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Abstract

Heme is a cofactor in proteins that function in almost all sub-cellular compartments and in many diverse biological
processes. Heme is produced by a conserved biosynthetic pathway that is highly regulated to prevent the accumulation of
heme—a cytotoxic, hydrophobic tetrapyrrole. Caenorhabditis elegans and related parasitic nematodes do not synthesize
heme, but instead require environmental heme to grow and develop. Heme homeostasis in these auxotrophs is, therefore,
regulated in accordance with available dietary heme. We have capitalized on this auxotrophy in C. elegans to study gene
expression changes associated with precisely controlled dietary heme concentrations. RNA was isolated from cultures
containing 4, 20, or 500 mM heme; derived cDNA probes were hybridized to Affymetrix C. elegans expression arrays. We
identified 288 heme-responsive genes (hrgs) that were differentially expressed under these conditions. Of these genes, 42%
had putative homologs in humans, while genomes of medically relevant heme auxotrophs revealed homologs for 12% in
both Trypanosoma and Leishmania and 24% in parasitic nematodes. Depletion of each of the 288 hrgs by RNA–mediated
interference (RNAi) in a transgenic heme-sensor worm strain identified six genes that regulated heme homeostasis. In
addition, seven membrane-spanning transporters involved in heme uptake were identified by RNAi knockdown studies
using a toxic heme analog. Comparison of genes that were positive in both of the RNAi screens resulted in the identification
of three genes in common that were vital for organismal heme homeostasis in C. elegans. Collectively, our results provide a
catalog of genes that are essential for metazoan heme homeostasis and demonstrate the power of C. elegans as a genetic
animal model to dissect the regulatory circuits which mediate heme trafficking in both vertebrate hosts and their parasites,
which depend on environmental heme for survival.
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Introduction

From a nutritional perspective, heme is a readily bioavailable

source of iron for human consumption [1,2]. From a cellular

perspective, heme is an iron-containing porphyrin which serves as a

prosthetic group in diverse biological processes ranging from gas-

sensing to microRNA processing [3]. In most eukaryotes, heme is

synthesized in the mitochondrial matrix by a defined biosynthetic

pathway and subsequently exported as needed for heme-containing

proteins that are found in the cytoplasm and membrane-bound

organelles [3]. Given the hydrophobicity and cytotoxicity associated

with free heme, it is likely that specific intracellular transport

pathways exist to deliver heme for assimilation into hemoproteins

found in various subcellular compartments [4].

Although the pathway and intermediates for heme biosynthesis

and degradation have been well defined, the intracellular networks

that mediate heme homeostasis in eukaryotes remain poorly

understood [4]. Heme transport molecules in animals are likely to

be divergent from bacterial and yeast proteins at the genetic level;

bacterial and yeast heme-binding proteins have no obvious

orthologs in mammals [5–8]. This is demonstrated by the

identification of a heme exporter, the feline leukemia virus subgroup

C cellular receptor (FLVCR), which does not show any obvious

similarities to known bacterial heme transport proteins [9,10].

Genetic ablation of FLVCR in mice resulted in severe macrocytic

anemia with proerythroblast maturation arrest. That a viral

receptor could be a potential heme exporter in developing erythroid

cells underscores the divergence among heme transport proteins

and emphasizes the importance of implementing unbiased genetic

approaches to elucidate the heme homeostasis pathways in tractable

model systems.

Progress in understanding heme homeostasis in most eukaryotic

systems is hampered by the inability to separate heme biosynthesis

from downstream intracellular transport pathways. To circumvent
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this issue, we established the genetically tractable nematode

Caenorhabditis elegans as an animal model ideally suited in which to

conduct heme studies. We have previously demonstrated that this

roundworm does not synthesize heme but instead relies on

environmental heme for survival [11]. Moreover, analyses of

available genomes from related parasitic nematodes suggest that

these helminths are also heme auxotrophs [11]. The C. elegans

genome encodes a repertoire of hemoproteins that have vertebrate

orthologs. It is likely that the pathways for heme trafficking and

incorporation are conserved in C. elegans, parasitic worms, and

vertebrates [4]. The validity of the C. elegans model system was

recently underscored by the discovery of HRG-1 proteins that

transport heme [12]. We identified C. elegans hrg-1 and its paralog

hrg-4 from microarray experiments as genes that were highly

upregulated by low heme [12]. Expression of these genes and their

human homolog, HRG-1, in Xenopus oocytes resulted in strong

heme-induced electrophysiological currents – an indication that

the corresponding proteins were heme transporters. Additionally,

depletion of hrg-1 in worms led to aberrant heme homeostasis.

