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Abstract
The Goto-Kakizaki (GK) rat, which has been developed by repeated inbreeding of glucose-

intolerant Wistar rats, is the most widely studied rat model for Type 2 diabetes (T2D). How-

ever, the detailed genetic background of T2D phenotype in GK rats is still largely unknown.

We report a survey of T2D susceptible variations based on high-quality whole genome

sequencing of GK andWistar rats, which have generated a list of GK-specific variations

(228 structural variations, 2660 CNV amplification and 2834 CNV deletion, 1796 protein

affecting SNVs or indels) by comparative genome analysis and identified 192 potential

T2D-associated genes. The genes with variants are further refined with prior knowledge

and public resource including variant polymorphism of rat strains, protein-protein interac-

tions and differential gene expression. Finally we have identified 15 genetic mutant genes

which include seven known T2D related genes (Tnfrsf1b, Scg5, Fgb, Sell, Dpp4, Icam1,
and Pkd2l1) and eight high-confidence new candidate genes (Ldlr, Ccl2, Erbb3, Akr1b1,
Pik3c2a, Cd5, Eef2k, and Cpd). Our result reveals that the T2D phenotype may be caused

by the accumulation of multiple variations in GK rat, and that the mutated genes may affect

biological functions including adipocytokine signaling, glycerolipid metabolism, PPAR sig-

naling, T cell receptor signaling and insulin signaling pathways. We present the genomic dif-

ference between two closely related rat strains (GK andWistar) and narrow down the scope

of susceptible loci. It also requires further experimental study to understand and validate the

relationship between our candidate variants and T2D phenotype. Our findings highlight the

importance of sequenced-based comparative genomics for investigating disease suscepti-

bility loci in inbreeding animal models.

Background
Type 2 diabetes (T2D), also known as non-insulin-dependent diabetes is characterized by
defects in both insulin secretion and utilization and accounts for about 90% of the 346 million
diabetic cases around the world [1]. Both environmental and genetic factors contribute to the
etiology and progression of T2D [2, 3]. In the last two decades, significant efforts, ranging from
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traditional candidate gene mapping to genome-wide association studies (GWAS), have identi-
fied nearly 120 T2D susceptibility genes in different human population [3–24]. However, the
precise molecular pathogenesis of this heterogeneous disease remains poorly characterized.
Therefore more T2D-related genes are expected to be uncovered.

The Goto-Kakizaki (GK) rat, a non-obese animal model of T2D, was developed by repeated
inbreeding of glucose-intolerant Wistar rats [25]. GK rats suffer from reduced beta-cell mass
with insulin resistance. Therefore, these model rats provide an ideal model system to search for
T2D susceptible genes/loci to enhance our understanding of the etiology and pathogenesis of
the disease [26, 27]. Several quantitative trait locus (QTL) analyses on this model have already
identified a number of genomic loci harboring susceptible variants [28–30].

As large-scale changes in the genome such as copy number variations (CNVs) have been
linked to dozens of human diseases [31–35], we previously conducted a genome-wide screen
for CNVs between GK (T2D model) and Wistar rat (wild type) using comparative genomic
hybridization (CGH) array. A set of T2D-associated CNV regions with the total length of
about 36 Mb, including several novel T2D susceptibility loci which contain 16 protein-coding
genes (Il18r1, Cyp4a3, Sult2a1, Sult2a2, Sult2al1, Nos2, Pstpip1, Ugt2b, Uxs1, RT1-A1, RT1-A3,
RT1-Db1, RT1-N1, RT1-N3, RT1-O, and RT1-S2) and two microRNA genes (rno-mir-30b and
rno-mir-30d), were identified [36].

The draft genome of the Brown Norway (BN) rat, covering around 92% of the genome, was
released in 2004 [37], and was the third complete mammalian genome to be deciphered. Limi-
tations in obtaining extensive genetic data have been largely overcome by the development and
maturation of next-generation sequencing (NGS) technologies, which have significantly
improved the throughput with reduced costs. Whole genome sequencing has become an alter-
native approach to identify genes involved in disease. For example, comparing the genomic
sequence of spontaneously hypertensive rats (SHR) and the BN reference genome, Atanur
et al., identified a number of candidate loci that may be involved in the development of hyper-
tension [38].

We conducted whole genome sequencing and compared the genomic sequence differences
between Wistar and GK rats (Fig 1). As a result we generated a list of GK-specific variations
including 228 structural variations, 2660 CNV amplifications, 2834 CNV deletions, and 1796
protein affecting SNVs or indels. Comparing these variations with known rat genome varia-
tions and known human T2D-associated genes, we obtained 192 candidate genes including 15
with high confidence that may be associated with the T2D phenotype observed in GK rats.
These genes are involved in multiple pathways, suggesting that multiple interacting biological
networks may be involved in the GK T2D phenotype. We expected this work facilitates the
understanding of the molecular processes involved in the development of T2D.

Results

Sequencing and mapping
We sequenced the genome of GK/Slac and Wistar/Slac using both Illumina Solexa and ABI
SOLiD platforms. Sequencing reads from these two platforms were combined in the subse-
quent analyses to gain higher sequence coverage and depth. In total, we obtained 100.4 Gb for
the GK/Slac and 85.6 Gb for the Wistar/Slac rat which represent an average sequencing depth
of 35.9X for GK/Slac and 30.5X for Wistar/Slac (S1 File). About 50.45% (43.27%) SOLiD reads
and 32.13% (18.68%) Solexa reads of GK/Slac (Wistar/Slac showed in parentheses) were evalu-
ated as low quality by a strict quality control procedure (S2 File). These low quality reads were
filtered before sequence mapping. The remained reads were mapped to BN reference genome,
obtaining more than 99% coverage (99.40% and 99.35% genome were covered by at least one
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read in GK/Slac and Wistar/Slac sequencing, respectively; 93.02% and 93.65% genome were
covered by at least five reads).

