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Abstract

Oxygen (O2) is the ultimate oxidant on Earth and its respiration confers such an energetic advantage that microorganisms have evolved
the capacity to scavenge O2 down to nanomolar concentrations. The respiration of O2 at extremely low levels is proving to be common
to diverse microbial taxa, including organisms formerly considered strict anaerobes. Motivated by recent advances in O2 sensing and
DNA/RNA sequencing technologies, we performed a systematic review of environmental metatranscriptomes revealing that microbial
respiration of O2 at nanomolar concentrations is ubiquitous and drives microbial activity in seemingly anoxic aquatic habitats. These
habitats were key to the early evolution of life and are projected to become more prevalent in the near future due to anthropogenic-
driven environmental change. Here, we summarize our current understanding of aerobic microbial respiration under apparent anoxia,
including novel processes, their underlying biochemical pathways, the involved microorganisms, and their environmental importance
and evolutionary origin.
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Introduction
Molecular oxygen (O2) is the most favorable electron acceptor
in terms of free energy yield, and the capacity to respire it en-
abled the development and proliferation of multicellular life on
Earth (Hedges et al. 2004; Falkowski 2006; Thannickal 2009). O2

has existed on Earth at least since the evolution of photosynthesis
2.7–2.5 billion years ago (Buick 2008; Farquhar, Zerkle and Bekker
2011), although O2 likely did not begin to accumulate in the at-
mosphere until 2.45–2.32 billion years ago (Bekker et al. 2004). The
deep ocean remained predominantly anoxic (Shen, Canfield and
Knoll 2002; Anbar et al. 2007) until a second major rise of atmo-
spheric O2 levels 0.8–0.55 billion years ago (Canfield and Teske
1996). Considering that the generation time of most microorgan-
isms is on the order of hours to days, prokaryotic life on Earth has
had a lot of time to evolve a tolerance to, and eventually exploit,
O2 even at extremely low levels.

Aerobic respiration today is estimated to account for up to 90%
of organic matter remineralization in the world’s ocean waters
and sediments (Reimers and Suess 1983), thus playing a key role in
the global carbon cycle and climate system. According to the mi-
crobial redox cascade model, the most favorable electron acceptor
in nature (O2) will be preferentially respired over other, anaero-
bic electron acceptors, although the energy yield may vary under

in situ conditions. Owing to this and the inhibition of specialized
anaerobic enzymes by O2, obligately anaerobic life in Earth’s sur-
face environments is restricted to the few environments where
O2 diffusion is limited, such as marine oxygen minimum zones
(OMZs), stratified lakes, wetland soils, leguminous root nodules,
sediments, wastewater, anoxic microniches within marine snow
particles and animal guts. With the advent of new O2-sensing
technologies (see Box 1), however, the detection limits for O2 are
being pushed ever lower, revealing that less and less of Earth’s sur-
face environments are truly anoxic. The earliest method for mea-
suring dissolved O2 was the Winkler titration method, which in
1922 enabled the discovery of deep waters off the Pacific coast of
Panama ‘contain[ing] practically no oxygen at all’ (Winkler 1888).
Since then, dissolved O2 concentrations in the Eastern North Pa-
cific and other OMZs have been reassessed using STOX (switch-
able trace oxygen) sensors, revealing low but highly fluctuating
O2 concentrations in OMZs (Revsbech et al. 2009; Thamdrup, Dals-
gaard and Revsbech 2012). These studies highlight that absolute
anoxia, or zero O2 concentration, cannot be measured directly in
the environment because any assay will have some—even if very
low—detection limit, currently at 3–10 nmol·L–1.
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Box 1: Anoxia has been redefined by evolving technolo-
gies.
The Winkler titration method developed in 1888 for dissolved
O2 quantification is highly accurate and is still used to cali-
brate automated instruments. Improvements to the detection
of O2 in fluids were later made in the biomedical field with the
first amperometric electrodes used to measure oxygen tension
in blood (Clark et al. 1953). Oxygen optode technology has actu-
ally been around for ∼80 years (Kautsky 1939) but was only re-
cently introduced to aquatic research (Tengberg et al. 2006). Op-
todes combine robust measurements and low O2 detection lim-
its and are the sensors of choice for ocean monitoring over large
scales of space and time. The lowest detection limits (in the 0.5–
10 nmol/L range) can be achieved by the luminescence mea-
suring oxygen sensor and STOX sensors (Revsbech et al. 2009;
Lehner et al. 2015). These new O2-sensing methods have re-
vealed trace amounts of O2 where we previously thought there
was none, highlighting the fact that anoxia is defined by the de-
tection limits of our current technologies.

There is no universally accepted terminology for low-O2 con-
ditions across the fields of microbiology, ecology, geology and
oceanography (reviewed in Tyson and Pearson 1991; Algeo and
Li 2020). The multitude of similar terms defined by poorly con-
strained or seemingly arbitrary O2 thresholds is the result of nu-
merous challenges arising from the attempt to define O2-deficient
regimes based on geochemical criteria (which change along-
side improving O2-sensing technologies) or biological thresholds
(which differ for each organism). Keeping these limitations in
mind, we have summarized existing terminology and their up-
per O2 thresholds, adding the new distinction ‘nanoxic’ due to the
emerging biological importance of ‘nanaerobic’ respiration (Ta-
ble 1).

Nanaerobic is a term that was coined almost two decades ago
to describe the ability of some prokaryotes to grow aerobically at
nanomolar O2 concentrations (Baughn and Malamy 2004), but the
geochemical importance of nanoxia as well as the environmental
prevalence of this phenomenon is thus far largely unknown. Re-
search on aerobic respiration at the O2 detection limit has been

Table 1. Redox classification modified from Tyson and Pearson
(1991) and Algeo and Li (2020). Hypoxia is the limit at which O2 is
considered insufficient to support living animals, but O2 demand
is of course specific to each organism. Suboxic conditions are
characterized by the onset of denitrification (Breck 1974). Func-
tional anoxia is defined by limit at which O2 is no longer signif-
icant in biological metabolisms or other major biogeochemical
processes (Thamdrup, Dalsgaard and Revsbech 2012), whereas ap-
parent anoxia is defined by the detection limit of our current sen-
sors. We presume ultralow amounts of O2 may still be present
because absolute anoxia cannot technically be measured.

