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Introduction
Historically, premature and malnourished infants were those 
who were at risk of Pneumocystis jirovecii pneumonia (PJP) 
in Europe following World War II.1 The at-risk population 
shifted to those with hematological malignancies in the 1960s 
and 1970s,2,3 while in the 1980s, PJP increased dramatically 
with the emergence of the HIV epidemic. Nowadays, PJP in 
HIV patients can be adequately controlled by maintaining 
the CD4 count and using routine prophylaxis. In 2000 and 
later, PJP among immunosuppressed patients, especially renal 
transplant recipients, has increased compared to PJP in HIV 
patients. Many outbreaks of PJP in renal transplant recipi-
ents have been described recently.4–9 Whether or not a kidney 
transplant center has experienced an outbreak, preparation 
for a PJP outbreak is nevertheless required in order to save 
the many as yet uninfected recipients and those patients who 
already have PJP.

History
Pneumocystis organisms were first incorrectly reported in 1909 
as the protozoan Trypanosoma cruzi, which is found in Chagas 
disease.10 Pneumocystis carinii was reported from a rat sample 

in 1910 by Dr. Carini as another protozoan that was different 
from T. cruzi,11 and it was subsequently described as a new pro-
tozoan in the International Code of Zoological Nomenclature 
(ICZN) in 1912. During the 1940s, it may have been a pos-
sible cause of pneumonia in human beings, and in 1952, it was 
reported to be a pathogen of Pneumocystis pneumonia by the 
Czech researcher, Dr. Jirovec.12 Whereas P. carinii originated 
from the rat, P. jiroveci from human beings was described as a 
new protozoan in the ICZN in 1976. In 1988, however, DNA 
analysis demonstrated that P. jiroveci is actually a fungus.13

The reasons that P. jiroveci was recognized as a pro-
tozoan are as follows: (1) fungi are similar to protozoa 
morphologically; (2) P.  jiroveci demonstrated sensitivity to 
the antiprotozoal agent, TMP-SMX; (3) P. jiroveci was resis-
tant to many antifungal agents; and (4) it was not possible to 
culture P. jiroveci in vitro, though it can be cultured from the 
recent report.14

In 1999, it was reclassified as a fungus and described in 
the International Code of Botanical Nomenclature (ICBN), 
and in 2005, it was modified to P. jirovecii by the ICBN.15 In 
2012, the ICBN became the International Code of Nomencla-
ture for algae, fungi, and plants, and P. jirovecii was classified 
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under the Ascomycota group according to the new code. Since 
P. carinii was derived from rats, the term Pneumocystis carinii 
pneumonia (PCP) is no longer used for human beings. As 
such, the name for Pneumocystis-related pneumonia in human 
beings was changed to PJP.

Epidemiology in Kidney Transplantation
Owing to the use of highly active antiretroviral therapy and 
primary PJP prophylaxis (which is dependent on the CD4 
count), PJP with HIV has become a controllable disease and 
resulted in a decrease in the number of cases.16,17 On the 
other hand, the number of cases of PJP in non-HIV patients 
has increased with the recent enhancements in immunosup-
pressive therapy.18,19 French data spanning from 1990 to 2010 
showed that, of the cases of PJP without HIV, polyarteritis 
nodosa, granulomatosis with polyangiitis, and polymyositis/
dermatopolymyositis were the concomitant diseases with 
the top three highest incidence rates, although hematologi-
cal malignancies such as non-Hodgkin lymphoma, chronic 
lymphocytic leukemia, and acute leukemia were also part of 
the high-risk group (.45 cases per 100,000 patient-years). 
Among transplant recipients, estimates of incidence rates vary 
from 13.7 for heart transplant recipients to 44.6 per 100,000 
patient-years for kidney transplant recipients.20 From data 
in England, the difference in rates between two time peri-
ods (2000–2005 and 2006–2010) was most marked among 
patients who had undergone solid organ transplantation 
(SOT), 47% of whom had undergone kidney transplantation 
(KT), compared to other immune deficiencies such as chronic 
lung diseases, renal failure, hematologic malignancy, other 
hematologic disorders, systemic connective tissue disorders, 
inflammatory diseases, and receipt of immunosuppressive or 
chemotherapeutic drugs.21–23 Therefore, the management of 
PJP in KT is becoming more and more important. Despite 
antimicrobial prophylaxis, which has reduced the incidence 
of PJP, clusters of late infections have been reported among 
kidney transplant recipients worldwide.24 An outbreak that 
begins from main clusters is most frequently observed in kid-
ney transplant recipients. It may be related to the high number 
of kidney transplant recipients worldwide, their immunosup-
pression status, and their compliance with regular follow-up 
within hospital settings, combined with the consequent high 
rate of encounters and potential transmission of the fungus.6 
Not only patients with PJP but also colonized patients may 
be potential infectious sources of P. jirovecii.6

