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Abstract
Staphylococcus (S.) aureus is a common causative agent of bacterial endophthalmitis, a

vision threatening complication of eye surgeries. The relative contribution of S. aureusviru-
lence factors in the pathogenesis of endophthalmitis remains unclear. Here, we comprehen-

sively analyzed the development of intraocular inflammation, vascular permeability, and the

loss of retinal function in C57BL/6 mouse eyes, challenged with live S. aureus, heat-killed S.
aureus(HKSA), peptidoglycan (PGN), lipoteichoic acid (LTA), staphylococcal protein A

(SPA), α-toxin, and Toxic-shock syndrome toxin 1 (TSST1). Our data showed a dose-

dependent (range 0.01 μg/eye to 1.0 μg/eye) increase in the levels of inflammatory media-

tors by all virulence factors. The cell wall components, particularly PGN and LTA, seem to

induce higher levels of TNF-α, IL-6, KC, and MIP2, whereas the toxins induced IL-1β. Simi-

larly, among the virulence factors, PGN induced higher PMN infiltration. The vascular per-

meability assay revealed significant leakage in eyes challenged with live SA (12-fold) and

HKSA (7.3-fold), in comparison to other virulence factors (~2-fold) and controls. These

changes coincided with retinal tissue damage, as evidenced by histological analysis. The

electroretinogram (ERG) analysis revealed a significant decline in retinal function in eyes

inoculated with live SA, followed by HKSA, SPA, and α-toxin. Together, these findings dem-

onstrate the differential innate responses of the retina to S. aureus virulence factors, which

contribute to intraocular inflammation and retinal function loss in endophthalmitis.

Introduction
Infectious endophthalmitis is one of the most devastating complications of ophthalmic surger-
ies and penetrating injuries [1]. The most common isolated microorganisms are Gram-
positive staphylococci, which constitute up to 90% of all bacterial pathogens [2]. The course of
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infectious endophthalmitis varies widely depending upon the organism involved, ranging from
therapeutically responsive infections to therapeutically challenging infections caused by more
virulent pathogens such as Bacillus cereus [3, 4] and Staphylococcus(S) aureus [5–7]. As one of
the most feared ocular pathogens, S. aureus causes severe intraocular inflammation, significant
vision loss, and can even cause loss of the eye [8, 9]. Despite therapeutic and surgical interven-
tions, endophthalmitis results in partial or complete visual loss within a few days of microbial
inoculation [10].

The current treatment for bacterial endophthalmitis involves intravitreal administration of
antibiotics [11]. Some of the antibiotics, in the process of destroying the bacteria, release lipo-
teichoic acid (LTA) and peptidoglycan (PGN) from the bacterial cell walls, thereby exacerbat-
ing the acute inflammatory response [12, 13]. Indeed, previous studies have shown that
the Gram-positive bacterial cell wall can induce cytokine production, inflammatory cell che-
motaxis, and cellular toxicity in a number of experimental models, including endophthalmitis
[14, 15]. Similarly, our previous studies have implicated the role of Toll-like receptors (TLRs)
in mediating retinal innate responses to S. aureus cell wall components, including PGN and
LTA [16–18]. In addition to cell wall components, S. aureus produces various toxins, such as
α-toxin and Toxic-shock syndrome toxin (TSST1). However, their role in eliciting retinal
innate responses remains elusive [6, 19].

The pathogenesis of bacterial endophthalmitis involves complex host-pathogen interactions
that results in intraocular inflammation, vascular leakage, and retinal tissue damage. The rela-
tive contribution of S. aureus virulence factors in evoking these innate responses is not well
understood. Thus, in the current study, we investigated the role of individual virulence factors
in the pathogenesis of staphylococcal endophthalmitis and comparisons were made with live
and heat-inactivated S. aureus. Together, our data suggest that S. aureus virulence factors incite
differential innate responses in the retina and suggest that the neutralization of a single, specific
virulence factors may not be effective in preventing/treating bacterial endophthalmitis.

Material and Methods

Ethics Statement
Female C57BL/6 (aged ~8 weeks) specific pathogen free mice obtained from the Jackson Labo-
ratory were maintained at the Kresge Eye Institute in specific pathogen free conditions. All the
procedures were conducted in compliance with the ARVO statement for the Use of Animals in
Ophthalmic and Vision Research, and were approved by the Institutional Animal Care and
Use Committee of Wayne State University (protocol A-08-02-13).