In order to get accurate variant calls, we reassessed the quality of the mapping results
through the GATK workflow [39]. After these steps, 0.42% (0.58%) of the Solexa reads, and
6.05% (4.87%) of the SOLiD reads were removed from GK/Slac (Wistar/Slac) mapping results,
respectively (S3 File). In total we aligned 34.06 Gb (34.70 Gb) from GK/Slac (Wistar/Slac)
sequencing data to the BN reference rat genome which corresponded to 13.27X (13.52X) cov-
erage of high-quality reads for GK/Slac (Wistar/Slac) [38].

Variant calling
Sequence variants identified in GK/Slac and Wistar/Slac include single nucleotide variant
(SNV), small insertion and deletion (indel), structural variation (SV), and copy number varia-
tion (CNV). In total, we identified 3,471,498 (3,194,675) raw SNVs and 492,731 (517,005)
raw small indels for GK/Slac (Wistar/Slac). These variants were further filtered by sequence
coverage, strand bias, and error-enriched regions (see Method for detailed description) which

Fig 1. Pipeline for whole-genome sequencing and comparative analysis between GK andWistar rats.

doi:10.1371/journal.pone.0141859.g001
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resulted in 3,049,694 (2,727,649) high-quality SNVs and 476,841 (487,315) high-quality indels
for GK/Slac (Wistar/Slac) (S4 File). Among them 2,927,627 (2,623,154) were homozygous
SNVs in GK/Slac (Wistar/Slac). The percentage of homozygous SNVs was 95.99% (96.16%),
consistent with the expected level for the inbred strain. There were 2,066,576 (1,843,133) tran-
sitions and 983,003 (884,403) transversion sequence changes in GK/Slac (Wistar/Slac). The
ratio of transition to transversion ratio (Ti/Tv) is 2.10 (2.08), which is comparable to the Ti/Tv
ratio of ~2.0–2.1 observed in human genomic sequence dataset [40].

Among all SNVs, 2,695,132 (66.8%) of them were present in the dbSNP database (http://
rgd.mcw.edu/pub/data_release/GFF/SNPS/DbSNP/). Others may be strain-specific or private
SNVs that were not covered by previous studies.

To evaluate the accuracy of variant calling, we compared the primary results to a public
dataset from the STAR project [41]. This dataset includes genotypes for 20,238 SNVs across
167 distinct inbred rat strains including 10 GK and 6Wistar strains. There were 7368 (4000)
positions that were mutant in all GK (Wistar) strains, and 2491 (1372) positions that were not
polymorphic in all GK (Wistar) strains. We checked our SNV calling results against these posi-
tions and calculated sensitivity and specificity. For GK/Slac strain, we called 6984 SNVs among
the 7368 positions (94.79% sensitivity) and 2489 out of the 2491 non-polymorphic positions
(99.9% specificity). For Wistar/Slac strain, we called 3319 SNVs among the 4000 positions
(82.97% sensitivity) and 1104 out of the 1372 non-polymorphic positions (80.47% specificity).

Comparative genome analysis
Since the GK rat was obtained by selective inbreeding of Wistar rats, their specific genetic
changes fromWistar should indicate the cause of type 2 diabetic phenotypes observed. There-
fore, GK/Slac specific variants were determined by comparing variants in GK/Slac with Wis-
tar/Slac. All GK/Slac specific variants were shown on a circular chromosome map (Fig 2).

There were 1,354,739 GK/Slac specific SNVs and 134,554 GK/Slac specific indels. The den-
sity of GK/Slac specific SNV/indel was calculated in each 1Mb segment, and their distribution
was plotted in Fig 3A and 3B. Most genomic regions were relatively conserved with extremely
low SNV density (0–0.0001) and regions with median SNV density (0.0001–0.001) were evenly
distributed. When the SNV density increased, the frequency decreased smoothly (0.001–
0.002). A long tail indicated the existence of extremely high SNV density (>0.002) regions.

The distribution of indel density was similar to the SNV distribution (Fig 3A and 3B). We
calculated the Pearson correlation coefficient between SNV density and indel density in each
1Mb genomic segment. The result showed that the density frequency of GK/Slac specific SNVs
and indels were positively correlated (R2 = 0.959, Fig 3C). This indicated some SNVs and indels
tend to co-localize at highly mutated regions of the genome (S5 File). As expected, there were
regions in the genome that showed no or very few differences between GK/Slac andWistar/
Slac strain, termed variants deserts. Examples included chromosome 1 (20Mb-21Mb) and
chromosome X (53Mb-54Mb).

