, whereas no tumor in a slide is identified as true negative. Similarly, the wrong
identification of a tumor is referred to as a false positive, and the wrong identification of no
tumor is called a false negative. Both the DenseNet-169 and fine-tuned DenseNet-169 were
trained independently, and then both were assessed based on their confusion matrices. The
confusion matrices associated with DenseNet 169 are presented in Figure 12.
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Figure 12. (a) Confusion matrix for DenseNet-169 (b) Confusion matrix for fine-tuned DenseNet-169.

The fine-tuned model significantly improves over the original DenseNet-169 model
from the above confusion matrices and the tables. The instances of true positives increase by
141, and the instances of true negatives increase by 89. This also implies that the instances
of FPs and FNs decrease. The confusion matrix for the fine-tuned model is also used to
assess the metrics such as sensitivity, specificity, and the F1-score.

For binary classification tasks in medical testing, the diagnostic odds ratio (DOR) [72]
is a parameter used to assess the efficacy of a particular diagnostic test. DOR is defined as
the ratio of the probability of the test being positive if the patient has the disease relative to
the probability of the test giving a positive result if the patient does not have the disease.
The diagnostic odds ratio (DOR) is defined mathematically as shown in Equation (20).

DOR =
sensitivity× speci f icity

(1− sensitivity)× (1− speci f icity)
i.e.,

TP× TN
FP× FN

(20)

The DOR for Dense-Net-169 is:

DORDenseNet169 =
8300× 12715

376× 612
= 458.62

Similarly, the DOR for fine-tuned Dense-Net-169 is:

DORFineTuned−DenseNet169 =
8481× 12804

287× 431
= 877.88

The diagnostic odds ratio is greater than one for useful tests, and a higher value of
DOR indicates a better performance. A DOR value of less than one indicates that the
performance of the test can be improved simply by inverting the result of the test. Given
this interpretation of DOR, since the DOR of DenseNet169 is 458.62 whereas the DOR of
the fine-tuned model is 877.88, there is a huge jump in the DOR value, indicating a huge
improvement in the performance of the model.

The test scores associated with each random sample in the testing phase that varies
among the random samples and most incorrect samples and the correct samples and
their associated probabilities to classify them either as tumors or not are presented in
Figure 13 [73]. It can be interpreted from the figure the set of random samples from which
the model struggles to learn. It also reveals something about the dataset, for example, the
integrity of the data utilized in the training phase. A few of the observations include
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Figure 13. Probabilities scores associated with samples in the testing phase.

• Random samples are predictions made on some random instances from the data.
• Most incorrectly labeled samples are the models predicted wrongly with a very

high probability.
• The model predicted correctly with a very high probability is the most correctly

labeled sample.

5.2. Performance Analysis with Past Studies

The performances of the fine-tuned DenseNet-169 are evaluated concerning accuracy,
sensitivity, specificity, and F1-Score concerning the various state-of-art models, whose
values are presented in Table 6. The values of the other models are obtained from the
previous experimental studies over a similar dataset are presented. It can be analyzed from
the experimental results that the performance of the fine-tuned DenseNet-169 is reasonably
better than the other model considered for statistical analysis.

Table 6. Comparison of DenseNet-169 model with state-of-art models.

Accuracy Sensitivity Specificity F1-Score Precision

Logistic regression [17] 87.0 86.4 87.6 0.87 -
NN [17] 82.8 74.4 91.0 0.81 -

NN feature subset [17] 91.3 85.7 96.8 0.91 -
Random Forest [17] 93.0 92.6 93.3 0.93 -

SVM [17] 88.3 85.9 90.6 0.88 -
CNN [61] 76.4 74.6 80.4 - -

CNN + Augmentation [61] 78.8 80.2 81.4 - -
VGG-16 [61] 76.5 75.3 82.6 - -

ConcatNet [61] 84.1 82.0 87.8 - -
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Table 6. Cont.

Accuracy Sensitivity Specificity F1-Score Precision

Multimodal Deep Neural
Networks [74] 79.4 80.0 - - 0.875

SVM [74] 77.5 87.8 - - 0.811
RF [74] 77.0 90.2 - - 0.787
RF [75] 80.1 91.0 - - -
LR [74] 75.4 96.3 - - 0.563

Inception V3 [76] 80.5 82.0 79.0 0.81 -
Inception-RestNet V2 [76] 82.0 80.0 85.0 0.82 -

ResNet-101 [76] 78.0 78.0 79.0 0.78 -
DenseNet-169 95.5 93.1 97.1 0.94 0.971

Fine-tuned DenseNet-169 96.7 95.2 97.8 0.96 0.978

5.3. The ROC Curve and TTA

The other most predominantly used performance evaluation parameter, receiver
operator characteristic (ROC), is a graphical depiction of the diagnostic ability of binary
classification models. A ROC curve for a model is constructed by presenting the false
positive rate of the model against the true positive rate. The ROC curve essentially depicts
the dependencies among the sensitivity, i.e., true positive rate, and specificity, i.e., false
positive rate. Binary classifiers which can cover the maximum area under the curve (or are
closest to the top-left corner) are the best ones. Figure 14 depicts the ROC curves of the
DenseNet-169 model before and after fine-tuning. As observed from the figures, the model
covers 83% of the area in the graph before fine-tuning. However, its performance improves
after fine-tuning as it covers 99% of the area in the whole graph, which is a pretty high area
under the curve (AUC), implying that the model’s performance is optimal.