Bacterial strain and virulence factors
The S. aureus strain RN6390 was used to induce endophthalmitis [20, 21]. The bacterial strain
was maintained and grown in tryptic soy broth (Sigma Aldrich, St. Louise, USA) overnight at
37°C. The bacterial count was adjusted to 5000 cfu/ml in PBS. For the preparation of heat killed
S. aureus (HKSA), 105 cfu/ml of bacterial culture was boiled in a water bath for 10 min.,
followed by a viability assay using bacterial plating. Purified PGN, SPA, α-toxin, TSST1, and
LTA from Staphylococcus aureus were purchased from Sigma Aldrich, USA. A dose response
study was performed to select the suitable dose that worked for each bacterial virulence factor
to elicit inflammation (Fig 1). Alpha-toxin was tested for hemolytic activity in 5% sheep blood
agar before injection. All the virulence factors were dissolved in endotoxin-free water and
checked for endotoxin levels prior to injection by using LIMULUS amoebocyte lysate assay
(Genescript, NJ, USA). The endotoxin levels in LTA, PGN and TSST1 were<0.005 EU/μg
while in α-toxin and SPA it was<0.05 EU/μg, of protein.
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Induction of endophthalmitis
C57BL/6 mice were maintained in a 12 h light/dark cycle and temperature was controlled at
22°C. Mice were provided free access to the water and standard laboratory chow. During exper-
iment, mice were anesthetized by intraperitoneal injection of ketamin/xylazine (ketamin, 100–
125 mg/kg; xylazine, 10–12.5 mg/kg). For intravitreal injections, a 32-G needle attached to a
10 μl glass syringe (Hamilton, Reno, USA) was used under a dissecting microscope. Mice were
injected with live S. aureus (5000 CFU), heat-killed S. aureus (HKSA), or bacterial factors as
indicated in 1.

Fig 1. Effect of S. aureus virulence factors on inflammatory responses. Eyes of C57BL/6 mice (4–6 per group) were inoculated with indicated dose
of heat-killed S. aureus (HKSA) (5X105 CFU/eye), its cell wall components (PGN and LTA; 0.1μg each), and cell surface and secreted proteins (SPA, TSST,
and α-toxin; 0.1μg each). After 24h, eyes (n = 6) were enucleated and subjected to ELISA, eyes injected with PBS served as controls. Statistical analysis was
performed by using one way ANOVA with Dunnett’s multi-comparison test. *p <0.05, **p <0.005, ***p<0.0005.

doi:10.1371/journal.pone.0128423.g001
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Enzyme-linked immunosorbent assay (ELISA)
Following injection with either S. aureus or bacterial virulence factors, the mouse eyes were
enucleated and crushed in a tissue lyser and protein was estimated using a protein estimation
kit (Thermoscientific, USA) according to manufacturer’s instructions. To determine the levels
of cytokines and chemokines in the retinal tissue lysates, ELISA was performed using ELISA
kits for TNF-α, IL-1β, and IL-6 (BD biosciences, San Diego, CA, USA) and MIP2 and KC (R &
D systems, Minneapolis, MN, USA) according to manufacturer’s instructions. All of the values
were expressed as mean ± standard deviations (SD).

Real-time PCR
The expression of MMP2, MMP3, MMP13, S100A7, and S100A9 were determined
with qRT-PCR from mice treated with virulence factors. The retinas were removed and pro-
cessed for ultrasonication on ice. Total RNA was extracted using TRIzol solution (Invitrogen,
Carlsbad, CA, USA) according to the manufacturer’s Instructions. cDNA was synthesized
using 2 μg of total RNA by reverse transcription (Thermo scientific, Rockford, IL, USA). Syber-
green based qRT-PCR was performed using specific primers, as listed in Table 1. GAPDH was
used as a housekeeping gene to calculate the relative quantification. qRT-PCR was performed
using the StepOnePlus real-time PCR system (Applied Biosystem, Grand Island, NY, USA).
The data analysis was performed using the 2−ΔΔCTmethod.

