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Abstract

Recent findings suggest that rare variants play an important role in both monogenic and common diseases. Due to their
rarity, however, it remains unclear how to appropriately analyze the association between such variants and disease. A
common approach entails combining rare variants together based on a priori information and analyzing them as a single
group. Here one must make some assumptions about what to aggregate. Instead, we propose two approaches to
empirically determine the most efficient grouping of rare variants. The first considers multiple possible groupings using
existing information. The second is an agnostic ‘‘step-up’’ approach that determines an optimal grouping of rare variants
analytically and does not rely on prior information. To evaluate these approaches, we undertook a simulation study using
sequence data from genes in the one-carbon folate metabolic pathway. Our results show that using prior information to
group rare variants is advantageous only when information is quite accurate, but the step-up approach works well across a
broad range of plausible scenarios. This agnostic approach allows one to efficiently analyze the association between rare
variants and disease while avoiding assumptions required by other approaches for grouping such variants.
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Introduction

There is increasing evidence supporting the role of rare variants

in both monogenic and complex diseases [1–6]. In parallel with

this new sequencing technologies are providing an avenue for

effective detection of rare variants in the human genome [7]. Such

technologies are helping the 1000 Genomes Project catalogue less

common variants (http://www.1000genomes.org). These advanc-

es in our ability to study rare variants should substantially improve

our insight into the genetic basis of health and disease.

Evaluating the potential impact of rare variants on disease is

complicated, however, by their uncommon nature. Several

approaches have been proposed for the analysis of rare variants.

On the one extreme is collecting such an enormous study sample

that rare variants are detected sufficiently often to allow for testing

each variant individually; for example, Nejentsev et al. [8] discovered

a rare variant with minor allele frequency (MAF) 0.46% in Type I

Diabetes cases and 0.67% in controls, using 17,730 individuals.

Evaluating each individual rare variant will generally not be effective

for smaller sample sizes or for variants that have even lower MAFs

than that of Nejentsev et al. [8] due to data sparsity. In particular,

conventional analyses may produce extremely unstable estimates of

rare variant effects on disease and be essentially uninformative.

An alternative is to combine rare variants together into groups

in a reasonable manner so they can be efficiently analyzed. Note

that when we use ‘‘efficient’’ in this manuscript, we will always be

referring to statistical power; computational time will be referred

to as runtime. One might simply tabulate in cases and controls the

number of individuals that have any rare variants (e.g., within a

given locus), and contrast these counts. Morgenthaler et al. [9]

have termed this the Cohort Allelic Sums Test (CAST). This

approach essentially assumes that the rare variants have similar

effects on disease. In other words, CAST gives equal weights to all

rare variants combined together. It also treats individuals who are

heterozygous and homozygous in an identical manner, although

there will be few of the latter when studying rare variants.

Another option is to somehow weight each rare variant and

then combine them. The optimal approach will upweight the

variants most likely to cause disease and downweight variants that

have no effect on disease. The weights could be calculated in a

number of different ways. Madsen and Browning [10] propose

weighting each allele by the inverse of the estimated standard

deviation of the total number of mutations in the controls. Rare

variants can also be simultaneously analyzed with common

variants in a multivariate test, as in the Combined Multivariate

and Collapsing (CMC) method [11]. Here, a multivariate test is

constructed using a term for collapsed rare variants plus terms for

each of the common alleles. This allows for collapsing variants

only when needed due to their rarity, and analyzing more

common variants on an individual basis.

The decision to aggregate rare variants – with or without

explicit weighting – requires a number of strong assumptions

about the similarity of their effects on disease. This raises a critical

unanswered question: how to best combine rare variants for

analysis? For instance, one might choose a minor allele frequency

threshold to define what is ‘‘rare,’’ or choose a weighting scheme
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for the variants (even if constant weights). In addition, one might

decide to only aggregate nonsynonymous variants in the coding

regions [9] as these might be the most likely to cause disease [12].

Such a grouping could be further refined to only nonsynonymous

variants that lead to putatively deleterious mutations that impair

the function of the protein (e.g., using predictive algorithms such as

SIFT [13], PMUT [14], or PolyPhen [15]). However, such

algorithms vary in the information used, and can give different

results, which would lead to different groupings of rare variants.