Pathogen
Even with recently developed techniques, it is still not pos-
sible to culture Pneumocystis in vitro. Although the life cycle 
of P. jirovecii remains poorly defined,19 the Pneumocystis life 
cycle is known to have four stages, namely, the trophic form, 
sporocyte, cyst (includes eight spores), and spore.25 Pneu-
mocystis organisms in different mammals are quite different, 
and strains from one host animal do not infect other animal 

species.26 P. jirovecii can only survive in the respiratory organ 
of human beings. The infective form that travels from indi-
vidual to individual by the airborne route has not been eluci-
dated. Although Pneumocystis DNA has been detected in air, 
no environmental form has been isolated.27 In the lungs of 
hosts with pneumocystosis, trophic forms are the most abun-
dant of all Pneumocystis life cycle stages, representing 90%–
95% of the total population,25 while mature cysts are detected 
in the bronchial lumen.28 Mature cysts are certainly the best 
equipped to retain infectivity during transient host-to-host 
air travel, which may help explain how direct patient–patient 
transmission occur or how reservoirs in infected patients form, 
and since cysts can survive outside the human host for some 
time, which may explain how transmission from the envi-
ronment occurs.25,29,30 There is little information regarding 
isolation of P. jirovecii cysts in ambient air, but in our study, 
we detected P. jirovecii DNA from the outpatient consulting 
rooms, and the genotype was the same as P. jirovecii DNA of 
PJP that was diagnosed in the same room two months before.7 
We cannot explain this without cysts.

Genotype
Pneumocystis-specific DNA sequences were first cloned from 
an experimental rat model in 1990,31 and this enabled typing 
methods. The target genes are the mitochondrial large subunit 
rRNA (mt LSU rRNA), dihydropteroate synthase (DHPS), 
and internal transcribed spacer regions (ITS1, ITS2). Typ-
ing based on mt LSU rRNA or DHPS can only identify four 
types of P. jirovecii. More recently, a four-locus scheme that 
includes ITS1, 26S, mt26S, and beta-tubulin has emerged,32 
and this method can identify more than 35 different geno-
types. P. jirovecii can be classified into more than 130 types by 
using a combination of ITS1 and ITS2, and this is suitable for 
the determination of nosocomial infections.33 Recent studies 
have proposed the short tandem repeat-based molecular typ-
ing analysis, which is a quick, cheap, and reliable approach 
to genotype P. jirovecii in hospital settings and is sensitive 
enough to detect minor genotypes.34

Transmission route of P. jirovecii
Pneumocystis is a common childhood respiratory infection. 
B lymphocytes participate in the immune response.35 By four 
years of age, two-thirds of normal children who have been 
exposed to the respiratory-aerosol route are found to have 
antibodies to P. jirovecii.36 B-cells are also important for the 
costimulation of T-cells in response to the organism.37 T-cells 
then activate alveolar macrophages, which is the major cell type 
responsible for the clearance of P. jirovecii from the lung.38,39 It 
was previously thought that PJP may have occurred from the 
reactivation of chronic colonization, but reinfection with dif-
ferent genotypes probably occurs as frequently as reactivation 
of endogenous organisms.40

There are three ways of acquiring PJP. The first is transmis-
sion from a PJP patient to an immunocompromised host, after 
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which the patient develops new PJP soon after such contact. This is 
the most likely mode of acquiring new infections.41 Immunocom-
promised patients also can be a reservoir without developing PJP.

The second is from environmental exposure.27,42–44 As 
mentioned earlier, we detected P. jirovecii DNA from the out-
patient consulting rooms, and the genotype was the same as 
P. jirovecii DNA of PJP that was diagnosed in the same room 
two months before.7

P. jirovecii in the air exhaled by infected patients may 
be in the cyst form, because P. jirovecii can only survive in 
the respiratory organ of human beings. Cysts can survive 
outside the human host for some time. An alternative hypoth-
esis is that this organism may be capable of multiplying in 
an environmental niche and may not be totally dependent on 
human beings.27 Immunocompromised hosts can develop new 
PJP or colonization by inhaling this cyst.