Neutrophil infiltration
Flowcytometry was used to determine the extent of PMN infiltration in the retina, as described
earlier [18]. The retinas were removed from mice injected with bacterial virulence factors,
HKSA, or live S. aureus and digested with Accumax (Millipore, Billerica, MA, USA) for 10
min. at 37°C. Retinal tissue was passed from a 23-G needle/syringe to make a single cell suspen-
sion and filtered through a 40-μm cell strainer (BD Falcon, San Jose, CA, USA). Blocking was
performed by using Fc block for 30 minutes and then washing with PBS containing 0.5% BSA.
Cells were incubated in the dark at room temperature with conjugated monocloncal antibodies
and respective isotypes for 30 minutes. Again, washing was performed in PBS with 0.5% BSA
and cells were acquired on a BD Accuri C6 (BD Immunocytometry Systems, San Jose, CA,
USA). The data analysis was performed using Flow Jo (Tree Star, Inc., Ashland, OR, USA).

Table 1. Sequences and product sizes of PCR primers.

Gene ID Primer sequences Product size (bp)

MMP2 F: CCGATCTACACCTACACCAAGAAC 107

R: CCAGTACCAGTGTCAGTATCAG

MMP9 F: CTCTACAGAGTCTTTGAGTCCG 143

R: CCTGTAATGGGCTTCCTCTATG

MMP13 F: CTGGACCAAACTATGGTGGG 135

R: GGTCCTTGGAGTGATCCAGA

S100A7 F: TGCACCAAGAGCAACAGACT 229

R: CCATGAAGCGAGGCACACTA

S100A9 F: GCTCCTCGGCTTTGACAGAGTGCAAC 92

R: GCATTTGTGTCCAGGTCCTCCATGAT

doi:10.1371/journal.pone.0128423.t001
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Fundus imaging and fluorescein angiography
For fundoscopic examination, mice pupils were dilated with a mixed ophthalmic solution con-
taining 0.5% atropine sulfate (E. Fougera & Co., NY, USA) and 1.25% phenylephrine hydro-
chloride (Wilson Ophthamic, OK, USA). The fundus was photographed with a Micron III
(Phoenix Research Lab., Pleasanton, CA, USA) fundus camera for small animals. Mouse pupils
were dilated, and mice were intraperitoneally injected with 20% AK-FLUOR (Akorn, Inc., Lake
Forest, IL, USA) at a dose of 0.01 ml/5 g of mouse body weight. Photographs were taken with
Micron III containing a barrier filter for fluorescein angiography and processed for Photoshop
for digital images.

Assessment of vascular permeability
Immunohistochemistry was performed on retinal tissue sections from mice injected with bac-
terial virulence factors, live S. aureus, or HKSA for the purpose of determining the extent of
vascular permeability. CD31 (a vascular marker) and fibrinogen (a leakage marker) were used
for the immunostaining. Eyes were enucleated and fixed in 4% para-formaldehyde for 2–3 hrs,
followed by washing in PBS for 5 minutes. The eyes were placed in 5%, 10%, 20% sucrose in
PBS for 30 minutes each, followed by 30% sucrose plus embedding medium (Tissue-Tek OCT
compound, Sakura Fintek, USA Inc., Torrence, CA, USA) in a 1:1 ratio overnight at 4°C. The
eyes were fixed in OCT, sectioned, and mounted on slides. For immunostaining, sections were
kept at 4% para-formaldehyde for 15 minutes, and then washed twice in PBS for 5 minutes
each. For permeabilization and to prevent non-specific binding, sections were incubated in 1%
BSA containing 0.5% Triton-X100. Primary antibodies for CD31 (1:100, Abcam, Cambridge,
MA, USA) and fibrinogen (1:20, Developmental Studies Hybridoma Bank, University of Iowa,
Iowa City, IA.) diluted in blocking solution were allowed to sit overnight in a humidified cham-
ber at 4°C; secondary antibodies for goat anti-mouse-FITC (1:100) and PE-Cy3 anti-
hamster (BD Bioscience, San Jose, CA, USA) were also used. Photomicrographs were taken
using fluorescence microscope. Fluorescent intensity was measured using imageJ software and
calculated using the following formula [22].

Fluorescence intensity = Integrated Density—(Area of selected cell X Mean fluorescence of
background readings).

Histology
Eyes from the euthanized mice were enucleated 24h post-injection for histopathological examina-
tion and fixed in 10% formalin for 24h. The embedding, sectioning, and hematoxylin and eosin
stain (H&E) staining were performed by Excalibur Pathology, Inc. (Oklahoma City, OK, USA).