For example, we found that the agreement among SIFT, PMUT,

and PolyPhen in predicting the impact of mutations was only 52%
in the data we used for our simulation study (discussed below).

Clearly it is very difficult to define a priori what rare variants should

be aggregated into a single group for analysis.

Two methods have recently been proposed to collapse rare

variants in a data-driven manner. Price et al. [16] extend the

CAST [9] and the weighted approach [10] by testing multiple

allele frequency thresholds, rather than choosing one fixed

threshold, and also extend the test to quantitative traits. However,

they assume that all rare variants are deleterious; while this may be

a reasonable assumption for many diseases [2], there is also the

possibility that some rare variants are protective. Han and Pan

[17] allow for both deleterious and protective variants by letting

the data determine whether an allele should be protective or

harmful when collapsing, and also suggests collapsing common

variants into the test. We combine and further extend these

approaches in a more flexible data-driven model to decide how

best to group rare variants for association analysis.

Our approach considers multiple possible groupings, choosing

the ‘‘best’’ set based on statistical criteria, and correcting by

permutation. One can use prior information from several sources

to define these groupings; e.g., different protein coding function

algorithms. Alternatively, or in addition, one can use data-driven

methods to define these groupings based only on statistical

criterion; e.g., all possible allele frequencies, all possible subsets

of rare variants, or a ‘‘step-up’’ approach we propose here. That is,

we use the data to decide whether a variant should be deleterious

or protective, or whether the variant should even be in the model

at all. We use a simulation study to evaluate these approaches. The

simulations are based on data from deeply sequenced candidate

genes in the one-carbon folate metabolic pathway [18].

Methods

General framework
Assume that we have undertaken a study of the relationship

between K genetic variants and a phenotype Y among I
individuals. Let Xik be the additive coding for a marker (i.e., the

number of minor alleles individual i has at variant k); others can

be considered, but a dominant coding will be almost identical to

an additive coding for a rare variant. Then a flexible disease model

for the relationship can be given by

g(Yi)~a0z
X

k

bkXik, ð1Þ

where Yi is an individuals phenotype (dichotomous or continuous)

and g is a link function (e.g., logit for logistic regression or the

identity for linear regression). With rare variants, however, the

data is too sparse to estimate each individual’s bk. For example,

suppose we try to fit a logistic regression to test for the genetic

association of a rare variant with disease. Without an enormous

sample size, the estimate of a single rare variant’s effect on Y (b̂bk)

may be extremely unstable and essentially uninformative.

An alternative is to somehow aggregate multiple rare variants,

and leverage their combined strength to improve estimation. This

can be formalized with a second-stage model for the parameters of

interest, a vector of coefficients bk

b~ªWzd, ð2Þ

where ª is a vector of combined genetic effects (e.g., a single

collapsed effect, or two terms for a protective and deleterious effect)

that we want to evaluate; W is a second-stage design matrix that

incorporates information on factors about the genetic variants; and

d is a random effect. Equation 2 is essentially a prior model that

distinguishes how one can ‘‘borrow information’’ across rare

variants. Together equations 1 and 2 define a hierarchical model

that can be used to incorporate complex interrelationships among

the variants and their putative effects on disease.

However, most of the existing rare variant approaches

essentially model a single combined genetic effect c, aggregating

all of the data features into a single wk for each SNP, and assume

d~0. We build on these approaches, and for focus and tractability

do not explore a fully parametrized hierarchical model; further

details on the potential value of this approach are given in the

discussion. Now combining Equations 1 and 2 gives the model

g(Yi)~a0zc
X

k

wkXik

" #
: ð3Þ

That is, one is essentially modeling and estimating the effect of a

weighted combination of variants
P

k wkXik

� �
.

We will explore different ways to model wk in this paper, from

data-driven methods to those based completely on prior

information. There have been several approaches proposed to

modeling wk in the literature. The simplest is to set wk~1 and

sum them together. This is similar to the CAST approach [9],

which uses an indicator variable for the presence of any rare

variant. Here we use a multiplicative model wk~akskvk, where ak

is a continuous weight (e.g., to incorporate allele frequencies), sk

determines the direction of the variant effect (deleterious or

protective), and vk is an indicator variable determining whether

the allele belongs in the model for variable selection. Note that in

our description of these parameters below, we will be using the

data to estimate them; we will correct for this by permutation at

the end of the procedure.