Besides SNV and small indels, we also compared large SVs and CNVs between GK/Slac and
Wistar/Slac. We identified 228 GK/Slac specific SVs, including 174 deletions, 12 inversions, 36
tandem duplications and 6 translocations. Based on sequence coverage, we predicted 2660
CNV amplified regions and 2834 CNV deleted regions between the GK/Slac and Wistar/Slac
rat genomes. To validate our CNV calling, we compared the CNV candidates with a set of 116
CNVs identified by CGH array data from our previous work [36]. Out of 58 CNV gain regions
identified by array, we successfully identified 38 in the sequencing results. The sequencing
results also identified 31 out of the 58 CNV loss regions identified by array.
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Identification of potential T2D candidate mutations specifically presented
in the GK rat
We were interesting in the GK/Slac specific variants that might contribute to the development
of type 2 diabetes phenotype in GK/Slac. We mapped GK/Slac specific SVs and CNVs to
regions containing functional transcripts. For SVs, 26 genes were affected, including 18 olfac-
tory receptor genes (ORs) (S7C File). 75 genes were associated with CNVs, among them 24

Fig 2. Densities for 7 kinds of GK/Slac specific variants on the rat genome. Each tiny bar stand for variants density normalized in 1 Mb genomic
segments (see Methods), which was plotted on the circular chromosomes by CIRCOS (http://http://circos.ca/). Layers from outside to inside represent for rat
kayrotype and the density of SNV, small indel, large deletion, inversion, tandem duplication, CNV gain, and CNV loss.

doi:10.1371/journal.pone.0141859.g002
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were OR genes (S7D File). The OR gene family is the largest superfamily in mammalian
genome. There are 1,493 OR genes in the rat and 19.5% may be pseudo-genes [42]. OR genes
are frequently clustered in regions with a large number of retrotransposons or around subtelo-
meric regions [43] [44], which tend to exhibit a high rate of mutation. Therefore, we thought
GK/Slac specific variants in ORs were background mutations rather than causal of the T2D
phenotype. Besides the OR genes, other SV or CNV affected genes were randomly distributed
with no enrichment in T2D related pathways and no literature evidence of either direct or indi-
rect association between these genes and T2D.

Next we investigated potential T2D candidate variants from GK/Slac-specific SNVs and
indels. We divided SNP/indels into five groups to illustrate their genotype patterns in GK/Slac
andWistar/Slac (Fig 4A). Group1 (0/1, 0/0) contained sites that were heterozygous variant in
GK/Slac and homozygous reference in Wistar/Slac; Group2 (1/1, 0/0) contained sites that were
homozygous variant in GK/Slac and homozygous reference in Wistar/Slac; Group3 (1/1, 0/1)
contained sites that were homozygous variant in GK/Slac and heterozygous variant in Wistar/
Slac; Group4 (1/2, 0/0) was similar with Group2 and Group5 (1/2, 0/1) was similar with
Group3, which were rare sites with two mutant alleles. Among 1,354,739 GK/Slac specific
SNVs, group 1 to 3 accounted for the majority of SNVs with 3.6%, 92.9% and 3.5%, respectively
(Table 1). Like SNVs, among 134,554 GK/Slac specific indels, proportion of group1 to group3
were 5.0%, 81.9% and 13.1%, respectively. In summary, most SNV and indel variants belonged
to groups 1, 2 and 3, and only few allele sites had the complicated allele composition in group 4
and 5 which was consistent with the low probability of de novo production of two rare alleles in

Fig 3. Density and distribution of SNVs and small indels. (A). Distribution of SNV density in 1Mb segments. (B) Distribution of small-indel density in 1Mb
segments. (C) Correlation between the distribution of SNVs and small indels.

doi:10.1371/journal.pone.0141859.g003
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the lab inbreeding strain. Group 2 accounted for a large proportion that was concordant with
the high homozygosity rate of inbred laboratory rat. Next we annotated the functional effect of
GK/Slac specific SNVs/indels by ANNOVAR [45]. Table 2 showed the number of SNPs/indels
in each genotype group and functional class. Variants had potential to interrupt the protein
functions were called protein affecting variants (PAVs), including nonsynonymous, stopgain,
stoploss, splicing, frameshift indels and exonic ncRNA. We detected 1796 PAVs, including
1762 SNVs and 34 indels (S7AB File).

To further refine the above PAVs, we compared our variants with the variants of public
RGD datasets. Atanur et al. reported whole-genome sequencing results of 28 laboratory rat
strains[46]. Depending on these variants and ours, we plotted a phylogenetic tree for these rats
(Fig 5). As the phylogenetic relationship showed, GK/Slac was close to GK/Ox, and Wistar/Slac

Fig 4. Analysis of GK/Slac specific protein affecting SNVs. (A) Variants were classified into five groups
based on their genotypes in GK/Slac andWistar/Slac. As shown in the bottom legend, circles stand for the
original reference allele whereas stars and triangles represent two different mutant alleles. Taken group 1 as
an example, variants is heterozygous in GK/Slac that have one mutant allele and one reference allele, while it
is homozygous-reference in Wistar/Slac. Almost all variants are in group1, group2, and group3. (B) Genotype
profiling for 1762 GK/Slac specific SNVs in 28 previous sequenced rat strains. GK/Ox and GK/Slac are GK
strains which came from different geographical locations. BBDP is a type 1 diabetic model, another 11Wistar
derived rats are labeled by green. (C) T2D related prior genes. (D) Functional effect of nonsynonymous SNVs
predicted by SIFT.

doi:10.1371/journal.pone.0141859.g004

Table 1. Five different genotype of GK/Slac specific SNVs and indels.