Electroretinography (ERG)
Scotopic electroretinography (ERG) was used to determine retinal function following S. aureus
infection and injection of bacterial virulence factors. The mice (control and infected) were anes-
thetized 24h after injection. The temperature of the mice was maintained at 37°C using a heat
pad. The pupils were dilated using a 1% tropicamide ophthalmic solution. ERGs were recorded
following bilateral mydriasis and at least 12h of dark adaptation. Indifferent, silver-
embedded thread eye electrodes (OcuscienceLLC, Kansas City, MO) were used to record the
ERG. Reference needle electrodes (stainless steel subdermal electrodes) were placed in anterior
scalp and a ground needle electrode was placed in the tail. ERG responses were acquired using
an ERG system (OcuscienceLLC, Kansas City, MO) and analyzed using ERGVIEW 4.600V.
Ganzfeld light stimulus was used to present ten 10 ms flashes, with light intensities increasing
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from 0.0001 to 100 cd-s/m2. The amplitudes of the a- and b-waves were recorded. The ERG a-
wave amplitude was measured between the ERG baseline and the first negative peak, while the
ERG b-wave amplitude was measured between the first negative peak and the first positive peak.

Results

S. aureus virulence factors evoke distinct inflammatory responses in
mouse eyes
Intraocular inflammation is a hallmark of bacterial endophthalmitis [2] and peaks between 24
and 48h post bacterial inoculation [5, 23, 24]. To investigate the role of S. aureus virulence fac-
tors in generating inflammatory responses, the eyes of C57BL/6 mice were injected with vari-
ous doses of S. aureus cell wall components and toxins for 24h. To this end, our data showed
a dose-dependent induction of inflammatory mediators, as evidenced by increased levels of
cytokines (IL-1β, TNF-α, and IL-6) and chemokines (MIP-2 and KC) by all virulence factors
(Fig 1). However, the expression pattern was differentially regulated. For example, IL-6 and
MIP2 levels were significantly higher in HKSA, PGN, and LTA injected eyes. In contrast,
TSST1, α-toxin, and SPA seem to have no effect on these cytokines. The levels of TNF-α and
KC were significantly increased by all virulence factors. Interestingly, IL-1β was induced more
by the higher concentration of toxins. Overall, the cell wall components seem to induce higher
inflammatory responses as compared to toxins.

In addition to inflammatory mediators, we also assessed the expression of metalloproteinases
(MMPs) and danger-associated molecular pattern (DAMPs, S100A7/S100A9), which are impli-
cated in the inflammatory response. As shown in Fig 2, live S. aureus significantly induced
MMP9 expression in the mouse retina, whereas MMP2, MMP13, S100A7 and S100A9 levels
were increased, but did not reach statistical significance. In contrast, eyes injected with HKSA
did not exhibit significant changes in any of the MMPs or DAMPs. Among the cell wall

Fig 2. Expressions of MMPs and S100As in eye challenged with S. aureus and its virulence factors. Eyes of C57BL/6 mice (4–6 per group) were
inoculated intravitreally with live S. aureus (5000 CFU/eye), HKSA (5X105 CFU/eye), LTA (0.1μg/eye), PGN (0.1μg/eye), TSST1 (0.1μg/eye), α-toxin (0.1μg/
eye), SPA (0.1μg/eye), and PBS (2μl) for 24h. The mRNA expression of MMP2, MMP9, MMP13, S100A7, and S100A9 was determined by Real-
time RT-PCR. Statistical analysis was performed by using one way ANOVA with Dunnett’s multi-comparison test. *p <0.05, **p <0.005.

doi:10.1371/journal.pone.0128423.g002
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components, PGN stimulated the increased expression of MMP2 andMMP13, LTA-
challenged eyes exhibited higher levels of S100A7 and S100A9, and SPA induced the expression
of MMP2, MMP9, and MMP13. Among the toxins, α-toxin increased the expression of MMP2,
MMP9, MMP13, and S100A9, while TSST-1 appears to have no effect on these mediators.

Live S. aureus and PGN induced maximum PMN infiltration in the retina
Neutrophils are the first innate immune cells recruited to the retina in endophthalmitis [25].
To determine the effect of S. aureus virulence factors on PMN infiltration, we performed flow-
cytometry. As expected, the highest PMNs levels were observed in eyes challenged with live SA
(82.6%), followed by PGN (18.5%), HKSA (8.4%), and SPA (4.7%) injected mice (Fig 3). Sur-
prisingly, LTA was not found to induce significant PMN infiltration and a similar trend was
observed in eyes challenged with toxins.