The third is from asymptomatic carriers.45 Immunocom-
promised patients infected by PJP patients or from environ-
mental exposure can easily become a reservoir for infection; 
this has been proven in mice.46,47 There is a possibility that 
the same phenomenon occurs in human beings. Coughing or 
sneezing by reservoir patients can induce new PJP in other 
immunocompromised hosts. Several studies have suggested 
that asymptomatic carriers may have contributed to the spread 
of infection in an outbreak of PJP among kidney transplant 
recipients or rheumatoid arthritis patients.6,48 P. jirovecii spe-
cies were exhaled by colonized patients and therefore proposed 
that such carriers can participate in nosocomial transmission 
of this organism via the airborne route.49

Immunocompetent hosts can clear reinfection by differ-
ent genotypes without obvious clinical consequences in them-
selves, but the transient reservoir in their bronchial lumen 
might allow the transmission of this organism to other immu-
nocompetent or immunocompromised hosts.

Immunocompromised patients develop the disease as 
a consequence of reinfection and possibly reactivation.50 
Whether asymptomatic carriers can clear their colonization 
or develop PJP is dependent on their immunosuppression. For 
modern immunosuppression in KTs, the estimated median 
incubation period of PJP is 53 days (range 7–188 days).7

Risk Factors
The most significant risk factors for PJP in non-HIV 
patients are glucocorticoid use and defects in cell-mediated 
immunity.51–53 In retrospective studies of non-HIV PJP, the 
median dose of prednisone used was 30  mg/day, but some 
patients received as little as 16 mg/day. The median duration of 
glucocorticoid therapy before the development of PJP was 12 
weeks, but some developed before eight weeks.52 If the kidney 
transplant recipients do not use steroid avoidance or withdrawal 
protocols, the dose of prednisone is gradually decreased to 
∼5 mg/day as a maintenance dose over three months. Thus, only 
during the maintenance phase, the use of glucocorticoid may not 
be a significant risk factor for the kidney transplant recipient.

In addition to glucocorticoids, the combined use of cal-
cineurin inhibitors (CNIs), mycophenolate mofetil (MMF), 
or sirolimus (mostly triple therapy) is needed to maintain graft 
function. These immunosuppressive agents are also risk fac-
tors for PJP.23,54–57 The incidence of rejection increases the 
risk of PJP.58,59 In a case–control study, treatment of one, two, 
and three rejections was associated with 2-, 5-, and 10-fold 
increases in the incidence of PJP, respectively.58 Although 
rituximab, an anti-CD20 antibody, is used as induction 
therapy in ABO- and HLA-incompatible KTs, as a therapy 
for antibody-mediated rejection, or as a treatment for post-
transplantation recurrence of focal segmental glomeruloscle-
rosis, its use is also a risk factor for PJP.60,61 The risk of PJP is 
determined by the net state of immunosuppression.62,63 While 
the risk of HIV PJP increases when the CD4-positive T-cell 
count is ,200 cells/µL, there is no valuable index for assess-
ing the risk of non-HIV PJP.64

In addition, there are also other nonimmunological risk 
factors. Cytomegalovirus (CMV) infection may be an inde-
pendent risk factor for PJP,65,66 while aging (.55 years at the 
time of transplantation) is also a risk factor.66 Primary TMP-
SMX prophylaxis failure may occur in association with some 
of these risk factors.67 Furthermore, close contact to a PJP 
cluster, which sometimes causes PJP outbreaks, is a risk factor 
for transplant recipients.4,7,68 Asymptomatic carriage plays a 
role in the transmission of P. jirovecii and may pose a risk in 
the development of PJP.40,45

Clinical Manifestations
Diarrhea, vomiting, flu-like prodromes, and dry cough with-
out dyspnea are all known symptoms that may precede the 
classical presentation. PJP in HIV patients is slowly progres-
sive in onset, and fever, nonproductive cough, and dyspnea are 
common.69 In contrast, PJP in non-HIV patients is sometimes 
void of these symptoms, because immunosuppressive agents 
suppress these clinical findings. For transplant recipients at 
outpatient visits who are suspected of having PJP, it is use-
ful to monitor oxygenation by pulse oximetry after walking 
for a while. Oxygen saturation will be reduced if the recipi-
ent suffers from PJP. Over a few days, PJP finally develops 
to become the symptomatic disease state with severe dyspnea 
and hypoxemia.