Transient knockdown of hrg-1 in zebrafish caused severe

impairment in erythropoiesis along with brain and skeletal defects;

these phenotypes were fully rescued by worm hrg-1 [12].

Collectively, these studies further validated the advantage of C.

elegans as a model par excellence to dissect the pathways responsible

for heme transport and homeostasis in mammals. Moreover, C.

elegans bridges the evolutionary divide to heme auxotrophic

parasitic species and provides insight into helminthic-specific

vulnerabilities in heme uptake and utilization that can be exploited

for drug design [13,14].

The current study specifically seeks to explain and draw

conclusions from the genomic data that was generated from our

microarray analysis. This expression array analysis using C. elegans

wild-type worms grown in an axenic liquid medium at three

different concentrations of heme was performed as a first step in the

genome-wide identification of genes involved in heme homeostasis.

Our results have identified several hundred heme-responsive genes (hrgs),

some of which are evolutionarily conserved across metazoa while

others are found only in nematodes. We anticipate that results from

our genomic studies may be universally applicable and result in the

discovery of heme homeostasis pathways in other metazoans.

Results

Strategy to profile genes that are transcriptionally
regulated by heme in C. elegans

C. elegans lacks the highly conserved genes of heme biosynthesis but

acquires heme from the environment for growth and development

[11]. Worms cultured in axenic liquid mCeHR-2 medium in the

presence of different amounts of heme revealed a characteristic

growth curve [11]. The optimal concentration for worm growth and

reproduction was found to be 20 mM heme, although animals grew

and reproduced at concentrations ranging from $1.5 mM to

,800 mM heme. Worms grown in the absence of exogenous heme

arrested at the L4 larval stage, whereas concentrations of heme

$800 mM caused the worms to arrest at the L2/L3 larval stages,

possibly due to heme cytotoxicity. These results are consistent with

metabolic labelling experiments in which the fluorescent heme

analog, zinc mesoporphyrin IX (ZnMP), was used to demonstrate

that the heme uptake system is regulated in C. elegans [12].

To determine if there were transcriptionally regulated compo-

nents of heme uptake, wild-type N2 worms were grown at 4, 20, or

500 mM heme in axenic liquid mCeHR-2 medium; 20 mM served

as the reference sample. We chose 4 and 500 mM heme because

these concentrations were on either side of the biphasic growth

curve. More importantly, although worms grown at these heme

concentrations exhibited a 16 h growth delay, they were

morphologically indistinguishable from worms grown at 20 mM

heme. In order to reduce variability due to carryover of maternal

heme from the P0 hermaphrodites, worms were grown in their

respective heme concentrations for two successive generations

(Figure 1). Synchronized, late L4 larvae from the F2 generation

were harvested for RNA isolation, and corresponding cDNA

probes were generated and hybridized to Affymetrix C. elegans

expression microarray chips. Three biological replicates were

prepared for each heme concentration.

Identification of hrgs in C. elegans
Statistical analyses of the microarray data were initially

performed using the Affymetrix MAS 5.0 suite software (see

Materials and Methods). Of the 22,627 probe sets, 835 probe sets

revealed changes at either 4 or 500 mM heme compared to the

control data from 20 mM heme. We identified 288 genes with a

$1.6-fold change in expression. To improve and augment these

analyses, we also subjected the microarray results to the Robust

Multichip Average method (RMA from R package) with the goal

of combining the results with those obtained by MAS 5.0. The

RMA analysis (minimum change in expression $1.2 fold)

identified an additional 82 hrgs. The MAS 5.0 and RMA analyses

yielded a total of 370 candidate genes. Subsequently, duplicate

genes were eliminated, the minimum cut-off value for RMA

analysis was increased to $1.6 fold, and the average of the fold-

change values was calculated for the replicates. This resulted in a

list of candidate genes consisting of 266 genes identified using

MAS 5.0 and 22 genes selected using the RMA method. The

expression of these 288 genes, eight of which were previously

identified as germline genes [15], revealed a $1.6-fold change at

either 4 or 500 mM heme compared to the 20 mM controls.