Biological regime
Geochemical
regime Oxygen threshold

Aerobic Oxic 260–61 μmol·L–1

Hypoaerobic/dysaerobic Hypoxic/dysoxic <60 μmol·L–1

Microaerobic Microoxic <10 μmol·L–1

Subaerobic Suboxic <5 μmol·L–1

Nanaerobic Nanoxic <1 μmol·L–1

Functional anoxia Apparently anoxic <3 nmol·L–1

Anaerobic Anoxic 0

almost exclusively restricted to human gut microbiota (Leclerc
et al. 2015) and N2-fixing bacteria in legume root nodules (Berg-
ersen and Turner 1990; Kuzma, Hunt and Layzell 1993). In a major
breakthrough, the ability to respire O2 at concentrations below our
current detection limits was demonstrated for the classical aer-
obe Escherichia coli (Stolper, Revsbech and Canfield 2010). More re-
cently, the potential for nanaerobic respiration has been expanded
by the discovery that microorganisms typically considered strict
anaerobes can respire aerobically (Cypionka 2000; Berg et al. 2019;
Lee et al. 2019). A glimpse into the metabolic capacities of the vast
numbers of uncultured environmental microorganisms through
metagenomics has revealed that the potential for aerobic respi-
ration is phylogenetically more widespread (70% of species sur-
veyed in one study possessed high-affinity oxidases; Morris and
Schmidt 2013) and pervasive (present in so-called anoxic environ-
ments; Ulloa et al. 2012; Kalvelage et al. 2015; Milucka et al. 2015;
Bristow et al. 2016; Garcia-Robledo et al. 2017; Berg et al. 2019) than
previously thought.

Only very recently has it been shown that the respiration of O2

in apparently anoxic waters significantly contributes to aquatic
ecosystem processes such as ammonium and nitrite oxidation
(Kalvelage et al. 2011, 2015; Beman, Leilei Shih and Popp 2013;
Bristow et al. 2016), methane oxidation (Milucka et al. 2015; Os-
wald et al. 2015) and sulfide oxidation (Callbeck et al. 2018; Berg
et al. 2019). Still surprisingly, little is known about the prevalence
of nanaerobic respiration and its contribution to global respira-
tion processes, the ecophysiology of nanaerobes in the environ-
ment, and the true limits to aerobic growth on modern and an-
cient Earth.

The recent explosion of research on expanding OMZs and lake
hypoxia along with continuous development of new sequencing
technologies have added a wealth of new data on (nan)aerobic mi-
crobiology. Here, we will explore these new insights into nanaer-
obic life and their implications for past and present biogeochem-
ical cycling. Although we focus on aquatic environments due to
their importance as a habitat for life on early Earth to the present
day, the following questions apply to all microbiology-related dis-
ciplines:

� Where do nanoxic environments occur and how do they
form?
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� How prevalent is the capacity for nanaerobic respiration in
the environment and how common is it across microbial
taxa?

� Where is the boundary between aerobes/anaerobes and are
our definitions adequate to accommodate new metabolic
pathways (hybrid metabolisms, intra-aerobic respiration)?

� What role has nanaerobic respiration played in global biogeo-
chemical cycling from early Earth to the modern day?

Oxygen production and transport sustain
nanaerobic respiration in anoxic waters
The low solubility of O2 in water (284 and 225 μmol L–1 in fresh-
water and seawater, respectively, at 20◦C) and its slow diffusion is
a fundamental constraint on aquatic life. Wherever the respira-
tion of O2 exceeds replenishment by oxygenic photosynthesis or
by advective or diffusive transport processes, anoxic aquatic envi-
ronments can develop over spatial scales of a few micrometers to
hundreds of kilometers. Although these environments might ap-
pear O2 depleted, they are subject to dynamic O2 intrusions driven
by biological, chemical and physical processes or a combination
of these (Fig. 1).

In the water column, O2 is mixed in from the atmosphere
or produced via photosynthesis if sufficient light and nutrients
trigger the activity of phytoplankton (oxygenic photosynthetic
cyanobacteria and eukaryotes), which form the basis of complex
aquatic food networks. Exopolymers excreted by or leaking from
phytoplankton lead to coagulation and formation of organic mat-
ter particles known as suspended flocs or marine snow. These
particles are hot spots of microbial activity in the water column,
and O2 consumption by heterotrophs can generate anoxic mi-
croniches at their inner core (Alldredge and Cohen 1987; Smriga,
Ciccarese and Babbin 2021). At the same time, sinking of aggre-
gates through the water column reduces the surrounding diffu-
sive boundary layer, thus enhancing the oxygenation of the par-
ticle interior (Kiørboe, Ploug and Thygesen 2001; Ploug 2001). The
water volume entrained by the sinking particle along with water
trapped in the particle interior might vertically transport substan-
tial amounts of O2, but the extent of this remains to be quantified.

In situ production is one of the most easily overlooked sources
of O2 to anoxic waters because the transfer of O2 can occur by
physical association between photosynthetic algae and microor-
ganisms within the phycosphere or diffusional transfer over short
length-scales without release of measurable O2 to the surround-
ing water. It is not surprising, therefore, that O2 produced in situ
via photosynthesis has only recently been recognized as an impor-
tant oxidant in stratified systems, accounting for up to 90–100%
of methane oxidation and 10–50% of sulfide oxidation in anoxic
lakes (Milucka et al. 2015; Oswald et al. 2015; Berg et al. 2019). In the
oceans, deep chlorophyll maxima have been observed in associa-
tion with and within OMZs (Cepeda-Morales et al. 2009; Márquez-
Artavia et al. 2019) supporting aerobic respiration rates that are
even higher than in over- and underlying oxic waters (Tiano et al.
2014). However, the impact of deep photosynthesis on biogeo-
chemical cycles in seemingly anoxic waters has yet to be quan-
tified.