While the serum level of lactate dehydrogenase (LDH) 
is significantly higher in PJP patients, the C-reactive protein 
(CRP) is not elevated.70 Thus, PJPs in transplant recipients are 
sometimes misdiagnosed as a common cold in the early stages 
because of the low CRP level and suppressed fever.

Diagnosis
In addition to clinical symptoms and imaging (X-ray and 
high-resolution computed tomography [HRCT] scans), Diff-
Quik (DQ  ; a method for staining bronchoalveolar lavage fluid 
[BALF]), polymerase chain reaction (PCR) or loop-mediated 
isothermal amplification (LAMP) method from BALF, and 
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serum (1–3)-beta-d-glucan (BDG) are useful for diagnosing 
non-HIV PJP.

Microbiological diagnosis. Staining. It is not possible to 
culture P. jirovecii in vitro.71 Identification of P. jirovecii from 
oral wash, sputum, BALF, or lung tissue is needed for the 
definitive diagnosis of PJP. Sensitivity for diagnosing PJP is 
reduced significantly with the use of oral wash and sputum. 
Transbronchoscopic or surgical lung biopsy is rarely needed.72 
Therefore, if the patient’s respiratory status is good, bron-
choscopy with BALF should be performed for all suspected 
transplant recipients.

During infection, the amount of trophic forms is ten 
times more dominant than that of the cyst form.73 However, 
trophic forms are small (1–4 µm in diameter) compared to the 
larger cysts (8 µm in diameter),19 and can only be stained by 
DQ , a modified Wright-Giemsa stain, or by an immunoen-
zyme assay.74 DQ is inexpensive and takes only several min-
utes to prepare. It can also detect both trophic and cyst forms, 
but this stain requires a high level of technical expertise.74 
Cysts can be stained with Grocott silver, which is more rapid 
than Gomori methenamine silver, cresyl echt violet, toluid-
ine blue O, or calcofluor-white.19,74 These staining techniques 
do not detect the trophic forms.75,76 Compared to DQ , these 
stains do not require special skills for the finding of cysts. If a 
laboratory does not have sufficient technical expertise for per-
forming DQ , the Grocott silver stain can be useful for identi-
fying P. jirovecii. However, the most commonly used Grocott 
silver stain is not suitable for making rapid diagnoses. PJP 
is associated with significantly lower numbers of P.  jirovecii 
and substantially higher numbers of neutrophils in the lavage 
fluid samples of non-HIV patients compared to that of HIV 
patients.77 It is therefore very difficult to identify P.  jirovecii 
with staining of samples from non-HIV PJP patients. Even 
if the trophic or cyst forms cannot be detected, non-HIV PJP 
cannot be ruled out. Immunofluorescent staining techniques 
are also available, which could provide increased specificity 
and sensitivity.78

Genetic testing (PCR and LAMP). PCR with oral-
wash, sputum, and BALF samples has a high sensitivity 
and specificity for the detection of the organism, but lacks 
sensitivity in diagnosing PJP because of the fact that PCR 
cannot differentiate colonization from infection. In the diag-
nosis of PJP in HIV patients, PCR sensitivity was 72%–100% 
and specificity was 86%–100%.50 In the diagnosis of PJP in 
non-HIV patients, sensitivity was 87.2% and specificity was 
92.2%, with a positive predictive value (PPV) of 51.5% and 
a negative predictive value (NPV) of 98.7%.79 However, 
PCR is helpful in excluding PJP in HIV-negative patients.79 
Clinical judgment is essential in cases of negative staining 
and positive PCR. Treatment for PJP should be initiated if 
clinical suspicion is high,19 and PCR may be useful in such 
patients.80 By using quantitative real-time PCR other than 
the aforementioned conventional PCR method, several stud-
ies have shown that the copy number of a specific P. jirovecii 

gene is significantly higher in patients with PJP than in 
colonized patients, thereby differentiating colonization from 
infection.81–87 But this is far from being a standardized test-
ing method as there are many target genes and no cutoff value 
for the copy number.