For the continuous weight ak, one can incorporate allele

frequency information (or set this to 1). For example, Madsen and

Browning [10] consider all alleles to be deleterious, and set ak for

dichotomous traits to the inverse square root of the expected

variance based on allele frequencies p?k in the controls,

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p?k(1{p?k)

p
, with pseudocounts (i.e., adding 1 to the numerator

and denomerator when estimating p?k to prevent any zero weights).

Price et al. [16] extend this to continuous traits by estimating the

allele frequency pk including all samples.

If we believe all variants have a deleterious effect, we can set sk

to be 1, and ignore this parameter. Otherwise, we can let the data

decide how to specify sk. Han and Pan [17] addressed this first

fitting a marginal regression model for the association between the

variant and disease, and then flipping the coding of the genotype

when the estimated coefficient is negative and reaches a certain

significance threshold. We use a slightly different method for rare

variants. For dichotomous traits, if an allele is more prevalent in

controls than cases, we set sk~{1 to indicate it is likely

deleterious, and if it is more prevalent in cases than in controls,

we set sk~1 to indicate it is protective. For continuous traits we
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use the sign of the estimated covariance between the trait and

marker; this is equivalent to the sign of the regression coefficient,

just slightly faster to calculate.

Lastly, we have vk, which determines whether a variable enters

into the model. One example would be to set this by a hard minor

allele frequency threshold (e.g., as in CAST [9]). However, we

may also wish to try the approach at several allele frequency

thresholds, or even all possible allele frequency thresholds [16]. In

this case, we change our notation so that we are considering a set

W of models with elements indexed by a vector l~(la,ls,lv) as

wl
k~wla,ls ,lv

k ~ala
k sls

k vlv
k . Testing all allele frequencies would be

equivalent to running the test for each vlv
k ~I pkvulvf g, where u is

the set of unique allele frequencies.

Another example of how to chose vk is as an indicator for variants

in coding regions, since they may be more likely causal than those

elsewhere [12]. We may wish to consider only those mutations that

are nonsynonymous, and in particular those that are highly

deleterious. Several algorithms exist for estimating the magnitude

of the deleterious effect of mutations on protein function, but they

do not always agree. Again, we might even also consider using

several algorithms to define different groups to test. One may wish

to use a consensus of all of these functional designations to group

rare variants, or even use continuous information from the protein

coding function algorithms. We can combine this with our ideas for

testing multiple allele frequency thresholds.

There is one other model we will introduce for vk, but it will be

clearer after we describe the test statistic and understand its

computational runtime. To speed up the approach one could use

linear regression for all phenotypes, instead of logistic regression

[16,17]. We instead take the mean centered score of c from

Equation 3 divided by the empirical variance: xl~
P

i,k Ul
ik

� �2

=P
i

P
k Ul

ik

� �2
, where Ula ,ls,lv

ik ~ala
k sls

k vlv
k Xik{X :k

� �
Yi{Y
� �

,

Y~
P

i Yi=I , and X :k~
P

i Xik=I . Then xl follows a chi-

squared distribution with one degree of freedom. When we are

considering a set of modelsW for wk, then the final test statistic of

the procedure is given by xmax~ maxl xl . Then to compute the p-

value of the test, we permute the phenotypes of the individuals,

and recompute x(p)
max for permutation p, following the entire

procedure as before. Then the p-value for P permutations is given

by
P

p I(x(p)
max§xmax)=P.

With the computational complexity of testing multiple weights

in mind, we also consider a data-driven method for specifying vk.

The approach we described above for testing all allele frequencies

is computationally of order linear time in the number of variants.

In contrast, having lv index all possible subsets of variants is on the

order of factorial time in the number of variants, and is too

computationally intensive for all but the smallest genes. Instead,

we propose a ‘‘step-up’’ approach that has a computational

runtime inbetween these two methods. This is similar to stepwise

regression, but instead of selecting additional independent

predictors, the step-up approach chooses the best combination

of rare variants into a single aggregated group. With this approach

we first compute the univariate test statistic xk1 for each variant k1.