Muddy aquatic sediments are typically diffusion limited and
therefore some bacteria have evolved a combination of motility
and storage to bridge the distance between O2 and the supply
of substrates/electron donors. The large sulfur bacteria Thioploca
spp. and Beggiatoa spp. store reduced sulfur compounds intracel-
lularly and migrate vertically between reducing and oxidizing sed-

iment environments (Schulz and Jørgensen 2001). So-called ‘ca-
ble bacteria’, filamentous bacteria belonging to the family Desul-
fobulbaceae, exhibit yet another fascinating adaptation to exploit
valuable O2, forming conductive filaments that can conduct elec-
trons over centimeter distances resulting in spatially separated
sulfide oxidation and O2 reduction reactions (Pfeffer et al. 2012;
Liu et al. 2021). Bioturbating and bioirrigating animals can also in-
crease the flux of O2 into surrounding sediments three- to 7-fold
(Meysman et al. 2006; Volkenborn et al. 2007; Pischedda et al. 2008).
Likewise, partially or fully submerged aquatic plants such as sea-
grasses transport O2 down to the subsurface through vascular tis-
sue, leaking O2 into the rhizosphere and generating microoxic en-
vironments with high spatial and temporal dynamics following
day–night cycles (Frederiksen and Glud 2006). Sandy sediments,
which cover >60% of the coastal ocean, are permeable to water
flow and can thus be ventilated by bottom-water currents and
waves (Huettel, Berg and Kostka 2014). These forces may also trig-
ger sediment transport (migration of sand ripples on the sea or
lake floor) (Ahmerkamp et al. 2017; Waska et al. 2019) leading to
the formation of variable redox zones, which harbor opportunistic
microorganisms that can switch from aerobic to anaerobic respi-
ration (Bühring, Elvert and Witte 2005; Marchant et al. 2017; Ah-
merkamp et al. 2020).

The contribution of biological mixing to O2 transport, measured
as the amount of mechanical power invested in the global oceans
by the locomotion of animals, has been estimated to be a nontriv-
ial 0.63 TW, which is on the same scale as wind and tidal inputs
(Dewar et al. 2006). Though it was assumed for a long time that
smaller organisms having a small Reynolds number could not
overcome viscous forces and that kinetic energy would dissipate
as heat, bacteria can collectively entrain O2 into anoxic waters by
swarming, as has been observed for Thiovulum majus (Petroff and
Libchaber 2014) and Chromatium okenii (Sommer et al. 2017). On
millimeter to centimeter scales, mixing has been demonstrated
by different sizes of jellyfish (Katija and Dabiri 2009). Larger-scale
mixing can be driven by collective swimming, such as by schools
of fish or shrimp, when the flow in the wakes of individual organ-
isms coalesces to form a large-scale downward jet (Kunze et al.
2006; Houghton et al. 2018).

Physical processes such as wind-induced internal waves and
circular water currents called eddies also bring oxygenated water
masses in contact with anoxic waters. Internal waves are gener-
ated by tides and surface winds and break in contact with terres-
trial slopes generating turbulence and hence, mixing across inter-
faces with contrasting densities (temperature, salinity, dissolved
gases) (Lamb and Xiao 2014). This type of mixing can transport
substantial amounts of O2 into coastal OMZs, covering up to one-
third of the total oxygen demand (Fischer et al. 2013). Mesoscale
eddies (on the order of 100 km in diameter), formed along coastal
or topographical features, have been shown to ventilate the up-
per part of the ocean down to the oxycline (Thomsen et al. 2016b)
and even the interior of the OMZ itself (Thomsen et al. 2016a)
on temporal scales of days. However, estimates of the ventilation
efficiency of these processes generally average out temporal dy-
namics, so eddy transport has often been neglected from global
ocean models. It can be inferred from large eddies that smaller
eddies of a few centimeters to several meters likely transport O2

deeply into O2-depleted waters as well but studies on these are
lacking. Intrusions of oxygenated water can also be caused by dif-
fuse groundwater seepage or underwater springs below the water
surface (submarine or sublacustrine discharge). In coastal areas
such as brackish estuaries, submarine groundwater discharge can
be volumetrically important, accounting for an estimated 6–10%
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Figure 1. Chemical, physical and biological transport mechanisms of O2 to ‘anoxic’ environments. Symbols in the lower panel represent the relative
importance of processes shown in the upper panel. Estimates were made based on available literature for cable bacteria (Liu et al. 2021; Scilipoti et al.
2021), sinking aggregates (Ploug 2001), bioturbation (Volkenborn et al. 2007; Pischedda et al. 2008; Santos, Eyre and Huettel 2012), porewater flow in
sands (Ahmerkamp et al. 2015), aquatic plant roots (Pedersen et al. 1998; Jensen et al. 2005), groundwater discharge (Taniguchi et al. 2002; Moore 2010),
eddies/turbulence (Fiedler et al. 2016; Czeschel et al. 2018) and diapycnal mixing/internal waves (Fischer et al. 2013). Although these studies are mostly
from the marine biome, these processes are relevant to lakes, wetlands and soils with the exception of large eddies. Approximations should be taken
with a grain of salt due the limited number of quantitative estimates for some processes, and fluxes of some processes were too uncertain to be scaled.

of surface discharge to the oceans globally, and up to 85% locally
(Taniguchi et al. 2002). Groundwater further stimulates aerobic
respiration via concomitant supply of dissolved organic carbon,
methane, and nutrients such as ammonium, nitrate and phos-
phate alongside O2 (Moore 2010).