GK/Slac specific Total Group1 (0/1, 0/0) Group2 (1/1, 0/0) Group3 (1/1, 0/1) Group4 (1/2, 0/0) Group5 (1/2, 0/1)

SNVs 1354739 48573 1258423 47735 2 6

indels 134554 6731 110171 17647 1 4

doi:10.1371/journal.pone.0141859.t001
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was close to Wistar derived strains in USA. Therefore, the genetic background of GK/Slac and
Wistar/Slac were more similar with 12 Wistar derived strains (SHR/NHsd, SHRSP/Gla, SHR/
OlaIpcv, WKY/ NCrl, WKY/Gla, WKY/NHsd, LEW/Crl, LEW/NcrlBR, WAG/Rij, BBDP/
Wor, MHS/Gib, MNS/Gib) than other rat strains, which convinced our samples and results
were reliable.

In the light of the public resources of variants from different rat strains, we were able to fur-
ther narrow down the mutant profile. Fig 4B, 4C and 4D showed the genotype profiles of 1762
GK/Slac specific PAVs in 28 rat strains, the overlap with T2D prior genes (S6 File), and the pre-
dicted functional effect of PAVs. To identify T2D phenotype-specific genetic changes, we fur-
ther filtered the 1796 GK/Slac specific PAVs based on the genotype profile of 11 Wistar strains
(except BBDP/Wor, which is a type 1 diabetic model) and 1 GK/Ox strain. Our GK specific
variants, which had potential to contribute to T2D phenotype, were required to present in the
GK/Ox strain but not the other 11 Wistar strains.

Considering the laboratory inbreeding process, we supposed homozygous variants in GK
rat have a higher probability to account for the disease phenotype. Among the 1762 GK/Slac
specific protein affecting SNVs, 300 were homozygous variants in both GK strains (GK/Slac in
our report and GK/Ox strain studied by Atanur et.al. [46]), but did not present in other 11
Wistar strains. These 300 SNVs were located in 252 genes including 60 OR genes and the other
192 genes were used for further analysis (S8A File). We also checked 34 protein affecting indels.
Besides 7 indels were heterozygous in GK/Slac, one homozygous indel resided in the T2D prior
geneHif1a, but many other rat strains also had this homozygous indel; the other 26 homozy-
gous indels were either located in OR genes or not reported to be associated with T2D.

Refinement of the genes with homozygous mutation based on PPI
network and gene expression identify prior T2D genes and new
candidates
Among 192 potential T2D associated genes, seven of them (Tnfrsf1b, Scg5, Fgb, Sell, Dpp4,
Icam1, and Pkd2l1) were clearly reported to be T2D prior genes (see Methods for detailed
description, S6 File)). As T2D phenotype was correlated with protein network dysregulation,
we hypothesized T2D candidate genes were more likely to have interactions with reported T2D
prior genes. We used Fisher’s test to evaluate whether their interaction partners were enriched

Table 2. Functional annotation of GK specific variants. There are 1796 GK/Slac specific protein affecting variants, including 1762 SNVs and 34 indels.
Values in table are the number of SNVs in each function class and values in parentheses are the number of indels.

Annotation Total Group1 (0/1, 0/0) Group2 (1/1, 0/0) Group3 (1/1, 0/1)

Protein affecting variants Nonsynonymous 1721 106 1526 89

Stopgain 14 2 12 0

Stoploss 1 1 0 0

RNA splicing 8 (5) 1 (1) 7 (2) 0 (2)

ncRNA_exonic 18 (1) 1 17 (1) 0

Frameshift deletion (18) (4) (13) (1)

Frameshift insertion (10) (2) (8) (0)

Synonymous 3485 154 3173 158

Other variants UTR 4484 (467) 214 (23) 4076 (393) 194 (51)

Intronic 303876 (32349) 10279 (1523) 283225 (26523) 10372 (4303)

Up/Down-stream 13145 (1456) 503 (68) 12084 (1207) 558 (181)

Intergenic 1027253 (100220) 37282 (5109) 953648 (82009) 36323 (13102)

doi:10.1371/journal.pone.0141859.t002
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with T2D prior genes (S8B File). There were 16 genes whose interaction partners were enriched
with prior genes (adjusted p-value<0.05), among of which six genes (Tnfrsf1b, Scg5, Fgb, Sell,
Dpp4, and Icam1) were known T2D prior genes. Fig 6A shows the protein-protein interaction
(PPI) network between these six genes and other T2D prior genes. PPIs contained validated
and predicted protein associations from STRING database and genes were annotated by
KEGG pathway database. Five T2D related pathways were labeled by different colored boxes,
including Adipocytokine signaling pathway, Glycerolipid metabolism, PPAR signaling path-
way, T cell receptor signaling pathway and Insulin signaling pathway.

The six T2D prior genes were closely correlated with T2D phenotype according to previous
investigations. Genetic variation in or near Tnfrsf1bmight predispose clinical neuropathy,

Fig 5. Phylogenetic Tree of GK/Slac, Wistar/Slac and other sequenced rat strains.Whole genome sequencing of GK/Slac andWistar/Slac were
performed in this study. Whole-genome SNPs of other strains were obtained from Atanur et.al. [46]. Distance between all possible pairs of strains were
measured by net nucleotide substitutions [88]. The phylogenetic tree was constructed using UPGMA (unweighted pair-group method with arithmetic means)
method in MEGA 6.06 package.

doi:10.1371/journal.pone.0141859.g005
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reduced glycosylated hemoglobin, and increased HDL cholesterol in type 2 diabetes patients.
The latter could be part of a protective response [47]. Tnfrsf1b and its interacting proteins were
involved in the adipocytokine signaling pathway and increased TNF-alpha action would pro-
tect the organism from the damage by increasing HDL cholesterol in T2D patients [47, 48].