We then determine the ‘‘best’’ (i.e., maxk1
xk1 ) of these models;

denote this model k?1, with test statistic mk?
1
. We then build on the

model with variant k?1 by computing the test statistic mk?
1
,k2

for

each marker k2 and the best marker k?1 from the first approach.

Denote the best added variant of this second step as k?2. If

mk?
1 §mk?

1
,k?

2 , then the algorithm terminates. Otherwise, the

algorithm continues until mk?
1
,...,k?

t{1§mk?
1
...k?t . Again the p-value

is obtained by permutation, repeating the entire procedure for

each phenotype permutation. This algorithm’s speed is of at worst

a squared number of time in the number of variants.

We can further extend this to allow the set of all models

considered to include any combination of the approaches from

above, restricted to being computationally feasible. That is, l could

index across all of the steps in the step-up model based on SIFT

functional markers, and all of the steps in the step up model based

on PMUT functional markers. This effectively uses the ‘‘best’’ of

these two procedures. However, the more rare variant groupings

and tests considered, the less efficient and more computationally

intensive the approach will be compared to that which most

accurately tests the true underlying model. When the disease

model is not well understood, as is probably the case for many rare

variants, it is advantageous to consider several different groupings

and/or tests. In our simulations, we explore this trade-off between

considering many possibilities and making strong assumptions.

Models for variant weights
In the previous section we described a general framework and

strategies for constructing a model for the variant weights wk and

evaluating an aggregated genetic effect on disease c. Here we

enumerate the models that we will compare in our subsequent

simulations (distinct from the models we will use to generate our

data). We first investigated the following models with sk~1 (i.e., all

variants are deleterious) and ak~1 (i.e., they are equally deleterious):

1. MAFƒ0:01: vk~Ifpkv0:01gfk, where fk is defined:

(a) SIFT: fk~Ifk[SIFTg (this will be the true generating model, so

as if we knew the true underlying model);

(b) Nonsynonymous: fk~Ifk[Nonsynonymousg (modeling all mutations

that alter protein coding function).

1. This is similar to CAST, but summing
P

k Xik rather than an

indicator variable of any mutation.

2. MAFƒ0:05: Same as (1), but vk~Ifpkv0:05g.

3. All MAF: vlv
k ~Ifpkvulv gfk, where fk is (i.e., all allele frequencies

as described above)

(a) Nonsynonymous: fk~Ifk[Nonsynonymousg;

(b) All protein coding: f 1
k ~Ifk[SIFTg, f 2

k ~Ifk[PMUTg, f 3
k ~

Ifk[Polypheng (i.e., try several protein coding functions since

we will see they often differ);

(c) Non-generating protein coding: f 1
k ~Ifk[PMUTg, f 2

k ~Ifk[Polypheng
(i.e., exclude the protein coding function grouping informa-

tion actually used to generate the data, and see if the other

grouping methods, PMUT or polyphen, can still detect an

association).

4. Step: vlv
k based on the ‘‘step-up’’ approach described above.

In addition to these, we then fit models 1?{4?, the same as

1{4 but with ak set to the inverse variance of variant k using

controls for dichotomous traits, and all subjects for continuous

traits. Next we refit both models in 3 and 3?, and choosing the

‘‘best’’. Finally, we tested 1{4 with sk~+1 (i.e., signed, as

described previously). Note that in these scenarios the weights

presented here do not make as much sense for protective variants

(i.e., especially weighting based on allele frequency in controls).

Simulation design
We investigated several different rare variant disease models.

Dichotomous traits were simulated using the disease model given

in equation 1 under a logit link, and continuous traits with the

identity link. We simulated a range of odds ratios (2 to 5) for
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dichotomous traits and mean differences (standard normal, 0.15 to

0.6) for continuous traits; a wide range of values are used here

because rare variants are expected to have moderate to high

penetrances [19,20]. We also undertook simulations for an odds

ratio of 1 or mean difference 0 to make sure the tests maintain the

proper type I error. For dichotomous traits, a0 was chosen to keep

the population prevalence fixed at 0.01. Other values for the

population prevalence were considered, but did not materially

affect the results. For continuous traits, a0 is irrelevant.