Fig 3. Effect of S. aureus virulence factors on neutrophil infiltration to the retina. Eyes of C57BL/6 mice (4–6 per group) were inoculated intravitreally
with S. aureus (5000 CFU/eye), HKSA (5x105 CFU), or and the indicated virulence factors (0.1μg /eye). At 24h post infection, eyes were enucleated and
retinas from two eyes were pooled to make single-cell suspensions and stained with anti-CD45 and anti-Ly6GmAbs. Post-acquisition, the cells were size
gated to differentiate them from debris. The percentage of dually positive PMNs was determined using a CD45 versus Ly6G dot plot (upper-right right [Q2]
quadrant). The data are representative of duplicate experiments. Statistical analysis was performed by using one way ANOVA with Dunnett’s multi-
comparison test. *p <0.05, ***p <0.0005.

doi:10.1371/journal.pone.0128423.g003
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S. aureus virulence factors increased vascular leakage and tissue
damage in the retina
The influx of PMNs and other immune cells to the retina is tightly controlled by the blood reti-
nal barriers (BRB) [26, 27]. Funduscopic imaging combined with fluorescent angiography
revealed retinal vessel occlusions, ischemia, and signs of vascular leakage in S. aureus virulence
factor challenged eyes versus control (PBS) (Fig 4). To further confirm the breakdown of the
BRB, we determined the degree of vascular permeability by assessing the release of fibrinogen
using immunohistochemistry (Fig 5). Our data showed visible signs of vascular leakage in the
retina of eyes injected with S. aureus virulence factors. The quantification of comparative
fibrinogen intensity revealed significantly higher vascular leakages in the retina of S. aureus
(12-fold) and HKSA (7.3-fold) injected mice, whereas eyes challenged with other virulence fac-
tors exhibited� 2-fold increases.

Fig 4. Fundus imaging of eyes challenged with S. aureus virulence factors. Eyes of C57BL/6 mice (4–6 per group) were inoculated intravitreally with S.
aureus (5000 CFU/eye), HKSA (5x105 CFU), or and the indicated virulence factors (0.1μg /eye). At 24h post infection, eyes were examined by fundus
microscope and images were captured using Micron III. Angiography was performed by intraperitoneal injections of 2% fluorescent dye.

doi:10.1371/journal.pone.0128423.g004
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Fig 5. Determination of vascular leakage in infected retina. To determine the vascular permeability, infected eyes were embedded in OCT at 24h and the
cryosections were subjected to IHC analysis. Fluorescent densities for CD31 (Green, biomarker for blood vessels) and Fibrinogen (Red, released from blood
into the retinal tissue) were measured. Fluorescent intensities were scanned in three different regions of the retina in each slide and an average of 3 to 4
retina in each treatment group. Fold change was calculated by calculating the ratio between CD31 (Vascular marker) and Fibrinogen (Leakagemarker) and
presented as mean ± SD. Statistical significance was determined by One way ANOVA with Dunnett’s multi-comparison test. ***p<0.0005, **p<0.005,
n = 6). Original magnification 20x.

doi:10.1371/journal.pone.0128423.g005
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The effect of S. aureus virulence factors on retinal structural integrity was assessed using his-
tological analysis (Fig 6). In control (PBS injected) eyes, the retinal structure was intact, with
no significant changes. In contrast, eyes challenged with S. aureus exhibited severe retinal dam-
age, as evidenced by a loss of architecture, retinal folding, edema, and the presence of infiltrated
cells (Fig 6). Among the virulence factors, only α-toxin was found to cause mild retinal damage
and edema.

S. aureus virulence factors exerted a differential effect on retinal function
To determine the impact of individual virulence factors on retinal function, ERG analysis was
performed. As shown in Fig 7, both live S. aureus and HKSA caused a significant (~60–70%)
decline in the amplitude of both a- and b-waves. Among the virulence factors, SPA and TSST1
reduced a- and b-wave amplitudes by 30–40%. PGN and LTA seem to have no significant
impact of retinal function, whereas α-toxin causes decline in a-wave, but not b-wave, amplitude.