Figure 14. (a) Receiver operator characteristic (ROC) curve before fine-tuning (b) ROC curve after
fine-tuning.

The test time augmentation (TTA) is considered in testing the model. The input data
fed to the model is traversed through a process in which the test data is transformed with
random data augmentation techniques during test time. The proposed model predicts the
whole tumor image as tumorous with 86.42% probability. Figure 15 depicts the performance
of the fine-tuned model after applying TTA, the 1 above the slide image denotes that the
image consist of metastasis growth which is identified by the proposed model.
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Figure 15. Results after applying the test time augmentation (TTA).

5.4. Practical Implication

The front-end interface of the mobile system may be used to deploy the proposed
smart diagnosis technology for identifying the growth of metastasis. Primary in diagnosing
metastasis, the mobile framework technology might assist both the patient and the doctor.
Name, date of birth, gender, height, diabetes status, weight, and hypertension are among
the information the users will produce initially. At the later stages, the user will provide
the metastasis whole slide image for predicting the presence of metastasis. The model uses
the input image and the training data to predict the abnormality over the input image. The
back-end of the architecture relies on the service, like FlaskApi, which is used to integrate
the iOS framework into the Kaggle. Authentication and a secure socket layer (SSL) can
secure the model.

The block diagram for the app integration with DenseNet-169 is presented in Figure 16.
The conceptual approach for practical use includes many stages in finding metastases in
lymph nodes. In the initial phase, the whole slide images are procured, and they are
provided to the model for the training purpose. In training the model, the ground facts are
being provided over the data sample with the support of the radiologist, professionals, and
practitioners. In the later stages, the testing samples are fed as the input for evaluation upon
training the model. The model performs the feature identification feature processing and
correlates them with the trained data, and the probabilistic measures for each sample are
assessed. The resultant outcome is displayed to the end-users, and finally, the performance
of the fine-tuned DenseNet-169 model is assessed and updated accordingly. Figure 17
presents the mobile framework for app integration with fine-tuned DenseNet-169.

Figure 16. Block diagram of practical implication model.
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Figure 17. Mobile framework for app integration with fine-tuned DenseNet-169.

In the proposed IntelliJ-Diagnosis mobile application, the security of the patient data
is considered to be sensitive and exceptionally important to ensure the privacy of the
information. To ensure the privacy of the data, the encryption of mobile data is performed.
Data sent is transferred among the mobile app, and data transferred to the server is
encrypted using the secure sockets layer (SSL) protocol. While data is encrypted, the
asymmetric key techniques use a public key for encrypting the data and a private key
that is only known to the receiver of the message [77,78]. The corresponding user data
is stored in the NoSQL MongoDB. This provides users with a stronger feeling of control
over their personal information, including confidentiality, privacy, and secrecy, of their
healthcare data. The above-discussed technology would make the future perspective model
a user-centric model with all the necessary features.

The figure above depicts the future perspective model’s user interface. Figure 18a
shows the app’s registration process, Figure 18b shows the input page where the WSI data
is uploaded to the model, and Figure 18c shows the outcome of the model’s prediction.
The model simplifies the process of diagnosing the development of a disease. Medical
professionals, radiologists, and patients alike can benefit from the predictions made by the
model that would endorse the reports of the initial diagnosis.

Figure 18. Image of user-interface of the future perspective model.
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6. Conclusions and Future Scope

This work aimed to facilitate the development of digital diagnosis in MBCs and explore
the applicability of a novel CNN architecture on MBCs. In this paper, we proposed a fine-
tuned DenseNet-169 CNN architecture to automatically diagnose the presence of cancer
cells in the pathological tissue of breast cancers. The fine-tuned DenseNet-169 detects
metastases from whole slide images using the FastAI framework and the 1-cycle policy.
The results obtained from this research were better than any other approaches proposed
earlier. The AUC-ROC of the model is 97%, whereas the accuracy of the baseline model
was approximately 92%. The DL model proposed in this work can be enhanced further for
other cancer data with different data augmentation techniques. A base model other than
DenseNet-169 can also be used to see if a different model gives even better performance.
Another area of future research could be adding noise to the region of interest and seeing
how that may affect the edge cases. Therefore, it can provide an efficient, reliable, and
economical alternative for medical facilities in relevant fields. In the future, the proposed
DenseNet-169can be applied to diverse cancer datasets to enhance the clarity and quality
of results.
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