Consequently, all 288 genes were classified as hrgs (Table S1).

Normalized signal intensity values can be graphed to visualize

the quality of microarray data generated by each replicate

(Figure 2A). The value at which the colored lines cross each thin

vertical line is the value of the normalized signal for that replicate.

Author Summary

Heme is an iron-containing cofactor for proteins involved
in many critical cellular processes. However, free heme is
toxic to cells, suggesting that heme synthesis, acquisition,
and transport is highly regulated. Efforts to understand
heme trafficking in multicellular organisms have failed
primarily due to the inability to separate the processes of
endogenous heme synthesis from heme uptake and
transport. Caenorhabditis elegans is unique among model
organisms because it cannot synthesize heme but instead
eats environmental heme to grow and develop normally.
Thus, worms are an ideal genetic animal model to study
heme homeostasis. This work identifies a novel list of 288
heme-responsive genes (hrgs) in C. elegans and a number of
related genes in humans and medically relevant parasites.
Knocking down the function of each of these hrgs reveals
roles for several in heme uptake, transport, and detection
within the organism. Our study provides insights into
metazoan regulation of organismal heme homeostasis.
The identification of parasite-specific hrg homologs may
permit the selective design and screening of drugs that
specifically target heme uptake pathways in parasites
without affecting the host. Thus, this work has therapeutic
implications for the treatment of human iron deficiency,
one of the top ten mortality factors world-wide.

Genomic Specification of Heme in C. elegans

PLoS Genetics | www.plosgenetics.org 2 July 2010 | Volume 6 | Issue 7 | e1001044



Accurate replicates should have nearly horizontal lines (all values

approximately equal) within each condition that may then

decrease or increase in the next condition if there is a change.

In this experiment, analysis of each of the 288 hrgs revealed that

individual biological replicates had nearly equal values with little

variation within a particular heme concentration, indicating that

changes in heme-dependent gene expression were uniform. A

principal components analysis (PCA) for the hrgs showed that, with

one exception, the quality of the microarray data was consistent

across biological replicates for all three heme concentrations. The

data obtained from one of the 4 mM heme replicates showed an

inconsistent global gene expression pattern when compared to the

other two replicates and was, therefore, excluded from further

analysis (Figure S1).

The 288 hrgs were assigned to one of eight categories based on

whether the gene expression was upregulated, downregulated,

or unchanged in samples obtained from worms grown in 4 or

500 mM heme and compared to the 20 mM reference samples

(Figure 3). Eighty genes were upregulated at 4 mM heme (Table

S2). Seventy-five genes were upregulated at 500 mM heme

(Table S3). Quantitative real-time PCR analysis (qRT-PCR) of

three representative genes from each of the eight categories was

performed to ensure that the changes observed in the

microarray were reproducible. As determined by the signifi-

cance (P,0.0001) and the Pearson’s correlation coefficient, the

qRT-PCR confirmed that the changes observed with the

microarray results were consistent and, therefore, reliable

(Figure 2B; Table S4).