Fig 6. Protein-protein interaction (PPI) network for T2D candidate genes identified in GK rats. (A) PPI network for six T2D prior genes that have GK/
Slac specific PAVs. Edges indicate PPI got from STRING database (only considering interaction with other T2D prior genes). Genes involved in important
KEGG pathways were shown by colored boxes. (B) Relationship network among fifteen T2D candidate genes. Seven genes were T2D prior genes and have
GK/Slac specific PAVs; another eight genes were enriched with T2D prior genes as PPI partners. Widths of edges were proportional to the number of shared
PPI patterns.

doi:10.1371/journal.pone.0141859.g006
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The nonsynonymous SNV in Scg5 (chr3: 99641204:G->C) was predicted to be deleterious (Fig
4D) by SIFT [49]. Its homologous site in mouse is annotated as “type 2 diabetes mellitus 2 in
SMXA RI mice” based on QTL data in UCSC genome browser. Also Scg5 (SGNE1) might
impair glucose intolerance and insulin resistance [50], which was consistent with the insulin
resistant phenotype of GK strain. Fibrinogen (Fgb) was described as one of the cardiovascular
risk factors [51] and Fgb concentration was correlated with fasting insulin concentration [52].
Fgb was also involved in T2D related PPARγ signaling pathways [53]. Sell was a cell surface
adhesion/homing receptor that played important roles in leukocyte-endothelial cell interac-
tions. Although its interaction partners did not show enrichment in any T2D related pathway,
previous literature had reported that Sell was associated with T2D-associated pathologies, such
as diabetic microangiopathy [54], nephropathy [55] and diabetic retinopathy [56]. Dpp4 was a
famous drug target of T2D [57], and Dpp4 inhibitors could ameliorate many symptom of T2D
[58, 59]. PPI showed that Dpp4 was involved in a number of biological functions (Fig 6A) [57].
Dpp4 played a critical role in both the adipocytokine signaling pathway and insulin signaling
pathway [60]. Inhibiting Dpp4 activity increased glucose-dependent insulinotropic polypeptide
and glucagon like peptide 1 induced insulin secretion [61]. T2D patients showed increased
ICAM-1 and VCAM-1 plasma concentrations, which was thought to be related to hyperglycae-
mia [62]. Pkd2l1 had been associated with T2D by GWAS study [63] and Mancusi S et al. dem-
onstrated that the expression change of PKD2, which was responsible for the formation of the
renal cysts and associated with early diabetes onset [64].

Some of the mutant genes were supposed to show expression changes between GK andWis-
tar strain. We compared the expression profile of 192 potential T2D genes in GK and Wistar
rats by analyzing a public microarray dataset (GSE13271). There were 32 differentially
expressed genes and 38 differential co-expressed genes in at least one tissue between GK and
Wistar rat (S8B File). Among above 16 candidate genes, seven of them (Tnfrsf1b, Ldlr, Pik3c2a,
Sell, Icam1, Eef2k, Cpd) also had significant expression changes (differentially expression or dif-
ferential co-expression) between GK and Wistar. (Table 3)

Integrating prior knowledge, PPI network and differential gene expression, we finally
selected 15 higher confidence T2D candidate genes with homozygous variants in GK strains
(Table 3). These 15 genes were involved in multiple T2D related pathways. We counted the
number of shared interaction partners between any two genes, and constructed a relationship
network for 14 genes out of the 15 high-confidence T2D candidate genes (Fig 6B). Fig 6B illus-
trates the close relationship between 8 new genes (Ldlr, Ccl2, Erbb3, Akr1b1, Pik3c2a, Cd5,
Eef2k, Cpd) and known T2D prior genes, indicating these 8 genes have strong relationships
with T2D associated pathways. We manually checked their function and possible relationship
to T2D in published literature. For instance, Ldlr had previously been shown to be associated
with diabetes mellitus and its lipid phenotype [65]. A GWAS study of French population also
identified Ldlr as a T2D risk locus [66]. Akt2/Ldlr double knockout mice displayed impaired
glucose tolerance [67], and increased inflammation response [68]. CCL2/C-C chemokine recep-
tor 2 (CCR2) signaling was suggested to play a significant role in diabetic nephropathy and in
adipose tissue inflammation during insulin resistant. Blocking CCL2/CCR2 signaling not only
improved blood glucose levels but also altered renal nephrin and VEGF expressions in type 2
diabetic mouse model [69]. Butcher et.al. showed that type 2 diabetic islets displayed higher
CCL2 expression than healthy islets [70]. Polymorphism of Akr1b1 was associated with dia-
betic nephropathy and type 2 diabetes mellitus by two GWAS studies [71, 72]. Pik3c2a played
a critical role in insulin secretion in β cells and down-regulation of PI3K-C2αmight be a feature
of type 2 diabetes [73]. Eef2k was a kinase of Eef2 and renal cortical homogenates from db/db
mice in early stage of type 2 diabetes showed decrease in Eef2 phosphorylation and increment
in Eef2 kinase phosphorylation [74]. Carboxypeptidase D (Cpd) and carboxypeptidase E (Cpe)
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belonged to same family of enzymes and defects in Cpe could lead to β-cell stress and hyper-
proinsulinemia, both of which were features of type 2 diabetes in GK rat [75]. Chu KY et al.
also found that Cpd was significantly up-regulated by elevated glucose or low doses of insulin
[76].