Discussion
Previous studies from our laboratory and others have shown that S. aureus induces severe
endophthalmitis in experimental models [7, 24, 28–31]. However, which virulence factors con-
tribute to the induction of intraocular inflammation, BRB breakdown, and retinal function
impairment, the hallmarks of endophthalmitis, remain unclear. In the present in vivo study, we
evaluated the role of S. aureus cell wall components (HKSA, PGN, and LTA) and cell surface
or secreted proteins (SPA, α-toxin, and TSST-1) on the pathogenesis of endophthalmitis. Our
data showed that all virulence factors induced a concentration-dependent release of various
inflammatory mediators (IL-1β, TNF-α, IL-6, MIP-2, and KC) in mouse eyes. These changes
coincided with increased vascular leakage and PMN infiltration, resulting in diminished retinal
function. Collectively, our study indicates that the pathogenicity of S. aureus is primarily due to
the expression of a large variety of virulence factors, as the effect of any one virulence factors
was not sufficient to cause endophthalmitis.

Similar to other organs/tissues, in the retina, the innate immune response prevent the estab-
lishment of an infection by recognizing pathogens at the early stages of infection and providing
a first, rapid line of host defense [2, 16]. It is now well-established that the host uses pattern-
recognition receptors (PRRs), such as TLRs, to recognize microbial-associated molecular pat-
terns (MAMPs) present on pathogens [16]. In the case of Gram-positive bacteria, including
staphylococci, PGN and teichoic acids (LTA andWTA) serve as MAMPs [32] and constitute
70% of the weight of their cell wall [33, 34]. Indeed, our in vitro studies have implicated the

Fig 6. Histological assessment of the impact of S. aureus virulence factors on retinal tissue damage. Histological analysis was performed on eyes
challenged with S. aureus virulence factors as indicated in Fig 2 legend. Representative images of eyes of inoculated challenged with S. aureus and α-toxin
(0.1μg/eye) showed retinal damage. Original magnifications 20X. VC, Vitreous Chamber; R, Retina; OD, Optic Disk.

doi:10.1371/journal.pone.0128423.g006
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role of TLR2 in inducing the inflammatory response in retinal microglia following challenge
with staphylococcal PGN and LTA [18]. Similarly, TLR2 was found to mediate the innate
response of Müller glia towards S. aureus [35, 36]. We postulated that, under in vivo condi-
tions, proliferating staphylococci could release cell wall components, which percolate through
the vitreous and are recognized by retinal residential innate immune cells, such as the glial cells
[17]. In the current study, we mimicked this situation by giving intravitreal injections of puri-
fied PGN and LTA and demonstrated that staphylococcal cell wall components induce the
secretion of pro-inflammatory mediators and cause retinal vascular leakage. However, it is

Fig 7. Retinal function analysis in S. aureus virulence factors challenged eyes. Eyes of C57BL/6 mice (4–6 per group) were inoculated intravitreally with
S. aureus (5000CFU), HKSA (5x105 CFU), LTA (0.1μg), PGN (0.1μg), SPA (0.1μg), TSST1 (0.1μg), α-toxin (0.1μg), and PBS (2μl). ERG was performed after
overnight dark adaptation. Electroretinogram responses to a 6-dB flash were recorded and the percentage amplitude of a- and b-wave retained in infected
eyes was compared to that of uninjected mice control and presented as mean ± SD. ERG amplitudes Statistical analysis was performed using one-
way ANOVA with Dunnett’s multi-comparison test. *p <0.05, **p <0.005, ***p <0.001 (n = 6 mice were used per treatment). UN,uninjected.

doi:10.1371/journal.pone.0128423.g007
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important to mention that the vascular leakage may not be due to the direct effects of PGN or
LTA, but rather the secondary effects of intraocular inflammation.