Figure 1. Profiling strategy for analysis of heme-responsive genes. Worms were grown in axenic liquid mCeHR-2 medium containing 4, 20,
or 500 mM hemin chloride for two synchronized generations, and late L4 larvae were harvested to extract RNA for microarray analyses. cDNA was
synthesized by reverse transcription and hybridized to Affymetrix C. elegans Genome Arrays containing 22,627 probe sets per chip. Affymetrix MAS
5.0 software and RMA were utilized to analyze the data. Data from worms grown at 4 and 500 mM heme were compared to control data from worms
grown at 20 mM heme. The expression of 288 genes was either increased or decreased in response to heme by at least 1.6 fold.
doi:10.1371/journal.pgen.1001044.g001
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Comparative genome analyses of hrgs in vertebrates and
parasites

Since identification of the hrgs common to both C. elegans and

mammals might provide unique insights into the evolutionary

conservation of heme homeostasis pathways in metazoans, we

performed reciprocal BLAST searches to identify putative human

orthologs of each of the 288 genes (Figure 3). Searches using

protein sequences revealed that there were 121 putative human

orthologs (minimum E-value = 1024) of C. elegans hrgs. The hrgs

with human homologs were present among those upregulated in

both extreme heme concentrations. Forty-four were upregulated

at 4 mM heme and 42 were upregulated at 500 mM heme, while

28 were downregulated at 4 mM heme and 36 were downregu-

lated at 500 mM heme (Table S1).

We have previously demonstrated by biochemical enzyme assays

and genomic analyses that several of the parasitic nematodes with

sequenced genomes lack the genes for heme synthesis enzymes and,

therefore, likely rely on environmental heme to sustain growth and

development [11]. Similarly, the genomes of Trypanosoma and

Leishmania appear to lack most of the genes for heme synthesis

[16,17]. This suggests that these protozoa may also acquire heme

from their parasitized host. Figure 3 identifies the hrg homologs in

Trypanosoma brucei, Trypanosoma cruzi, and Leishmania major. Of the 288

hrgs, only 12 genes were exclusive to these heme auxotrophs. Thirty-

seven genes had homologs only in humans, and 84 genes were

found in both human and parasitic genomes (Figure 4A). These

results indicate that heme-regulated genes in C. elegans may have

commonality with humans that are heme prototrophs and

protozoan parasites which rely on environmental heme.

A small percentage of the 288 hrgs had homologs in parasitic

nematodes (Figure 4B). To date, draft genomes of several parasitic

nematodes have become available [18–21], in addition to the

partial genomes available for over 30 parasitic species. For a

summary of available genomes, see [22]. Using all available

sequence data divided into taxonomically distinct clades [23], we

identified homologs for 62 of the 288 hrgs in the clade V nematodes

(C. elegans belongs to clade V) and homologs to only 10 genes in the

clade I nematodes (where the basal nematode, the zoonotic

parasite Trichinella spiralis, resides). While the number of identified

putative orthologs was much higher for the crown lineages than in

the basal nematodes that reside at the root of the nematode

evolutionary tree, two of the eight categories (categories 1 and 3)

had no homologs in any of the parasitic species. Categories 1 and 3

are represented by 13 and 10 sequences in C. elegans, respectively.

hrgs are enriched in regulators for development- and
transport-related processes

Gene ontology (GO) analysis [24] indicated that the hrgs

identified from our microarray study were involved in processes

as varied as embryonic development, electron transport, lipid

Figure 2. Confirmation of quality of microarray results. (A) Gene expression profile for the 288 hrgs identified from the microarrays. Changes
in expression for the 288 hrgs are plotted for each biological replicate (thin vertical lines) of the three growth conditions with respect to heme
concentration (4 mM, 20 mM, and 500 mM) as visualized with GeneSpring software (v7.2). Signal intensity values for genes in each biological replicate
and each growth condition (as indicated) were normalized to the median value across the array after setting values ,0.01 to 0.01 using GeneSpring
software and the resulting values plotted on a log10 scale. Values for a single gene are connected by lines with the slope indicating any change in
value across samples; line color coding reflects direction of change relative to the mean (as indicated by the color bar above the graph) and hue
intensity reflecting statistical confidence in the value (confidence increases with increased brightness). (B) Validation of microarray results. Microarray
data were verified by qRT-PCR of RNA from 24 genes of worms grown in mCeHR-2 medium supplemented with 4, 20, or 500 mM heme. RNA from 20
mM heme was used as the reference sample. Data were compared to internal GAPDH (gpd-2) control and the fold change was obtained using the
2 (-DDCt) method. The significance was determined using GraphPad Instat (v. 3.06). The values for both the qRT-PCR analysis and the microarray
experiment are provided in Table S4.
doi:10.1371/journal.pgen.1001044.g002