Recently, a new specific DNA amplification technique 
called LAMP was developed.88 In non-HIV PJP patients, 
Pneumocystis LAMP showed higher sensitivity (95.4%) and 
PPV (91.3%) than conventional PCR showed in the diagnosis 
of PJP.89 Advantages of the LAMP method are that it is faster 
and easier than the PCR-based method.90

Serological diagnosis. Beta-D-glucan. BDG is a major 
component of many fungal cell walls, excluding Zygomycetes 
and Cryptococcus neoformans.91,92 The measurement of BDG in 
sera was first established in 1995 in Japan, and then in 2004 in 
the USA and has been recommended as one of the indirect 
mycological criteria for the diagnosis of invasive fungal infec-
tion (IFI).93 It was first reported that BDG was in the cyst 
wall of Pneumocystis in 1989,94 which affected how Pneumo-
cystis was later found to be a fungus. As a practical serological 
marker, BDG was first found to be detectable in the sera of 
patients with PJP in 1996.95

There are three measurements with different cutoff values, 
which are the Fungitell, Fungitec G test MK, and Wako.96

The plasma cutoff values for MK and Wako are 20 and 
11 pg/mL, respectively.97,98 However, these data were estab-
lished with aspergillosis or candidiasis as the IFI and did not 
include PJP. The diagnostic cutoff values for BDG in PJP that 
was diagnosed by the identification of P. jirovecii in BALF were 
31.1 pg/mL (in both HIV PJP and non-HIV PJP patients)70 
and 23.2 pg/mL (HIV PJP).99 From a recent meta-analysis, 
the sensitivity and specificity of BDG were 94.8% and 86.3%, 
respectively.100 These data did not depend on HIV infection, 
so it indicates that serum BDG may be a helpful marker for 
the diagnosis of non-HIV PJP. Given this excellent sensitiv-
ity, PJP can be ruled out if the BDG is negative.

Of the various serum markers tested, it has also been 
reported that the serum BDG level is the best test for PJP 
diagnosis.70,101–104 While its specificity is very good, it is 
important to consider the factors associated with false-positive 
results if the BDG result is positive, such as the use of intra-
venous (IV) amoxicillin–clavulanic acid, treatment with 
immunological preparations (albumins or globulins), use 
of cellulose membranes and filters made from cellulose in 
hemodialysis, and use of cotton gauze swabs/packs/pads and 
sponges during surgery.105 It is also important to exclude 
other IFI coinfections.100 BDG does not correlate with dis-
ease severity70 and may not be suitable for monitoring the 
response to treatment.

Imaging. A typical radiographic feature of PJP is the 
presence of bilateral peripheral interstitial infiltrates.106 HRCT 
scans are more sensitive than chest radiography and may show 
ground glass opacities with sparing of the lung periphery, 
although these abnormalities are nonspecific.
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Treatment
Antipneumocystis agents. TMP-SMX is the first choice 

for the treatment of PJP in non-HIV as well as HIV 
patients.54,107 No agent has been shown to have outcomes 
superior to TMP-SMX. It has excellent oral bioavailability, 
but if the general condition is poor, IV administration is used 
to achieve comparable serum levels as oral (PO) administra-
tion. The standard dose of TMP-SMX is TMP 15–20 mg/
kg/day + SMX 75–100 mg/kg/day IV in divided doses every 
six to eight hours, according to the renal function, and ade-
quate hydration should be maintained. Because TMP inhib-
its excretion of creatinine in the renal tubule, elevated serum 
creatinine levels have been observed.108 During the adminis-
tration of standard-dose TMP-SMX, cell counts, creatinine, 
and potassium should be monitored. Although increases in 
serum potassium and gastrointestinal disorders are seen clini-
cally for some transplant recipients with PJP, most recipients 
can use TMP-SMX.

Twenty-one days of treatment with TMP 15–20 mg/kg/
day + SMX 75–100 mg/kg/day for HIV PJP have not been 
evaluated by randomized controlled trials (RCTs). Because 
P. jirovecii cannot be cultured, the minimum inhibitory con-
centration (MIC) against it is not known. One retrospective 
study suggests that TMP 10 mg/kg/day + SMX 50 mg/kg/day 
for HIV PJP has comparable efficacy to treatment with the 
low dose.109

Atovaquone is a second-line agent, although it is used 
only for mild-to-moderate PJP. As absorption of atovaquone 
decreases under fasting conditions or with diarrhea, admin-
istration after meals is needed. Therefore, it is difficult to use 
in severe cases of PJP that require care in the intensive care 
unit (ICU). IV pentamidine is a third-line agent, but it is also 
highly toxic. Its side effects include pancreatitis, hypoglyce-
mia, hyperglycemia, bone marrow suppression, renal failure, 
and electrolyte disturbances.107

The optimal duration of therapy for PJP in HIV-negative 
patients has not been fully studied. Owing to the low num-
ber of organisms and fast clinical progression, antimicrobial 
therapy is needed for at least 14 days. Therapy for severe PJP 
may be required for 21 days, as is the case for HIV patients.110 
There are no data that verify whether immunosuppression 
should be continued, reduced, or stopped during the treat-
ment of PJP. However, as a general measure, reduction should 
be encouraged.111