In addition to their cell wall components, the damaging effects seen in staphylococcal infec-
tions could be due to an arsenal of virulence factors such as surface binding protein A (SPA)
and secreted toxins [37]. Due to their IgG binding ability, the role of SPA has been primarily
implicated in promoting immune evasion by inhibiting bacterial phagocytosis [38, 39]. How-
ever, studies from our laboratory [40] and others have shown that SPA exerts pro-
inflammatory stimuli via tumor-necrosis factor receptor 1 (TNFR1) signaling [41, 42]. Here,
we demonstrate that SPA induces the production of pro-inflammatory mediators, including
TNF-α, suggesting its role in promoting intraocular inflammation in endophthalmitis. Staphy-
lococcal superantigens, such as TSST1, manifest disease through hyper-activation of the
immune system, resulting in massive cytokine production and septic shock [43]. Toxins also
possess the ability to bind to human vascular epithelial cells and induce the production of pro-
inflammatory mediators through the activation of NF-kB [44, 45]. S. aureus secreted α-toxin is
a major cytolytic toxin which acts through inserting pores in the membrane of targeted host
cells [46, 47]. The damaging effects of α-toxin have been demonstrated in staphylococcal
endophthalmitis, as evidenced by the reduced pathogenicity of Agr and Sarmutants [6, 48]. In
the current study, we demonstrated the ability of α-toxin to induce the inflammatory response,
particularly via IL-1β, indicating another role of α-toxin in increasing the virulence of S. aureus
in endophthalmitis. Previous studies have demonstrated the activation of the inflammasome
by α-toxin as an underlying mechanism for IL-1β production [49]. Similarly, S. aureusmedi-
ated inflammasome activation has been reported in conjunctiva goblet cells [50]. Our prelimi-
nary studies (unpublished data) have also indicated the potential involvement of the
inflammasome complex in staphylococcal endophthalmitis and studies are in progress to delin-
eate the mechanisms.

The MMPs belong to the large family of zinc-dependent neutral endopeptidases that are
capable of degrading the extracellular matrix. Although MMPs play an important role in injury
repair during inflammation by cleaving components of extracellular matrix, the excessive
expression of MMPs can also destroy the extracellular matrix and promote further inflamma-
tion. The role of MMP13 has been described in Pseudomonas aeruginosa induced corneal
ulceration [51]. In diabetic retinopathy, the elevated expression of MMPs may facilitate an
increase in vascular permeability via proteolytic degradation of the tight junction protein
occludin, followed by disruption of tight junction complex [52]. Our data showed increased
expression of MMP2, MMP9, and MMAP13, indicating their involvement in bacterial
endophthalmitis. In addition to MMPs, increased levels of S100 proteins were also detected in
S. aureus-infected retina. The S100/calgranulin complex has antimicrobial properties [47, 53]
and is massively released by dying neutrophils to provide host defense [54]. Three main S100
proteins have been linked to innate immune function, as they are expressed in cells of myloid
origin [55]. These S100 proteins can be secreted via an alternate route, bypassing the classic
Golgi-rout, which is the typical mode of secretion for DAMP-related factors [56]. These
DAMPs have a role in maintaining cellular homeostasis, but turn into pro-
inflammatory danger signals when released into the extracellular environment following cell
damage, infection, or inflammation [57].

The eye is protected from inflammatory cells due to the existence of blood retina barrier
(BRB), which is composed of the retinal endothelium and retinal pigmented epithelial cells.
Increased BRB permeability has previously been reported in bacterial endophthalmitis [26].
However, which bacterial virulence factors induce this response is not yet clearly defined. In
the current study, we demonstrate increased vascular permeability, mainly in eyes injected
with live S. aureus, indicating a synergistic effect of S. aureus virulence factors in inducing
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vascular permeability. Another mechanism of BRB breakdown could be due to increased levels
of inflammatory mediators, as was demonstrated by increased PMN and mononuclear cell
infiltration in rat eyes injected with IL-1β or TNF-α [58]. The combined effect of increased vas-
cular permeability and intraocular inflammation culminates to impaired retinal function [5,
23, 59]. We hypothesize that some virulence factors, specifically toxins, could directly impact
retinal function through their direct lytic action. Surprisingly, individual virulence factors were
found to have little impact on retinal function, as evidenced by the observation that there was
no significant decline in either a- or b-wave amplitude following injection.

Conclusions
In this study, we comprehensively demonstrated the role S. aureus cell wall components and
secreted virulence factors in evoking retinal innate responses leading to intraocular inflamma-
tion, vascular permeability, and a loss of retinal function. Although the ideal approach for the
management of endophthalmitis should include both bacterial eradication and inflammation
resolution, monotherapy with intravitreal antibiotic injections remains the current standard of
treatment. The antibiotics, while destroying the bacteria, may release bacterial cell wall compo-
nents, which contribute to intraocular inflammation in bacterial endophthalmitis. Thus, we
need adopt both antimicrobial and adjunct anti-inflammatory therapeutic approaches to treat
infectious endophthalmitis.
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