Figure 3. Heme-dependent changes in gene expression. 1The 288 hrgs were arranged into eight categories based on whether they were up-
regulated, down-regulated, or unchanged at 4 mM or 500 mM heme when compared to control data from 20 mM heme. 2C. elegans protein sequences
for the 288 hrgs were used to perform reciprocal BLAST searches to identify putative homologs (E-value cut-off $1024) in humans and protozoans.
doi:10.1371/journal.pgen.1001044.g003

Genomic Specification of Heme in C. elegans

PLoS Genetics | www.plosgenetics.org 5 July 2010 | Volume 6 | Issue 7 | e1001044



Genomic Specification of Heme in C. elegans

PLoS Genetics | www.plosgenetics.org 6 July 2010 | Volume 6 | Issue 7 | e1001044



metabolism, and iron-sulfur cluster assembly. Of the 288 genes in

the study, 115 were annotated with a biological process (Table S5).

Using the Fisher’s exact test, a hierarchical graph was constructed

with the most significant GO terms and their associated parent

terms [25]. Highly significant GO terms (P,0.005) associated with

the subset of genes that were upregulated at 4 mM heme were

‘embryonic development’, ‘lipid transport’, and ‘proteolysis’

(Figure 4C; Table S6); ‘responses to stress’ and environmental

stimuli’ were associated with genes that were downregulated at

4 mM heme (Figure S2 and Tables S7, S8, S9).

The Kyoto Encyclopedia of Genes and Genomes (KEGG) is

also frequently used to analyze complex microarray data and make

functional predictions [26]. Only 10 hrgs (,3%) have been

mapped to KEGG pathways (Table S10). These hits included

genes for transporters and also for metabolism of sugars, an amino

acid, and fatty acids. A majority of hrgs that we identified were

uncharacterized with no assigned biological pathway.

Genome sequencing has demonstrated that chromosomes I, II,

III, IV, and X in C. elegans each contain roughly equivalent numbers

of genes (13–17%), whereas chromosome V has the most genes

(25%) [27]. Furthermore, co-regulated or functionally related genes,

especially those essential for interactions with the environment, tend

to reside in local clusters on the chromosome [27]. We found that

Chr I and Chr III each contained just 6% of the hrgs, but 35% of all

hrgs were found on Chr V (Figure 5). Additionally, of the 129 hrgs on

Chr V, 43 genes were upregulated at 4 mM heme while 41 genes

were upregulated at 500 mM heme (Figure 6). Our analysis suggests

that the genomic distribution of hrgs was non-random, reveals gene

clustering, and indicates a common biological response to an

environmental stimulus such as heme.

Figure 4. Comparative analysis of the heme-responsive genes. (A) Summary of overlap between hrgs across human and protozoan genomes.
The sequences of proteins encoded by the 288 hrgs were obtained from Wormbase and used to search for homologs in the human genome and
genomes of Trypanosoma brucei, Tryoanosoma cruzi, and Leishmania major. (B) Orthologs of hrgs in the genomes of parasitic nematodes. The 288 C.
elegans hrg gene products were used to identify homologs in available parasitic nematode sequences. Based on 18S rRNA sequences, the phylum
Nematoda is divided in five major clades; all five clades include parasites. Homologs were identified for 69 genes using amino acid sequences (at
BLAST cut-off of 35 bits and 55% identity), and summarized on per clade level. A total of 440,012 peptides from 29 parasitic nematode species was
used (clade I 29,203 peptides; clade III 145,044; clade IVA 13,636; clade IVB 92,514 and clade V 159,615 peptides). Nematode sequences used for this
analysis are available on the parasitic nematodes website (http://www.nematode.net). (C) Gene ontology (GO) enrichment analysis of hrgs
upregulated at 4 mM heme. Genes upregulated at 4 mM heme were analyzed using the Fisher’s exact test and the topGO package from R. The most
significant GO terms and their associated parent terms were used to construct a hierarchical graph such that the specificity of the terms increased
from top to bottom. The text in each rectangle provides the GO ID and the ratio of the number of genes annotated with the GO term in the tested
subset to that in the total gene set. The shade of green of each rectangle corresponds to the significance of the GO result. The complete table of P-
values can be found in Table S6. Full GO terms are provided solely for genes with P,0.005.
doi:10.1371/journal.pgen.1001044.g004