Overall, the persistence of O2-depleted environments despite
the numerous physical and biological inputs of O2 (which are
not limited to those described here) highlights the importance of
the O2-consuming processes there. It is thus important to rec-
ognize that fluxes of O2 on various temporal and spatial scales,
rather than absolute concentrations, are important for maintain-
ing nanaerobic life. Yet, the occurrence of aerobic respiration is
still too often dismissed in environments where O2 concentrations
are below detection levels.

Terminal oxidases are transcribed by
microorganisms in environments
considered functionally anoxic
The prevalence of persistent O2 fluxes into ostensibly anoxic wa-
ters is reflected by the number of facultatively and obligately
aerobic microorganisms present in these habitats. Based on the
absence of measurable O2, however, these obligate aerobes de-

tected in the anoxic core of marine OMZs (Thamdrup et al. 2019)
or anoxic lake sediments (Jiang et al. 2009) have been assumed to
be metabolically inactive, but perhaps unjustly so. In fact, the ca-
pacity to respire O2 appears to confer an obvious ecological advan-
tage to microorganisms in environments classified as anoxic and
is proving phylogenetically more widespread than previously rec-
ognized. Perhaps the most telling evidence is that virtually all mi-
croorganisms capable of anaerobic denitrification also retain the
capacity to respire O2 with very few known exceptions (Kuypers,
Marchant and Kartal 2018; Graf et al. 2021). Not only do the major-
ity of sequenced microbial genomes encode the capacity for mi-
croaerobic respiration (Morris and Schmidt 2013), but also some
organisms typically considered strict anaerobes such as sulfate-
reducing bacteria, anoxygenic phototrophic bacteria (Chromati-
aceae) and intestinal Bacteroides have been shown to couple O2 re-
duction to growth (Kampf and Pfennig 1980; Baughn and Malamy
2004; Berg et al. 2019; Schoeffler et al. 2019). Even some members
of the green sulfur bacteria (Chlorobiaceae), until now consid-
ered strict anaerobes, encode genes for O2 reduction (Ducluzeau,
Ouchane and Nitschke 2008), but whether these are utilized for
energy conservation has not been demonstrated.

Most of biological O2 reduction to water is catalyzed by the
heme-copper oxygen reductases (HCOs) that directly conserve en-
ergy through the generation of a proton motive force (Wikström
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and Verkhovsky 2007). Based on the structure of their substrate
binding sites and proton translocating channels, HCOs can be
classified into three groups: A-, B- and C-type enzymes (Sousa et al.
2012). The three HCO types display different affinities toward O2:
A-type HCOs are commonly referred to as low-affinity terminal
oxygenases (LATO) with Km values for O2 that are above 200 nM
(reviewed in Degli Esposti et al. 2019), while B- and C-type HCOs
are so-called high-affinity terminal oxygenases (HATO) with Km

values as low as 3–8 nM (D’mello, Hill and Poole 1996). The cat-
alytic subunit (subunit I) is the only protein common to all HCO
types. Subunit I also exhibits structural similarity with the Nitric-
Oxide reductases (NORs), which catalyze the reduction of NO to
N2O, but which do not all necessarily drive proton translocation
(Al-Attar and de Vries 2015; Vázquez-Torres and Bäumler 2016).
While these enzymes appear to share common ancestry, whether
they primordially functioned as an O2 or NO reductase is still
a matter of debate (Vries and Schröder 2002; Brochier-Armanet,
Talla and Gribaldo 2009; Ducluzeau et al. 2009). Besides by HCOs,
O2 reduction in prokaryotes is often catalyzed by a second group
of unrelated, respiratory oxidases: the cytochrome bd quinol oxi-
dases that, like B- and C-type HCOs, are considered to be HATOs
(Borisov et al. 2011). However, the presence and expression of cy-
tochrome bd quinol oxidases is not a robust indicator for O2 res-
piration, as they have also been shown to be involved in oxidative
and nitrosative stress defense in various bacterial species (Giuffrè
et al. 2014).

Additionally, there are actually a plethora (∼720 identified so
far) of other enzymes such as monooxygenases and dioxygenases
utilizing O2 as an electron acceptor, and it was recently found
that the presence of genes encoding these proteins in microbial
genomes are actually a good indicator of aerobic versus anaero-
bic lifestyle (Jabłońska and Tawfik 2019). Nevertheless, HCOs re-
main the most commonly employed indicators of aerobic respi-
ration and were therefore the focus of our metasurvey of envi-
ronmental transcriptomes evaluating the ecological prevalence of
this metabolism.

It has been shown that different HCOs are not confined to a
specific phylogenetic group of microorganisms, or a defined envi-
ronmental niche (Sousa et al. 2012; Morris and Schmidt 2013) (see
also Fig. 2A). The subgroup of C-type HCOs, cytochrome cbb3 ox-
idase, for example, is distributed across all bacterial phyla with
the exception of Thermotogales, Deinococcales and Firmicutes
suggesting that the capacity for O2 respiration at extremely low
concentrations is a primordial and valuable function for survival
(Ducluzeau, Ouchane and Nitschke 2008). Based on genetic infor-
mation alone, it cannot be inferred whether terminal oxidases
are utilized, and whether O2 reduction is linked to energy con-
servation. Nevertheless, there is emerging evidence from meta-
transcriptomic data (Karsenti et al. 2011; Kalvelage et al. 2015;
Kitzinger et al. 2019) as well as direct activity measurements of
microorganisms in pure culture (Cypionka 2000; Schoeffler et al.
2019) or in single cells of environmental bacteria (Berg et al. 2019)
that both aerobic and anaerobic organisms can respire O2 in en-
vironments typically considered anoxic and link this metabolism
to growth. Our survey of publicly available metatranscriptomes
from oxic (>10 μmol O2 L–1), microoxic (6–10 μmol O2 L–1), sub-
oxic (1–5 μmol O2 L–1) and nanoxic (<1 μmol O2 L–1) environmen-
tal water samples shows that the genetic capacity for nanaero-
bic respiration is actually transcribed in ostensibly anoxic aquatic
habitats (Fig. 2B). In low-O2 environments, the relative transcrip-
tion of high-affinity HCOs appears higher than that of low-affinity
HCOs in the dataset presented here. However, transcripts of low-
affinity HCOs were also detected in low-O2 environments, even