The variant data was generated using the haplotype frequencies

across genes from an existing sequence-level dataset. One thousand

cases were drawn according to the joint distribution of Y~1 and X,

and 1000 controls from the joint distribution of Y~0 and X, or

2000 individuals with a quantitative trait. A vector of genetic

variants X was drawn from haplotype frequencies of 480 individuals

in which the coding regions of 16 genes in the folate metabolic

pathway [18] were sequenced, in the California Newborn Screening

Program; more results are given in the results section.

We ran 500 simulations per gene, and averaged the empirical

power over all of the genes according to a type I error rate of 0.05

(i.e., average power for gene-specific detection, not pathway). We

ran 500 permutations for each test (except CMC, for which an

asymptotic test is available [11]). In practice one might wish to run a

larger number of permutations for regions suggestive of association.

500 permutations were run here for simulation speed, as many tests

were considered, and should be accurate for the simulations. Unless

otherwise stated, we used the SIFT algorithm to determine if alleles

were considered intolerant (including those with low confidence)

and thus associated with disease, or tolerated and not associated

with disease [13]. The power plots we present are the average over

these genes. In each gene, we tried to construct and normalize our

coefficients in such a way that the maximum contribution of any

allele was less than or equal to the odds ratio.

We ran several simulations for dichotomous traits with the

following values of bk (Equation 1):

1. Constant effect for all variants: Let y be the odds ratio, and 0:01 be

the cutoff for whether an allele is rare and deleterious. Define

bk~ log (y)Ifk[SIFTgIfpkv0:01g.

2. Varying the causal frequency: Since we do not actually know the

true allele frequency, we undertook several other simulations

varying the ‘‘causal’’ rare allele frequency. That is, we allowed

the cutoff Ps to follow a discrete uniform distribution according

to the allele frequencies in each gene that were less than 0.05,

varying this for each simulation. We define bk~ log (y)
Ifk[SIFTgIfpkvPsg.

3. Continuous penetrance of disease: Here, let fk be the continuous

coding of SIFT [13] for variant j, which ranges from 0 to 1,

with 0 being predicted as more deleterious. We define

bk~ log 1z(y{1)
1{fk

max (1{f)

	 

. Variants that have a higher

probability of deleteriousness as per the SIFT algorithm are

simulated to increase the odds of disease proportionately

higher.

4. Incorporating rare and common variants: We control how much more

deleterious a rare variant is than more common variants with the

parameter F and define bk~ log 1z(y{1)
min (p)

pk

� �1=F
" #

Ifk[PMUTg. When F~1, rarer variants have a very strong effect,

and common variants have almost no effect. For larger values of

F , common variants have an increasing effect on disease. Note

that here we use PMUT to increase the number of genes with

deleterious common variants (four rather than one with SIFT).

5. Incorporating protective and deleterious alleles: We randomly parti-

tioned each gene such that approximately 50% of the total

allele frequency of rare functional variants were deleterious,

and the rest protective. We define bk~ log (y)skIfk[SIFTg
Ifpkv0:01g, where sk was {1 for deleterious alleles and 1 for

protective alleles. We then repeated this with approximately

75% of the total allele frequency as deleterious.

We also reran simulations 1 and 5 for continuous traits. Here we

replace the odds ratio log (y) with the mean difference for each

additional dosage of a variant allele, and sampling the trait

according to a N(
P

k bkXik,1) distribution.

Results

Dataset description
The deep sequenced dataset on which our simulations were

based was rich with rare variants; out of 764 putative SNPs, 653

had allele frequencies less than 5%, and 583 had an an allele

frequency less than 1%. In the nonsynonymous regions of these

genes we compared the SIFT [13], PMUT [14], and PolyPhen

[15] methods of predicting whether the variants were deleterious

protein coding mutations. Figure 1 shows the number of rare

variants as characterized by these algorithms, for varying allele

frequencies. We found that there was limited concordance among

these methods (at best 52%, Table 1). This is similar to Chun et al.