Glucocorticoids. Adjunctive glucocorticoids are rec-
ommended in HIV patients with moderate or severe PJP.110 
Prednisone 40  mg is administered PO twice daily for five 
days, followed by 40  mg PO once daily for five days, and 
then 20 mg PO once daily for 11 days. On the other hand, 
no clear evidence regarding efficacy has been shown for 
adjunctive glucocorticoid therapy in the treatment of PJP 
in non-HIV patients. Retrospective studies with adjunctive 
glucocorticoid use in non-HIV PJP showed either a bene-
fit112–114 or no impact.114–117 Furthermore, the dose, duration, 

and timing of steroids have not been fully studied in cases 
of transplantation.

Recently published guidelines of the American Society 
of Transplantation (AST) suggest that prednisone 40–60 mg 
should be administered PO twice daily and tapered after 
five to seven days over a period of one to two weeks.107 
While this is a high initial dose, it is tapered early to avoid 
over-immunosuppression. Given the fulminant course and 
poor prognosis of non-HIV PJP, adjunctive glucocorticoid 
therapy might be required. Prospective investigations on the 
role of adjunctive glucocorticoid therapy in non-HIV patients 
are needed.118

Glucocorticoids are best administered within 72  hours 
in the setting of hypoxia (PaO2  ,70  mmHg). In HIV 
patients, glucocorticoids should be administered along 
with TMP-SMX.

Non-HIV PJP should be treated as soon as possible in all 
suspected recipients without a definitive diagnosis, since the 
onset is abrupt and prognosis is poor. In most cases, TMP-SMX 
and adjunctive glucocorticoids are administered first followed 
by bronchoscopy. In the hospital, pulse therapy of methylpred-
nisolone sodium succinate injection (500 mg for three consecu-
tive days) is performed for severe PJP requiring ICU care.

Reduction of immunosuppression. The overall net state 
of immunosuppression is the main contributor to PJP, and 
reduction in immunosuppression is a common initial approach 
to PJP management.62,63 But the optimal strategy for immuno-
suppression reduction is uncertain. We discontinue MMF as 
antimetabolite for 14–21 days with adjunctive glucocorticoids. 
When PJP patients requiring ICU care need saving their lives 
rather than maintaining grafts function, we discontinue tem-
porarily both MMF and CNIs with pulse therapy of methyl-
prednisolone sodium succinate injection.

Prophylaxis
TMP-SMX is also the first drug of choice for PJP prophylaxis 
in SOT.119 TMP-SMX prophylaxis also prevents infections 
involving Toxoplasma and Listeria species, which are respi-
ratory, urinary, and GI pathogens. Therefore, TMP-SMX 
reduces urinary tract infections and possibly GI and respira-
tory infections in transplant patients. Side effects, which are 
often dose-related, are less common with the prophylactic 
dose. Trimethoprim inhibits potassium and creatinine secre-
tion in the renal tubules, resulting in hyperkalemia and an 
elevation in serum creatinine.107 These laboratory abnormali-
ties are emphasized when graft function deteriorates. Break-
through PJP infection with TMP-SMX prophylaxis is rare.

The second treatment option is dapsone,107 while atova
quone (1500 mg PO qd) and aerosolized pentamidine (300 mg 
administered through aerosolized nebulizer q four weeks) 
are other options for prophylaxis. But this recommendation 
is based on HIV-positive patients.120 The dose of TMP-
SMX can be 80  mg TMP/400  mg SMX daily or 160  mg 
TMP/800 mg SMX PO (single or double strength) daily or 
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thrice weekly,107 which is corrected according to graft func-
tion. However, these doses were not determined by RCTs, and 
to date, no universal consensus exists on the optimal dura-
tion of prophylaxis. For example, the European Renal Trans-
plant Guidelines recommend PJP prophylaxis for at least four 
months after transplantation,121 whereas the AST recommends 
6–12 months.107 Meanwhile, the Kidney Disease Improving 
Global Outcomes guideline recommends three to six months 
after transplantation.122 The duration of PJP prophylaxis 
depends on each transplant center. From a survey of US renal 
transplant centers, 84% of centers use PJP prophylaxis while 
16% do not. The duration of prophylaxis also varies widely, 
with 43% of centers using prophylaxis for six months or less 
and 22% maintaining prophylaxis for longer than a year.123 In 
Japan, some centers do not use PJP prophylaxis, although on 
the other hand, some large centers that have experienced the 
painful experience of an outbreak use lifelong PJP prophylaxis 
in their lung and small bowel transplant recipients. There is no 
accepted answer, and a unit subject to an epidemic needs to 
be quick and effective if they are to avoid deaths and graft 
losses. In addition, lifelong prophylaxis may be indicated for 
all transplant recipients with a history of prior PJP infection 
(Grade III; Opinions of respected authorities).107 It is impos-
sible to prevent colonization with TMP-SMX,6,124 and fur-
thermore, TMP-SMX cannot clear P. jirovecii colonization.24 
Though these critical points are only supported by clinical 
data, use of pneumocystis prophylaxis was not related to the 
risk of colonization in PJP of KT24 and HIV.124