in nanoxic ones. These low-affinity HCOs could be constitutively
transcribed, or they may also be active in low-O2 environments.
In fact, a recent study experimentally demonstrated that low-
affinity HCOs actually can enable aerobic respiration by some Aci-
dobacteria at O2 levels as low as 1 nmol L–1, suggesting that they
do play a broader environmental role than currently recognized
(Trojan et al. 2021). It is important to note that despite the large
number of publicly available environmental metatranscriptomic
datasets, only a limited number of metatranscriptomes could be
included in this analysis (n = 38), due to the lack of linked geo-
chemical data, namely O2 concentration measurements, which
are essential for establishing a clear connection between micro-
bial activity (metatranscriptomes) and environmental conditions.

Of course, some caution must be taken in interpreting these
transcriptomic datasets that are sensitive to physicochemical
variations induced by sample handling. Our metasurvey reveals
that it is possible to observe transcriptional differences in HCOs
that appear to correlate with the oxygenation level of investigated
environments (Fig. 2B). Nonetheless, changes in aquatic medium
during retrieval of environmental samples has been shown to in-
duce physiological responses that alter the transcription profile of
labile mRNA even within 30 min (Feike et al. 2012; Edgcomb et al.
2016). The ubiquitous presence of O2 in our surroundings makes
it difficult to prevent the exposure of anoxic samples to O2 dur-
ing sampling (Garcia-Robledo et al. 2021), and even the diffusion
of O2 from the rubber seal of stoppers and lids can be a potential
source of contamination (De Brabandere et al. 2012). Fortunately,
promising in situ sample fixation technologies (Feike et al. 2012)
may help us generate more accurate gene transcription and ex-
pression profiles for investigation of nanaerobic respiration at the
O2 detection limit. Spatial transcriptome imaging also promises to
help visually capture microscale metabolic responses to O2 avail-
ability in situ (Dar et al. 2021) but has yet to be combined with an
O2-visualization technique. The careful recording and depositing
of in situ physicochemical parameters and sampling procedures
together with genetic data would greatly benefit future studies by
providing a context for interpreting transcriptomic datasets.

Nanaerobic respiration takes place in the
metabolic gray zone
We know that the capacity for O2 respiration is globally and phy-
logenetically widespread but identifying where and when aerobic
respiration does occur appears to be the greater challenge. Re-
cent research is revealing that aerobic and anaerobic processes
can co-occur over a broad range of O2 concentrations in the en-
vironment, thus contradicting the concept of the microbial redox
cascade. For example, anaerobic NO3

− reduction can remain fully
active in the presence of up to at least 25 μmol O2 L−1 and, under
microoxic conditions, simultaneous sulfate and O2 reduction are
also possible (Cypionka 2000; Kalvelage et al. 2011; Schoeffler et al.
2019). These findings demonstrate that while the redox cascade
concept is often interpreted to mean the literal exclusion of anaer-
obic respiration by the presence of O2, the ordering of respiration
processes in nature is much more nuanced, being influenced by
factors other than just energetics.

From a thermodynamic standpoint, O2 is the most favorable
electron acceptor, although it yields only slightly more energy
(−2870 kJ/mol glucose) than nitrate reduction to N2 (−2670 kJ/mol
glucose) under standard conditions (Strohm et al. 2007). From a
bioenergetics perspective, however, the enzyme systems involved
in proton translocation during aerobic respiration confer a much
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Figure 2. (A) The phylogenetic tree represents HCO amino acid sequences from the Tara Oceans and Saanich Inlet environmental metatranscriptome
datasets and classified reference sequences obtained from the reference database of the HCO classifier tool (http://www.evocell.org/hco). This
maximum likelihood approximation is based on FastTree with the LG model using NORs as the outgroup. The shading represents the HCO sequence
type classification, propagated from the reference HCO dataset to classified environmental metatranscriptome sequences. The color in the outer circle
(see legend) represents the degree of oxygenation of the source environment from which environmental sequences were derived and reference
sequences remain uncolored. An interactive searchable version of the tree is available online at https://itol.embl.de/tree/1311303419282761574438152.
(B) The relative expression of terminal oxidases HCO types A, B and C in publicly available metatranscriptomes from oxygen-limited and selected O2

nonlimited, aqueous environments for which background O2 concentration data have been recorded. High-affinity oxidases are more highly expressed
in low-O2 environments classified as follows: oxic (>11 μmol O2 L–1), suboxic (6–10 μmol O2 L–1), microoxic (1–5 μmol O2 L–1) and nanoxic (<1 μmol O2

L–1). Individual metatranscriptomic datasets are represented as colored dots and outliers are indicated by adjacent black dots. The Y axis represents
the number of HCO reads for each category divided by the number of HCO reads in all categories, calculated separately for each selected
metatranscriptome (more details in the Supporting Information). Locations of the sampled environments are indicated in Fig. 4.

http://www.evocell.org/hco
https://itol.embl.de/tree/1311303419282761574438152
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greater advantage (50% of energy is conserved) over denitrification
(30%) (Chen and Strous 2013). Moreover, aerobic respiration is very
efficient, requiring only one enzyme in addition to the core elec-
tron transport chain. Maintaining the cellular capacity for aerobic
respiration thus requires a lower energy investment than for ni-
trate respiration and occupies very little of the cytoplasmic mem-
brane surface area, not counting the defense machinery present
in most microorganisms (even strict anaerobes) to protect against
reactive oxygen species (Lu and Imlay 2021). The benefits of man-
ufacturing the enzymes to reduce O2 even under O2-limiting con-
ditions certainly outweigh the costs given that unprotected ex-
posure to such an oxidizing molecule would otherwise result in
the inhibition of anaerobic enzymes with redox-sensitive metal
centers, or in cellular damage by reactive oxygen species (Lu and
Imlay 2021).