[21]. Nevertheless, the low concordance among these three

algorithms is actually beneficial for our simulations because it

adds variability reflecting reality. When we use SIFT to generate

the disease model, it is interesting to assess how well the other

approaches work. Data from 13 of the 16 genes were included in

the analysis because each of the 13 had at least one intolerant

nonsynonymous mutation as predicted by the SIFT algorithm (full

details of this and other methods are in Table 1), whereas the

remaining 3 had no predicted deleterious changes.

Simulation results
Each simulation enumerated above is highlighted in Figures 2

and 3. In these figures, the different scenarios are distinguished by

the three indices separated by commas along the X-axes. The first

label indicates which of the four tests was used (i.e., the model for

ak): constant (C), weighted (W), or both constant and weighted (B).

The second label is for the parameter sk and indicates whether the

sign was set to a constant 1 (z), or allowed to vary as described

above (z={). The third label is for the model parameter vk, and

indicates whether the test was done restricting to a particular

algorithm’s deleterious call (e.g., SIFT) or all nonsynonymous

changes (NS), and what range of alleles or groupings that test was

applied to. The latter corresponds to: the exact generating alleles

(Perf for ‘‘perfect’’, i.e., testing only the alleles contributing to

disease), all allele frequencies (MAF), all functional groupings (F),

all functional groupings except that used to generate the data

(*F), a hard allele frequency threshold (e.g., ‘‘v0:05’’), the CMC

method with a hard threshold (only run for common variants,

simulation 4), or the step-up algorithm described in the methods

section (step). Unless otherwise stated, the order of the tests in the

plots are by the most overall powerful (averaged over the 4 ORs or

mean differences).

Figure 2A shows the results from simulation 1, the fixed MAF

threshold of 0.01. The weighted method generally performs better

than constant weights (even when we are testing the exact markers

we use to generate, Perf) and appreciably better than applying

constant weights to all minor allele frequencies as does using a

fixed threshold (e.g., v0:01 or v0:05). We also note that the step-
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up method also performs well in this circumstance. Lastly, signing

the variants does not make the power much worse even though all

SIFT variants are assumed deleterious. Figure 2B shows the results

from simulation 2, under the more realistic scenario with different

allele frequencies generating each simulation. Here the step-up

method performs the best, aside from the unrealistic Perf test. In

comparison with simulation 1, we see a more dramatic power

reduction for the unweighted (C) tests that allow for multiple

MAFs. Figure 2C shows the results from simulation 3, with a

continuously generated deleteriousness of alleles. Surprisingly, the

weighted method with a MAFv0:05 for aggregating variants has

the most power in this figure. However, the step-up is nearly

identical (C or W). As above, the weighting by minor allele

frequencies in controls (W) generally worked better than not

weighting (C). In these tests a similar step-down approach was

tried, but it did not work well (results not shown).

We then looked at the effect of common variation according to

the PMUT algorithm in simulation 4 (4 genes had common

variants, Figure 1) [14]. In Figure 2D we vary the parameter F for

each situation, and fix the odds ratio at 2. Here the order of the

tests is not as informative as it was for the other plots; it is best to

separately consider the different approaches’ power for each value

of F in Figure 2D. To emphasize this, Figure 2D is ordered by the

power at F~5. For F~1 and F~2, the rare variant methods

perform the best. Step-up performs well, but we see a small power

loss for the z={ approach, unlike before. However, if common

variants have any appreciable effect on disease (F§3), then the

CMC approach works best. This is likely because it is more flexible

and does not assume that the more common variants have the

same effect at the expense of a few degrees of freedom. As

expected, we also saw that requiring a hard cutoff of MAFv0:01
or v0:05 performed poorly (Figure 2D).

In the top panels of Figure 3 we can see the effect of protective

and deleterious mutations (simulation 5). Figure 3A shows a

50%=50% split, while 3B shows a 75%=25% split of deleterious vs.

protective variants. It is not surprising that the methods which sign

variants based on case-control differences generally performed the

best here, especially for the 50%=50% split. What is slightly

surprising is that the unsigned step-up routine performs nearly as

well as the signed step-up routine that does not. Even the constant

threshold performs well, if it is signed. The unsigned methods look

slightly better in the 50%=50% split than they do in the 75%=25%
split, although the signed methods are preferred.