Figure 5. Depiction of the number of hrgs found on each chromosome relative to the number of megabases in that chromosome.
The chromosome with the highest number of hrgs is chromosome V. Red and brown regions indicate that the expression of a gene was increased at
4 and 500 mM heme, respectively. Light blue and dark blue bars represent a decrease in gene expression at 4 and 500 mM heme, respectively.
doi:10.1371/journal.pgen.1001044.g005
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If the genomic distribution of hrgs is purposeful, we reasoned

that perhaps the response of the promoters of the hrgs is directed by

a cis-acting element within a cluster or elements that are common

to all hrgs in a specific category. First we analyzed Categories 1 and

2 for overrepresented transcription factor binding sites using all

sequences against a control set of random promoter sequences but

failed to identify common cis elements. We reiterated our search to

encompass the presumptive promoters ($2 kb upstream) of all 288

hrgs using TRANSFAC [28]. Once again, no common elements

were identified.

Functional validation reveals novel hrgs that are essential
for heme homeostasis in C. elegans

A number of genome-wide RNA-mediated interference (RNAi)

experiments have been performed in C. elegans, and the data from

all these experiments are available on Wormbase (http://www.

wormbase.org/). Forty-six hrgs (16%) had a reported RNAi

phenotype (Table S11). RNAi knockdown of these genes most

often resulted in developmental defects such as sterility and

embryonic lethality. These phenotypes were expected because

heme is essential for growth and reproduction of C. elegans. The

relatively small fraction of genes yielding a reported RNAi

phenotype probably reflects redundancy of function among some

of the hrgs and the limited phenotypic assays performed to date.

We have previously reported that transgenic worms expressing

the hrg-1::gfp transcriptional fusion (strain IQ6011) specifically

respond to heme in the growth medium. Thus, strain IQ6011 can

be used as a whole animal heme sensor to interrogate changes in

organismal heme homeostasis [12]. To identify the function of the

hrgs in heme homeostasis, we established a functional RNAi screen

using IQ6011 (see Materials and Methods for details). First, we

generated a sequence-confirmed hrg mini-library in the E. coli

feeding strain HT115(DE3) that expressed double-stranded RNA

(dsRNA) against each of the 288 hrgs. Second, we established a

sensitive GFP-based assay that conditionally screened for genetic

modulators of heme homeostasis simultaneously in the presence of

low (5 mM) or high (25 mM) heme. Third, we verified the positive

candidate genes with a secondary screen to eliminate false positives

using a vha-6::gfp transgenic worm that does not respond to heme

and served as a negative control. Fourth, we confirmed the

authenticity of each candidate gene by simultaneously measuring

the GFP fluorescence intensity in IQ6011 and vha-6::gfp with a

COPAS Biosort instrument that sorts each worm by its time of

flight (axial length of object) and extinction (optical density of

object).

Synchronized IQ6011 worms were grown in mCeHR-2

medium supplemented with 10 mM heme to repress GFP and

subsequently transferred to NGM agar plates for exposure to

dsRNA produced by E. coli grown either in the presence of 5 mM

or 25 mM heme on NGM agar plates. These experiments were

performed in duplicate, and GFP levels and patterns in worms fed

bacteria expressing each of the 288 hrgs were analyzed by eye.