Because energy yield depends on the concentration of reac-
tants, decreasing O2 concentration at some point tips the balance
so that another electron acceptor becomes more favorable. What,
then, is the threshold O2 level triggering a switch in metabolism
and what is the minimum O2 concentration microorganisms can
respire? The theoretical limit at which aerobic respiration can
occur has been calculated in the range of 0.1 to a few hun-
dred nanomolar and depends on cell size (diffusive surface area),
growth efficiency (moles of biomass synthesized per mole of oxy-
gen) and temperature (diffusion coefficient) (Zakem and Follows
2017). Below this dynamic O2 limit for aerobic microbial growth,
aerobic and anaerobic respiration can nonetheless coexist to vary-
ing degrees.

In practice, the lower limit to aerobic respiration has been ob-
served to vary from organism to organism depending on the types
of enzymes (high or low O2 affinity) and alternative respiratory
pathways they possess. Below a certain threshold concentration,
O2 reduction alone may be insufficient to provide the energy re-
quired for maintenance and microbial growth triggering a switch
in metabolism. However, it is not known whether this switch oc-
curs at the microbial community, population or single-cell level.
Microbial communities have been observed to perform aerobic
and anaerobic respiration simultaneously (Marchant et al. 2017),
and this metabolic differentiation is at least partly determined by
species adaptions to different O2 concentrations. Metabolic het-
erogeneity also exists within microbial populations (Koch et al.
2015; Schreiber et al. 2016) and it is possible that even a single cell
can simultaneously utilize multiple metabolic pathways (Chen
and Strous 2013). However, it is extremely difficult to demonstrate
such metabolic diversification at the cellular level since O2 and
other terminal electron acceptors are dissimilated during respi-
ration.

The co-occurrence of aerobic and anaerobic respiration and the
widespread phylogenetic distribution of hybrid electron transport
chains accommodating more than one type of electron acceptor
certainly cast doubt on the validity of our concepts of distinct
aerobic and anaerobic lifestyles. Moreover, variations of classical
aerobic respiration are constantly being discovered. External elec-
tron transfer, for example, allows bacteria to bridge a spatial gap
between a cell and an external oxidant. Filamentous cable bac-
teria are composed of individual, interconnected cells, of which
only the uppermost <10% are exposed to O2 and exhibit high-
est biomass-specific O2 consumption rates known to date for a
prokaryote (Scilipoti et al. 2021). This enables the cells in the lower
part of the filament to subsist on aerobic respiration in the ab-
sence of O2. However, these organisms do not possess any canon-
ical terminal oxidases. Instead, a unique cytochrome-truncated
hemoglobin fusion protein has been hypothesized to catalyze

periplasmic O2 reduction (Trojan et al. 2016). Another interest-
ing newly discovered mechanism of external electron transfer
has been demonstrated in Pseudomonas aeruginosa biofilms (Saun-
ders et al. 2020). It was found that redox-active shuttles called
phenazines are bound to extracellular DNA (originating from dead
cells) and mediate efficient electron transfer from P. aeruginosa
cells within the anoxic biofilm interior to surrounding oxygenated
medium. This adds to our inventory of external electron transfer
mechanisms known mostly from mineral-reducing bacteria such
as Geobacter and Shewanella (Richter, Schicklberger and Gescher
2012).

Yet another intriguing respiration mechanism is the intra-
aerobic pathway of nitrite-dependent methane oxidation of Can-
didatus Methylomirabilis oxyfera (Ettwig et al. 2010). This bac-
terium inhabits anoxic habitats and dismutates NO intracellu-
larly to form N2 and O2, the latter of which is used mainly for
methane activation and oxidation, in addition to respiration (Et-
twig et al. 2010; Wu et al. 2011). Interestingly, Ca. M. oxyfera en-
codes at least four terminal oxidases, but exposure to microoxic
conditions has a detrimental effect on growth (Luesken et al.
2012). Since the discovery of Ca. M. oxyfera, NO dismutation
genes have been found to be phylogenetically and environmen-
tally widespread (Zhu et al. 2017). Recent results, indicate that an
ammonia-oxidizing archaeon might also produce its own molec-
ular O2 from nitrite (Kraft et al. 2022). These intriguing metabolic
strategies highlight that the classification of aerobe/anaerobe is
nonbinary and yet has profoundly shaped the vocabulary we use
to describe microbial adaptations to the environments around us.

Nanaerobic respiration on early earth to the
present
Since the emergence of oxygenic photosynthesis 2.7–2.5 billion
years ago, the subsequent evolution of life on Earth has in-
volved continuous adaptation to more O2. However, alternative
O2 sources may have enabled the evolution of aerobic respiration
even prior to this. The radiolysis and photolysis of water, for ex-
ample, could have generated peroxides and other radicals that de-
composed to O2 (Chen and Taylor 1957; Pastina and LaVerne 1999).
Perchlorates and NO present in the primordial atmosphere (Das-
gupta et al. 2005; Martin, Mather and Pyle 2007) could also have
been converted to O2 via respective microbial dismutation path-
ways (Ettwig et al. 2012). While these sources of O2 were likely very
minor, especially considering the abiotic reductants abounding in
the reducing Archean atmosphere and oceans, the extremely low
amounts of O2 may have been sufficient for nanaerobic micro-
bial respiration. After the emergence of oxygenic photosynthe-
sis but prior to the great oxygenation event, there is geochemi-
cal evidence for whiffs of O2 to the Earth’s atmosphere (Anbar
et al. 2007; Koehler et al. 2018), which may have stimulated the
early proliferation of nanaerobic life. While these whiffs of O2 re-
main contested (e.g. Ward, Kirschvink and Fischer 2016), nanaer-
obes could have thrived in microenvironments in close proximity
of O2-producing cyanobacteria, similar to observations from mod-
ern ancient ocean analogues (Milucka et al. 2015).