When considering continuous traits our simulations gave

generally similar results as seen for dichotomous traits. Figure 3C

shows results for simulation 1? - data generated from SIFT

prediction where all variants with MAFv0:01 are causal. Results

are similar to simulation 1 with the weighted and step-up

Figure 1. Deleteriousness of variants detected by sequencing one-carbon folate metabolic pathway candidate genes. For each gene,
the number of variants from sequencing that are nonsynonymous, and then deemed deleterious by three different methods (SIFT [13], PMUT [14], or
PolyPhen [15]) plotted by ranges of the variant’s minor allele frequency. The SIFT designations are generally used here for our simulation studies
(except those with common variants, where we used PMUT designations to have more genes with deleterious mutations for simulation purposes).
doi:10.1371/journal.pone.0013584.g001
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approaches performing best, and allowing for any MAF doing

worse. Figure 3D presents results for simulation 5? for the

50%=50% split. For continuous data, the signed tests show even

more benefit than for dichotomous traits. In fact, assuming that all

variants are deleterious works quite poorly, except for the step-up

approach, which still did reasonably well.

Discussion

We have compared several different approaches to rare variant

analysis that incorporate varying amounts of prior information in

deciding how to aggregate such variants. When one does not know

how rare variants affect disease, and is hesitant to make the strong

assumptions required to collapse them together, the completely

agnostic step-up approach presented here may be the most

appropriate. It performed either the best, or close to the best

(excluding the ‘‘perfect’’ but unrealistic tests) in the various

situations considered.

When it is possible that both protective and deleterious variants

are present, we found it useful to sign variants (although little

difference between stepwise and signed stepwise). Signing variants

greatly improved the efficiency when both protective and

deleterious variants are present, although some efficiency was lost

when only deleterious alleles were present. The weighting schemes

we considered based on allele frequency (models for ak) generally

did not work well when both protective and deleterious variants

were present. However, these weights were designed for the

situation when all alleles are deleterious, and do improve the

efficiency in those situations (with the exception of step-up, where

there is little difference). Using a hard cutoff performed relatively

poorly unless it accurately reflected the underlying disease model;

aside from that, a slightly higher allele frequency threshold

generally worked better. When using a slightly softer assumption of

testing all MAF thresholds, we found that incorporating functional

information from protein coding function algorithms generally

improved the efficiency of the test, and added only a minor extra

computational burden. Note, however, that we used the SIFT

algorithm to generate this data in our simulations, so it is biased

towards using that information. Yet even the other protein coding

function algorithms (e.g., PMUT, PolyPhen) did well with all MAF

when this information was not available. The more flexible step-up

approach does not need to rely on having such information.

Our simulations focused on combining rare variants within

particular genes. One can extend this approach to pathways,

exomes, or entire genomes, although the latter may be computa-

tionally challenging. Some computational time may be saved by

using an adaptive permutation that stops earlier for genes or

regions that appear to have no impact. For exomes, one could also

further collapse entire pathways instead of genes. A fast analysis of

different pathways could be done by testing each gene individually,

and combining the resulting p-values with the Fisher product test

statistic [10], or applying another step-up approach to further

combine the aggregated scores from each gene. Testing all MAF

instead of the step-up approach is also an alternative if

computational time is an issue [16].

Many complex diseases are likely due to a combination of rare

and common variants. One can jointly analyze rare and common

variants as in the CMC approach [11], but the rare variants must

have a large enough effect size to contribute much to the efficiency

of the test. Note that we did not consider various groupings for the

CMC test because multivariate logistic regression was prohibi-

tively slow for us to run many permutation tests in the simulations.

An alternative may be using linear regression. In practice a

combination of some of rare variant aggregation methods with the

CMC method might be the most appropriate for many risk loci.

Another promising approach for rare variant analysis is

hierarchical modeling [22–25]. We presented a general model in

equations 1 and 2 that is essentially hierarchical, and even made

some explicit prior assumptions about the variant effects

distribution (e.g., a point mass with no variability). Further

extending these models with other hyperparameters offers an

opportunity to potentially improve upon existing rare variant

techniques and is an important area of future research.

As with any genetic analysis, one may need to adjust for

potential confounding (e.g., due to population stratification).