Colonization of P. jirovecii is detected in 18.6% of kidney 
transplant recipients.125 Colonization can be cleared by sup-
pressed macrophages caused by immunosuppression. TMP-
SMX is an antiprotozoal agent and not an antifungal agent. 
While trophic forms (the most abundant of all Pneumocystis 
life cycle stages) are sensitive to TMP-SMX, cysts (which 
may be the major form in colonization) are not sensitive 
to TMP-SMX.

Outcome
The outcome of PJP in non-HIV patients is generally poorer 
than that in HIV patients.126 The most likely explanation is 
that the host inflammatory response is assumed to be more 
intense in non-HIV patients with PJP despite the lower num-
ber of organisms present, thereby contributing to severe lung 
injury. BALF neutrophilia,127 high D(A-a)O2, combined 
bacteremia, increased BUN, and preexisting lung disease128 
are all independent factors of a poor prognosis in non-HIV 
PJP. Because of the rapid progression in clinical worsening, 
early diagnosis and treatment are required. Starting treatment 
within seven days after onset is important because intubation 
and mechanical ventilation may be avoided.129 Furthermore, 
diagnosis and treatment within three days are crucial for 
the survival of PJP patients without HIV infection.130 The 
outcome of PJP is inversely correlated with the intensity of 
immunosuppression. Mortality is 6.6% in HIV patients and 

39% in non-HIV patients.131 Mortality is high (32%–33%) 
in PJP complicated with connective tissue disease where the 
immunological status may not be as severely impaired as in 
transplant recipients or HIV patients.132,133

PJP infection leads to increased graft and patient loss 
in renal transplantation.55 Mortality in the absence of TMP-
SMX prophylaxis is 5%–33% in the current immunosuppres-
sive era of renal transplantation.4,6,7,24,41,67,68,134–136

Infection Control when an Outbreak has Occurred
It is important to control PJP when it occurs as a nosocomial 
infection. In particular, since there is a larger number of kidney 
transplant recipients compared to other types of organ trans-
plantations, kidney transplant recipients have a greater chance 
of sharing time and space in outpatient clinics. There are three 
important things that PJP patients, other recipients, and med-
ical staff can do during an outbreak, as described below.

Treat PJP patients so as not to transmit P. jirovecii to 
others (other recipients and medical staff). In the outpatient 
setting. Among outpatients, those with a suspected or con-
firmed PJP diagnosis should wear a mask as soon as possible 
when sharing a waiting room with other transplant recipi-
ents.134 Close contact should be avoided. PJP therapy should 
be started as soon as possible in recipients for two reasons. 
First, PJP in transplant recipients present with an abrupt 
onset of respiratory distress, unlike the clinical course in HIV 
patients, and late diagnosis and treatment may increase the 
risk of respiratory failure and death. If PJP patients in need 
of hospitalization need to wait for a hospital bed, corticoster-
oids should be administered along with TMP-SMX at least 
once in the outpatient setting. Second, a delay in diagnosis 
and treatment may lead to an increase in the number of other 
PJP patients as a result of direct transmission. Even if a direct 
transmission does not occur, a delay in diagnosis and treat-
ment may lead to an increase in reservoir patients, who may 
pose a risk of a later PJP or may transmit the infection to 
other recipients.

For hospitalized PJP patients. The transmission of 
P. jirovecii can be the highest from before the onset of clini-
cal symptoms of PJP until the end of the first week of anti-
Pneumocystis therapy.67 Hospitalized patients with PJP should 
be managed with standard precautions. Certain authorities 
recommend that they should not be placed in the same room 
as immunocompromised patients, including other transplant 
recipients.137 However, this recommendation is based on ani-
mal studies and anecdotal human experience, and data to sup-
port this recommendation as a standard practice are lacking. 
In the absence of an isolation bed, prophylaxis with TMP-
SMX for all hospitalized immunocompromised patients in 
the same ward should be considered before the admission of 
PJP patients.