Conclusion
We presented a comprehensive analysis pipeline of re-sequencing study with general case-con-
trol study design. Besides identifying some prior T2d genes with mutations, we found 8 new
candidate genes which required further wet-lab experimental evaluation and validation. As a
bioinformatic analysis of NGS data, our workflow could be adopted in other re-sequencing
study of organism with disease model.

Discussion
Rodents have been used to model human diseases because of their similarity in genome and
physiology. GK is a classic rat T2D model, which is obtained by selective inbreeding of Wistar
rats. GK/Slac andWistar/Slac rats have been bought from a commercial company (www.
slaccas.com), which import rat strains from the place of production and then bred locally in
China. These two strains have been widely used by Chinese investigators [77–82]. Our work
provides the whole-genome sequences of GK/Slac strain andWistar/Slac strain for the first

Table 3. High-confident T2D candidate genes and their homozygous SNVs in GK rat.

Gene Chromosome
location

Nucleotide
change

Protein
change

SIFT
prediction

Evidence of
associationa

Previous
publication

Adjusted P-
valueb

Differential (co-)
expression

# GK-specific homozygous variants, not in Wistar/Slac and other sequenced strains.

Tnfrsf1b chr5: 163680822 C->T p.A51T tolerated 1), 2), 3) [47] 4.49E-2 adiposec

Scg5 chr3: 99641204 G->C p.P156R deleterious 1), 2) [50] 1.56E-2

Fgb chr2: 174775040 G->T p.L8I tolerated 1) [51, 52] 5.16E-3

Sell chr13: 79831304 C->G p.R167G tolerated 1), 3) [60, 73] 5.39E-3 musclec

Dpp4 chr3: 44359652 T->C p.I20V tolerated 1) [57, 59, 60, 94] 2.28E-13

Ldlr chr8: 20844228 A->G p.K742E tolerated 2), 3) [65–68] 2.73E-33 liverd

Ccl2 chr10: 70257779 A->C p.E141D tolerated 2) [69, 70] 4.91E-22

Erbb3 chr7: 1859081 C->T p.R1072H tolerated 2) - 1.80E-18

Akr1b1 chr4: 61654486 T->C p.S77G tolerated 2) [71, 72] 8.97E-7

Pik3c2a chr1: 174467615 C->T p.V598I deleterious 2), 3) [73] 1.14E-4 adiposed

Pik3c2a chr1: 174436078 T->C p.T1550A tolerated 2), 3) - 1.14E-4 adiposed

Cd5 chr1: 213215518 C->T p.V445M tolerated 2) - 2.33E-3

Icam1 chr8: 20050122 A->G p.I314V tolerated 1), 2), 3) [62] 1.05E-23 adiposed

Pkd2l1 chr1: 249075571 A->T p.T169S - 1) [63] [64] 1

Pkd2l1 chr1: 249075657 G->T p.L197F deleterious 1) [63] [64] 1

Eef2k chr1: 179746185 A->G p.Q547R tolerated 2), 3) [74] 2.26E-4 muscled

Cpd chr10: 67359919 C->T p.P490S tolerated 2), 3) [75] 2.23E-2 musclec, adiposec,
liverc

a. Additional evidence of association with T2D. 1) T2D prior genes curated from literatures. 2) Protein-protein interaction partners are enriched with T2D

prior genes. 3) Differential expression or differential co-expression in GSE13271 dataset.

b. P-value for enrichment of T2D prior genes in the interaction partners. P-value was calculated by fisher test, and was adjusted by p.adjust in R.

c. Differential expression between GK and Wistar rats.

d. Differential co-expression between GK and Wistar rats.

doi:10.1371/journal.pone.0141859.t003
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time. This sequencing dataset will be very useful for the researchers who use these two strains
as study objects. It is also an important complement to the Rat Genome Database (RGD) [83],
which include the international sequencing resources of different rat strains.

Comparing the whole genome sequence of T2D phenotypic GK rats with the corresponding
Wistar rats provides insights into the genomic evolution of GK during the laboratory selective
inbreeding for developing the insulin resistant T2D phenotype. In the light of sequencing tech-
nology, the genetic difference between T2D GK and control Wistar rats is easy to identify.
Many years of selective inbreeding in the laboratory makes these genetic variants are correlated
to a consistent phenotype. Such advantages make the GK rat an ideal model to discover T2D
causative genes. Here we studied the genomes of GK and Wistar rats by both sequencing and
computational strategies. We have combined two sequencing platforms with different read
lengths and insert-sizes. The reads are processed with stringent quality control to obtain accu-
rate high-quality variants. In order to identify the causal variants of T2D phenotype, we used
Wistar strains as background to screen GK specific variants, which not only are required to
present consistently homozygous in both our and public GK rat samples, but also are absent in
either our Wistar sample or any Wistar derived samples from the public databases. Then we
selected high-confidence affected genes by integrating T2D prior knowledge, protein interac-
tion and gene expression data. Finally we got fifteen genes with homozygous SNVs in GK rats
and their functions are related with T2D phenotype. The integration of public resources and
prior knowledge can increase the power of detection and narrow down the scale of candidates.
Our data mining approach would inspire similar bioinformatic studies for disease animal
model.