Dichotomous covariates, or covariates with only a few levels,

can be included easily in these rare variant approaches by

stratifying on them. Otherwise the residuals of a logistic/linear

repression of the trait on the covariates of interest can be fit with

the continuous version of the test. One could also just use the

model in Equation 1 adjusting for covariates; here, one might

always use linear regression as it will be faster. The score test from

linear regression is nearly the same as the score test from logistic

regression, with the modification that the information contribu-

tions of each subject is weighted by pi(1{pi), where

pi~Pr(Yi~1Dcovariates), rather than an assumed constant

residual variance as in ordinary linear regression.

In summary our simulations suggest that the step-up approach

works quite well without requiring a priori information about how

to aggregate rare variants for analysis. This agnostic approach was

generally one of the best under a broad range of scenarios, and

should perform well under disease models different than those

Table 1. Protein Function by Gene.

SIFT PMUT PolyPhen Count

I Path Prob 8

I-LC Path Prob 2

I Neut Prob 9

I-LC Neut Prob 1

tolerated Neut Prob 1

I Path Poss 3

tolerated Path Poss 1

I Neut Poss 6

I-LC Neut Poss 2

tolerated Neut Poss 6

I Path Ben 2

I-LC Path Ben 4

tolerated Path Ben 24

I Neut Ben 13

I-LC Neut Ben 1

tolerated Neut Ben 43

Overlap of SIFT [13], T - Tolerated, I - Intolerant (tolerance index score ƒ0:05, as
suggested by the software documentation), I-LC - Intolerant with Low
Confidence (tolerance index score ƒ0:05, but median sequence conservation
score §3:35); PMUT [14], Neut - Neutral, Path - Pathological; and PolyPhen [15],
Ben - Benign, Poss = Possibly Damaging, Prob = Probably Damaging. Bolded
counts indicate where one method is the opposite of the other, where we allow
I-LC and Poss to go either way. There was a pairwise 58% concordance between
SIFT and PMUT, where we allowed SIFT I-LC to match to either PMUT
pathological or PMUT neutral; 87% concordance between SIFT and PolyPhen,
where we allowed SIFT I-LC to match to anything PolyPhen; and 67%

concordance between PMUT and PolyPhen where we allowed SIFT I-LC to
match to anything and PolyPhen Poss to match to anything.
doi:10.1371/journal.pone.0013584.t001
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Figure 2. Results from simulation study comparing power for rare variant analysis approaches. 500 simulations were based on
haplotype distribution for each of 13 deep sequenced candidate genes, and averaged. 500 permutations were run per test. Information for each
situation on the bottom of each plot consists of three parts that indicate the test used: ak (‘C’ for constant, ‘W’ for weighted by allele frequency); sk

(‘z={’ if signed, ‘z’ if constant); and the range of groupings vk (‘NS’ for nonsynonymous, ‘F’ for all protein coding, ‘*F’ for nongenerating protein
coding, ‘MAF’ for all MAF, ‘step’ for step-up, and ‘Perf’ for the exact generating alleles when appropriate). Results in plots A-C are sorted by the plot
that has the highest area, i.e., the most powerful overall. In D, each value of F indicates how much common variants affect disease and must be
considered separately; to emphasize this, we have sorted by the power when F~5.
doi:10.1371/journal.pone.0013584.g002

Analyzing Rare Variants

PLoS ONE | www.plosone.org 7 November 2010 | Volume 5 | Issue 11 | e13584



Figure 3. Further results comparing power across rare variant approaches. Results in Figures A and B show the effect of having both
deleterious and protective rare variants. Figures C and D switches to a continuous trait, with Figure D showing the effect of having both deleterious
and protective rare variants. Results are sorted by the plot that has the highest area, i.e., the most powerful overall. See the Figure 2 legend for
additional details about the different simulations.
doi:10.1371/journal.pone.0013584.g003
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considered here. Of course, when one knows the underlying

disease model, aggregating rare variants to reflect this information

will excel. In practice, however, combining rare variants may

require strong and sometimes conflicting assumptions; softening

such assumptions with a hierarchical model may prove valuable

for rare variant analyses. Software for the approaches considered

here is freely available in the R package ‘‘thgenetics’’ available

from CRAN (http://cran.r-project.org/).
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