Protect other transplant recipients from P. jirovecii trans-
mission in the outpatient setting. For all transplant recipients 
that share a waiting room with a PJP patient, starting transient 
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prophylaxis with TMP-SMX for six months may be effective to 
avoid repeated outbreaks by infectious asymptomatic carriers.7 
To control a PJP outbreak, all recipients should be treated at the 
same time with transient prophylaxis using TMP-SMX. Some 
have compliance to P. jirovecii prophylaxis. Although TMP-
SMX cannot clear colonization, it can control the onset of PJP 
derived from colonization.24,124 The estimated median incuba-
tion period from the transmission of P. jirovecii to the onset of 
PJP is 53 days (range 7–188 days),7 which means that coloniza-
tion might be cleared by suppressed macrophages in about six 
months. The outbreak of PJP as well as any subsequent sporadic 
PJP can be terminated with six months of TMP-SMX prophy-
laxis in all recipients without compliance. Transplant recipients 
that cannot use TMP-SMX because of pregnancy may need to 
wear a mask in the hospital and visit outpatient clinic at a time 
with the fewest visits by other transplant recipients.

Education of medical staff in transplant centers. Medi-
cal staff such as doctors, nurses, and medical clerks who are 
infected by PJP patients or from environmental exposure can 
act as a transient reservoir. Coughing or sneezing by reser-
voir individuals can lead to the development of new PJP in 
transplant recipients, although this has only been shown in 
mice.46,47 Nevertheless, medical staff who have close contact 
with recipients when conducting conversations may need a 
mask so as not to become a reservoir.

PJPs in transplant recipients are sometimes misdiagnosed 
as a common cold in the early stages because of the low CRP 
level and suppressed fever. Because of the cold-like symptoms, 
the patient might only consult the nurse by phone rather than a 
doctor. Symptoms of PJP in kidney transplant recipients should 
be well known to nurses or medical clerks in addition to doc-
tors so that PJPs are not missed, especially during an outbreak. 
Nurses or medical clerks who receive the first call from suspected 
PJP transplant recipients should recommend the patients to visit 
the hospital with a mask and avoid waiting in the usual room or 
outpatient clinic visit time (isolation by time and space).

Conclusion and Perspective
Recent progress in immunosuppressive agents has resulted in 
long-term allograft survival and patient survival. At the same 
time, however, there have also been unwanted consequences 
from immunosuppression. The CD4 T-cell count is a useful 
marker that can be used to classify the risk of developing PJP 
in HIV patients,138 while on the other hand, there are no use-
ful markers for monitoring the immunological status of kid-
ney transplant recipients.

While TMP-SMX is the first choice for PJP prophylaxis, 
it is impossible to prevent colonization with TMP-SMX,6,124 
and furthermore, TMP-SMX cannot clear cysts that are 
dominant in colonization.24 However, it can control the 
development of PJP by preventing its onset. Suppression of 
macrophages by high-level immunosuppression may lead to 
reduced eradication rate of colonization. In addition, because 
of the large number of kidney transplant recipients, there are 

unfortunately a lot of opportunities for recipients to be exposed 
to each other at the same time and space. Once a PJP cluster 
enters these populations that are under uniform immunosup-
pression, a PJP outbreak may occur easily.

To control a PJP outbreak, there are three quick actions, 
including by PJP patients, other recipients, and medical staff 
of transplant centers. Breakthrough PJP infection with TMP-
SMX prophylaxis is rare. Though the cost of PJP prophylaxis and 
drug resistance is low, hyperkalemia is the concern of lifelong 
prophylaxis in kidney transplant recipients when graft func-
tion deteriorates. Furthermore, the dose of TMP-SMX for PJP 
prophylaxis has not been determined by RCTs. In the future, 
even in kidney transplant recipients, lifelong prophylaxis with a 
lower dose of TMP-SMX as PJP prophylaxis may be required. 
Since P. jirovecii can be cultured from the recent report,14 the 
MIC of TMP-SMX against P. jirovecii may become clear. This 
finding also enables microbiological studies on how P. jirovecii 
form in colonized recipients or in environment and how long 
P. jirovecii can survive outside the human host.
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