It is difficult to identify conclusive fossil evidence for aerobic
microbial metabolism on early Earth, but gene histories tell an in-
teresting story. The birth of most redox-sensitive and O2-utilizing
protein families, such as superoxide dismutase, nonspecific per-
oxidases and the NAD(P)H:oxygen oxidoreductase protein family
(Raymond and Segrè 2006), has been dated to the time period re-
ferred to as the Archaean Expansion ∼3.33–2.85 billion years ago
(David and Alm 2011; Wang et al. 2011; Kim et al. 2012; Jabłońska
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Figure 3. Biogeological timeline showing the evolution of microbial metabolisms in parallel with the rise in atmospheric oxygen concentrations.
Modified from Lyons et al. (2014). Dates for the emergence of life (Arndt and Nisbet 2012), methanogenesis (Ueno et al. 2006; Wolfe and Fournier 2018),
anoxygenic photosynthesis (Tice and Lowe 2004; Butterfield 2015), sulfate reduction (Shen and Buick 2004), iron reduction (Lovley 2004), oxygenic
photosynthesis (Buick 2008; Farquhar, Zerkle and Bekker 2011), eukaryotes (Eme et al. 2014; Betts et al. 2018), diversification of aerobes (Wang et al.
2011; Blank 2013) and green plants (Kenrick and Crane 1997) were obtained from the literature available at the time of writing. Gray boxes represent
the uncertainties surrounding these dates.

and Tawfik 2021), long before the great oxygenation event and
even before the first conclusive evidence of oxygenic photosyn-
thesis. It was shown that the four major families of O2-reductases
evolved separately and followed different evolutionary histories.
Most notably, the low affinity A-type HCOs were already present
prior to the divergence of major present-day bacterial and ar-
chaeal phyla, thus predating the emergence of cyanobacteria and
oxygenic photosynthesis (Brochier-Armanet, Talla and Gribaldo
2009). While the presence of a single O2-reductase does not im-
ply an obligately aerobic lifestyle and an alternative function of
these primitive enzymes be ruled out, their early evolution could
suggest an O2-scavenging response to minute concentrations of
free O2 (Planavsky and Mills 2021).

The first oxidoreductases may have evolved as detoxification
mechanisms rather than energy conserving mechanisms but cou-
pling O2 reduction to proton translocation appears to be a surpris-
ingly small evolutionary step. In fact, this type of evolution has
been observed in pure cultures of Desulfovibrio vulgaris Hildenbor-
ough, which after 114 generations of growth under O2 stress, were
able to grow at O2 concentrations 32 times higher than the ances-
tral strain and conserve energy from this process (Schoeffler et al.
2019). Energy conservation evolved separately in two of the Desul-
fovibrio daughter strains, one via a single point mutation and one
via gene deletion. Thus, on a genetic level, very few changes are re-
quired for the transition from O2 detoxification to proton translo-
cation. Detoxification via O2 reduction is energetically costly, e.g.
it has been shown that under normal O2 concentrations, most of
the energetic costs of N2 fixation (∼60%) are derived from the pro-
tection of O2-sensitive nitrogenase enzymes by removal of intra-
cellular O2 or by the reversal of oxidative damage (Großkopf and
LaRoche 2012). It therefore makes evolutionary sense to harness
the oxidative power of O2 with proton pumping.

In the modern oxidized surface world, protection against ox-
idative stress is a requirement for survival and as a consequence,
O2-reducing enzymes are phylogenetically widespread. The phe-
nomenon of O2 respiration at ultralow concentrations suggests
not only that O2 reduction is more common among anaerobes
than currently recognized, but also that it played an important
role in the evolution of life on early Earth. Although it is cur-
rently impossible to resolve the evolutionary order and history

of microbial metabolisms, sulfate reduction, denitrification and
manganese/iron reduction are postulated to be some of the earli-
est metabolisms to have evolved on Earth (Fig. 3). These anaer-
obic metabolisms rely on terminal electron acceptors such as
sulfate, oxidized nitrogen species, iron- and manganese oxides,
which may have been formed to a small extent by lightning,
photochemical reactions and anoxygenic photosynthesis prior to
the great oxygenation event (Canfield and Raiswell 1999; Wong
et al. 2017; Schad et al. 2019; Lyons, Diamond and Konhauser
2020). Somewhat ironically, it was the rise of free O2 that induced
rapid changes in ocean-atmosphere chemistry, producing large
amounts of these alternative electron acceptors that enabled the
proliferation of anaerobic life as well. For example, it may have
been the enhanced oxidative weathering of sulfides on land and
the onset of marine sulfur redox cycling following the great oxy-
genation event that stimulated anaerobic methane oxidation, re-
moving a main source of greenhouse gas to the atmosphere and
resulting in the large-scale climate cooling at the end of the Pro-
terozoic Eon (∼2.4 Ga) (Fakhraee et al. 2019).