Our analysis focus on variants that affect protein sequences so that variants in the intergenic
or intronic regions are ignored due to the lack of function annotations for these regions in rat
genome. The understanding of noncoding regions may be improved by more studies on trans-
lational regulation and evolutionary conserved regions. We also observed that GK strains and
Wistar strains coming from different laboratories have slightly genetic difference (Fig 4B, Fig
5), showing it is important to use biological repeats even for inbreed organisms. With
decreased sequencing cost and improved computational ability, it is possible to sequence more
samples to increase analysis power. The whole-genome sequencing-based disease study will be
extended to other disease models and our approach can be used as an example to study these
disease model organisms.

Methods

Sample preparation
One male GK/Slac rat and one male Wistar/Slac rat were obtained from SHANGHAI SLAC
LABORATORY ANIMAL CO. LTD (www.slaccas.com). The rats were anesthetized by formalin
at the age of 8 weeks, and the blood was taken from the pericardia with anticoagulant. Genomic
DNA was then isolated using DNeasy Blood & Tissue Kit (Qiagen, p/n69504). All animal
experiments were approved by the Biomedical Research Ethics Committee of Shanghai Insti-
tutes for Biological Sciences, Chinese Academy of Sciences (IRB00005813).

Whole genome sequencing and data preprocessing
GK/Slac and Wistar/Slac rat DNA samples were sequenced by ABI SOLiD and Illumina Solexa
paired-end sequencing technologies. To increase the coverage of genome, three SOLiD
sequencing libraries and one Solexa library were constructed with different read length and
insert length (S1 File). All sequence reads were deposited in the European Nucleotide Archive
under accession number PRJEB6678.
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Read quality was assessed by per base sequence quality, per sequence quality score, per base
N content and overrepresented sequences using software FastQC (http://www.bioinformatics.
babraham.ac.uk/projects/fastqc/). Low quality reads were filtered by stringent criteria: 1)
removing overrepresented adaptor found by FastQC using FASTX-Toolkit (http://hannonlab.
cshl.edu/fastx_toolkit/), 2) removing N base and low quality base (Phred quality score was
below 20), 3) removing reads that’s shorter than 15 bp or paired read was filtered.

Mapping to reference genome
In order to combine data from two different sequencing platforms, we transferred ABI SOLiD
color space encoding data and their quality file to Solexa base space encoding format (Fastq
file). Then we aligned the high-quality reads to the BN rat reference genome (UCSC rn4 / Bay-
lor HGSC Build 3.4) by Bowtie 2 with default parameters [84]. The coverage proportion of ref-
erence genome and estimated genome were calculated by the following formula:

reference coverage proportion ¼ number of bases that0s covered by at least 1 read
total bases in reference genome

genome coverage proportion ¼ number of bases that0s covered by at least 1 read
estimated number of bases in the genome

We further filtered the mapping results to increase the accuracy of variant calling. Firstly,
we did local realignment around known indels using Smith-Waterman algorithm. Then we
removed duplicate reads to reduce amplification bias. Lastly we recalibrated base quality
depending on the reference genome and dbSNP information. These three main processes were
done by GATK (The Genome Analysis Toolkit) [39], and PICARD TOOLS and SAMTOOLS
[85] were used to sort the bam file, fix mate pair information and do format transformation,
which facilitated the GATK running process.

Variants calling and comparison
After pre-mapping and post-mapping quality control, remained bam files were used to call var-
iants: single nucleotide variant (SNVs), small insertion and deletion (indels), structural varia-
tion (SVs), and copy number variations (CNVs).

Small indels and SNVs were called by the UnifiedGenotyper module in GATK software and
filtered by following filtering criteria: minimum number of consensus is 5, minimum base qual-
ity required to consider a base for calling is 17. Furthmore, we filtered the candidate small
indels by criteria: minimum depth (DP) is 8 and allele number (AN) is 4. We filtered SNVs by
criteria: minimum depth (DP) for each allele in per sample is 10, allele number (AN) is 4, mini-
mum base quality is 30, minimum qual by depth (QD) is 5, maximum mapping quality zero
(MQ0) is 4, removing SNVs that were located on indel regions or in SNV cluster regions
(defined by 3 SNV calling in a 10 bp window).

DELLY was used to detect structural variants from discordantly mapped read pairs [86].
The predicted SVs were classified as four groups: deletions, Inversions, tandem duplications
and translocations. To avoid false-positive SVs in GK, DELLY was run with “-p” option that
combined discordant alignment with split-read to get higher confident SVs. Then GK SVs
were compared with Wistar SVs to get GK/Slac specific SVs.

The software BIC-seq [87] was used to detect copy number alterations between GK strain
andWistar strain. Differential CNVs were selected by two criteria: a) ratio of mapped reads
number between GK andWistar is greater than 2; b) Bofferoni adjusted p-value is smaller than
0.01.
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Variant density and function annotation
To illustrate the genome-scale difference between GK/Slac and Wistar/Slac, we analyzed the
density and distribution of GK/Slac specific variants. Reference genome were segmented into
1Mb bins and variant density was defined as the number of variants in each bin divided by the
number of nucleotide bases in the same bin that were covered by at least three reads in GK
sequencing.

ANNOVAR was used to annotate SNVs/indels to gene region (exonic, splicing, ncRNA,
UTR, intronic, up/down-stream, and intergenic). Functional impacts of exonic SNVs/indels
were further classified as synonymous, nonsynonymous, stopgain, stoploss, and frameshift
indels. SIFT was used to predict whether a nonsynonymous SNV affects protein function. SVs
and CNVs were compared with gene annotation to get effected genes.

Identification of potential T2D candidate genes
Genotype was encoded as allele values separated by “/”. The allele values are 0 for the reference
allele (what is in BN rat), 1 for the first variant allele, 2 for the second variant allele and so on.
We compared SNVs and indels called from GK/Slac andWistar/Slac, chose GK/Slac strain spe-
cific variants that are not presented or differently presented in Wistar/Slac strain. These GK/
Slac specific variants were classified into five groups based on their genotypes in GK/Slac and
Wistar/Slac: 1) 0/1, 0/0; 2)1/1, 0/0; 3)1/1, 0/1; 4)1/2, 0/0; 5)1/2, 0/1.

Further analysis focused on protein affecting variants (PAV): nonsynonymous, stopgain, sto-
ploss, frameshift indels, splicing, and exonic ncRNA. We investigated their genotype profiles in
28 sequenced rat strains (including 1 GK strain and multiple Wistar strains arising from the dif-
ferent geographical locations), whose genomes were sequenced by Atanur et.al. [46] and down-
loaded from RGD database. Whole-genome SNPs in GK/Slac, Wistar/Slac and 28 sequenced rat
strains were compared. Distance between all possible pairs of strains were measured by net nucle-
otide substitutions [88]. The phylogenetic tree was constructed using UPGMA (unweighted pair-
group method with arithmetic means) method in MEGA 6.06 package [89]. T2D related candi-
date PAVs were selected if they were homozygous-variant in two GK strains (GK/Slac sequenced
in our experiment, GK sequenced by Atanur.et.al.) and was not homozygous-variant in eleven
Wistar-derived strains (SHR/NHsd, SHRSP/Gla, SHR/OlaIpcv, WKY/NCrl, WKY/Gla, WKY/
NHsd, LEW/Crl, LEW/NcrlBR, WAG/Rij, MHS/Gib, MNS/Gib).

Functional analysis of potential candidate genes
Candidate gene lists were further filtered by integrating other information: T2D prior genes,
protein-protein interaction, and differential gene expression.

We manually curated T2D related genes from published literatures and human GWAS cata-
log (http://www.genome.gov/admin/gwascatalog.txt) [90]. Totally, 506 T2D related genes were
collected as prior genes (S6 File), including T2D susceptible genes, genes involved in important
T2D pathways (such as insulin signaling pathway, adipocytokine signaling pathway), and
genes associated with T2D related traits. Genes with GK/Slac specific variants were compared
with T2D prior genes to narrow down the candidate gene list.

Known and predicted protein-protein interaction were obtained from STRING database
[91], which quantitatively integrates interaction data from previous knowledge, genomic con-
text, high-throughput experiments and conserved gene co-expression. We only used interac-
tion pairs whose score is higher than 0.4. For T2D candidate gene list, we counted the number
of their interaction partners in rat genome and in 506 T2D prior genes. Then we used Fisher
test to calculate P-value, and adjusted it by multiple test. Genes with P-value< = 0.05 were
regarded as better candidate genes.
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Gene expression data was downloaded from a GEO dataset GSE13271(http://www.ncbi.
nlm.nih.gov/geo/query/acc.cgi?acc=GSE13271), which measured the expression of GK and
Wistar in three tissues (liver, muscle and adipose) at five time points during T2D development
[92]. To compare GK and Wistar, T-test and fold-change threshold was used to get signifi-
cantly differentially expressed genes (P-value< = 0.01 and fold-change>2); R package DCGL
2.0 [93] was used to mine differentially co-expressed genes (P-value< = 0.05 after Bonferroni
correction). Results of each time point were combined to get the final differential gene list.
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S1 File. Detail of four libraries for whole genome sequencing of GK/Slac and Wistar/Slac
rats. A total of 100.4 Gb (35.9X) and 85.6 Gb (30.5X) of short reads were generated for GK/
Slac (Wistar/Slac) rat, respectively.
(XLS)

S2 File. Statistics for quality control and genome mapping results.
(XLS)

S3 File. Statistics for post-mapping quality control.Number of filtered reads were shown in
the table. Values in parentheses are the percentage of filtered reads in total mapping results.
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S4 File. Summary of variants in GK andWistar rat, with BN rat as reference genome.
(XLS)

S5 File. Chromosome segments which have higher (top 5%) or lower (bottom 5%) SNV
density and indel density. Density was defined as the number of SNV/indel in each 1Mb bin
divided by the number of nucleotide bases in the same bin that were covered by at least three
reads in GK sequencing. Low-density regions overlapped with gap were removed.
(XLS)

S6 File. A list of T2D prior genes that were collected from literatures or human GWAS cat-
alog.
(XLS)

S7 File. GK/Slac specific variants and functional effect on genes. (A) Protein affecting SNV
(B) Protein affecting indels. (C) Structural variations that overlapped with gene. (D) Copy
number gain or loss that overlapped with gene.
(XLS)

S8 File. Progress for selecting potential T2D candidate genes. (A) 300 GK/Slac specific
PAVs in 252 genes, which are homozygous mutant locus in GK/Slac strain but not in Wistar
derived strains [46]. (B) After removing 60 ORs genes, there are 228 GK/Slac specific PAVs in
192 genes. These genes are analyzed by the following steps: 1) comparison with T2D prior
genes; 2) differential (co-)expression between GK and Wistar rats in liver, muscle or adipose;
3) protein-protein interaction with T2D prior genes.
(XLS)
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