While nanoxic environments were likely more prevalent on
early Earth, nanoxic conditions can still be found in today’s oxic
world as microscale niches in marine snow to mesoscale zones in
stratified lakes and OMZs in the ocean. OMZs have been the fo-
cus of intense study as hot spots of fixed nitrogen loss from the
world’s oceans via anaerobic respiration, accounting for 30–50%
of global oceanic N loss (Codispoti et al. 2001). Respiration of O2 in
OMZs also significantly contributes to biogeochemical processes
such as ammonium, nitrite, methane and sulfide oxidation (Füssel
et al. 2012; Beman, Leilei Shih and Popp 2013; Kalvelage et al. 2015;
Bristow et al. 2016). Ocean models have long used a threshold of
1–10 μmol L–1 (Paulmier and Ruiz-Pino 2009; Deutsch et al. 2011;
Gutknecht et al. 2013; Lima, Lam and Doney 2014) to define anoxia
even though the O2 concentration limit for nanaerobic respira-
tion is clearly several orders of magnitude lower. Recently, Zakem
and colleagues proposed a new model based on resource ratio the-
ory, or the ratio of O2 to electron donor supply rather than an O2-
based threshold (Zakem et al. 2020). This model, which takes into
account the coexistence of aerobic and anaerobic metabolisms
at nanomolar O2 concentrations, has already proven to be an ac-
curate predictor of anaerobic activity and nitrogen loss in OMZs
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Figure 4. (A) World map of minimum O2 concentrations in aquatic environments derived from the World Ocean Atlas. For each region, the minimum
value from the entire water column depth is shown. Dots depict the sampling locations included in our metatranscriptomic survey. (B) Deviations
from the minimum O2 concentrations in panel (A) over time (data on lake O2 was not available). Essentially, the huge seasonal variability of dissolved
oxygen concentrations emphasizes that microorganisms have had to adapt to huge variations in O2 over both space and time.

(Zakem et al. 2021). In fact, anthropogenic activity together with
global climate change are leading to an expansion of these anoxic
zones worldwide (Fig. 4) (Stramma et al. 2008; Jenny et al. 2016).
Nanoxic aquatic habitats are expected to increase disproportion-
ately in volume as according to models, a reduction of the mean
upper ocean O2 content by only 1% would mean a doubling of
water masses with O2 ≤ 5 μmol L−1 due to the lower solubility
of O2 in warmer waters (Deutsch et al. 2011). Microbial activity in
low-O2 waters will thus play an increasingly important role in bio-
geochemical cycling, making it ever more important to revise our
models to correctly estimate the contribution of nanaerobic respi-
ration to ocean carbon turnover and its link to the global climate
system.

Future directions of nanaerobic research
In the environment, nanaerobic respiration remains a largely
overlooked process with an unknown role in ecosystem- and

global-level biogeochemical cycling. For example, the importance
of nanaerobic respiration relative to abiotic O2-scavenging reac-
tions at ultralow O2 concentrations in the environment remains
unconstrained. Since the vast majority of microorganisms re-
mains uncultivated, we strongly depend on culture-independent
methods such as gene transcription and expression analyses to
elucidate the in situ activity and identity of nanaerobes. How-
ever, it is imperative that geochemical data, specifically O2 con-
centrations, be recorded simultaneously and linked to this ge-
netic information to better constrain the role of nanaerobic res-
piration in the environment. We can indirectly link nanaerobic
respiration to specific microbial taxa via single-cell activity mea-
surements (i.e. nanoSIMS) combined with bulk O2-sensing tech-
nologies (Berg et al. 2019). Nonetheless, further methodological
innovations are necessary to directly quantify nanaerobic res-
piration at the single-cell level, which is essential to disentan-
gle the contribution of microbial versus abiotic O2-consuming
reactions.
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There is ample evidence for aerobic and anaerobic processes
co-occurring at the microbial community level in environments
ranging from OMZs (Lam and Kuypers 2011; Zakem et al. 2020) to
wastewater (Rajta et al. 2020) to human dental plaque (Schreiber
et al. 2010). New experimental approaches using microfluidic de-
vices have great potential to study the impact of microscale het-
erogeneity in O2 concentrations and fluxes on the co-occurrence
of aerobic and anaerobic microbial respiration (e.g. Smriga, Cic-
carese and Babbin 2021). Aerobic and anaerobic respiration might,
however, also occur simultaneously within a single microbial cell
but direct evidence for this is so far missing. Moreover, for many
environmentally relevant microbial taxa, the biochemical mech-
anisms regulating the switching point from aerobic to anaer-
obic respiration is still unknown. A better mechanistic under-
standing could serve practical bioengineering purposes of main-
taining simultaneous aerobic and anaerobic processes that are
favorable for wastewater treatment and soil remediation (Yang
et al. 2020).

As a result of rapid, anthropogenic-driven change, hypoxic wa-
ters are expanding globally with drastic consequences for aquatic
animals, such as fish, which cannot survive at low O2 levels (Diaz
2001). Likely, nanaerobic respiration will gain importance for car-
bon turnover, nitrogen loss and phosphorus remineralization. So
far, anaerobic processes are generally presumed to be largely re-
sponsible for biogeochemical element cycling in anoxic waters,
such as the core of OMZs where O2 is below detection limits
(Bertagnolli and Stewart 2018). Besides abundant NOx species, a
number of other less common alternative electron acceptors such
as iodate, perchlorate and phosphite have been proposed to drive
microbial metabolisms in such environments (Coates and Achen-
bach 2004; Ewens et al. 2021; Reyes-Umana et al. 2021). However,
nanaerobic microorganisms appear well adapted to and thrive
under ultralow O2 conditions, even at concentrations below the
detection limits of our sensors. This nanaerobic respiration is fu-
eled by the continuous transport of O2 into O2-depleted environ-
ments where it is consumed faster than it can accumulate. As
such, the flux of O2, rather than its absolute concentration, is im-
portant for sustaining microbial respiration. Innovative methods
are needed to better constrain O2 fluxes into functionally anoxic
zones.

The knowledge that prokaryotic microorganisms can respire
O2 where none can be detected also raises interesting questions
about eukaryotic life in such habitats and the physiological mech-
anisms that they employ to thrive under nanoxia. Several such
(unicellular) eukaryotic adaptations to O2-limited environments
are already known and involve physiological (e.g. expression of al-
ternative quinones; Anand et al. 2015) or structural changes (e.g.
localization of mitochondria close to the outer cell membrane;
Fenchel 2014) or symbioses with anaerobic bacteria (Graf et al.
2021). Recognizing the prevalence of these mechanisms among
free-living eukaryotes can help us to better constrain the impact
of nanaerobic metabolism on the ecology and evolutionary his-
tory of eukaryotes.

Supplementary data
Supplementary data are available at FEMSRE online.
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