RNAi depletion of the 288 hrgs resulted in the identification of 32

genes that specifically upregulated or downregulated GFP

expression in the IQ6011 heme-sensor strain but not in the vha-

6::gfp control strain. These 32 genes were selected for further

analysis by the COPAS BioSort. We identified six hrgs which

caused either a two-fold increase or a two-fold decrease in GFP

expression, (Figure 7A). A significant upregulation of GFP was

observed at 5 mM when five hrgs that encoded either putative

membrane-spanning proteins (F36H1.5/HRG-4, F14F4.3/MRP-

5, F58G6.3/CTR-1, and F22B5.4/unnamed protein) or a putative

lysosomal cysteine protease (F32H5.1/cathepsin-L) were depleted.

In contrast, GFP was downregulated only when F46E10.11, which

encodes an uncharacterized protein proposed to bind metals

through cysteine residues, was depleted.

To identify potential heme transporters, we identified hrgs which

encoded for proteins with transmembrane domains (TMD).

TMHMM analysis predicted that 41 of the 288 hrgs encoded for

proteins with at least one putative TMD (Table S12). Among these

41 genes were those encoding aquaglyceroporin-related proteins

(aqp-1 and aqp-8 with six and four TMD, respectively) that

transport small molecules such as glycerol, urea, and water; cyp-

33C9 (one TMD) which belongs to the cytochrome P450 family of

heme binding proteins; heme permeases (hrg-1 and hrg-4 with 4

TMD); and ABC transporters (mrp-5 and pgp-1 with $12 TMD).

To narrow the list of candidate heme transporters, we used

RNAi to deplete the 41 hrgs which encoded TMD proteins and

exposed the worms to gallium protoporphyrin IX (GaPP), a toxic

heme analog that causes severe defects in worm growth and

development [11]. We reasoned that knockdown of a putative

heme transporter in the presence of GaPP would result in a

concomitant increase in worm survival due to a reduced ability to

transport toxic GaPP [12]. We identified seven hrgs which, when

depleted by RNAi, revealed greater survival of the F1 progeny at

1.5 mM GaPP, a concentration that is lethal to wild-type worms

(Figure 7B). These seven genes included F36H1.5/hrg-4, F14F4.3/

mrp-5, K08E7.9/pgp-1, Y51A2D.4/hmit1.1, Y37A1A.2, T21C9.1,

and F22B5.4. Three genes – hrg-4, mrp-5, and F22B5.4 – were

positive in both of the RNAi screens (Figure 7C). Taken together,

our genomic studies identified a small subset of genes that are not

only regulated by heme at the mRNA level but are also essential

for heme transport and homeostasis at the functional level.

To better understand the role of hrg-4, mrp-5, and F22B5.4 in

heme homeostasis, we determined their mRNA expression in

response to heme and their ability to transport heme as a function

of ZnMP accumulation [12]. qRT-PCR results indicated that all

three genes were upregulated by heme but the magnitude of

change in mRNA expression at 4 mM heme was significantly

greater for hrg-4 than mrp-5 or F22B5.4 (8.5-fold versus 4.5- and 2-

fold) (Figure 8A). Heme uptake assays with ZnMP revealed that

hrg-4 RNAi resulted in abrogation of ZnMP accumulation in the

worm intestine compared to wild-type control worms (Figure 8B),

a result consistent with our previous studies [12]. By contrast,

ZnMP accumulation was dramatically increased by the knock-

down of both mrp-5 and F22B5.4. Although HRG-4 has been

implicated in intestinal heme transport in C. elegans, no function

has been attributed to either F22B5.4 or MRP-5 in WormBase.

Membrane topology algorithms predicted that, unlike F22B5.4,

which is predicted to contain a single TMD, HRG-4 and MRP-5

contain four and twelve TMD respectively, a characteristic feature

of membrane transporters.

To correlate the intestinal ZnMP uptake studies with membrane

transport, we examined the gene expression pattern of hrg-4 and

mrp-5. We generated transgenic worms that expressed hrg-4::gfp

and mrp-5::gfp transcriptional fusions. hrg-4::gfp was expressed

Figure 6. Chromosomal location and fold-change of each heme-responsive gene. hrgs were arranged on each of the six chromosomes,
which are depicted as white or black bars. The transcript levels of genes placed on white bars were altered at 4 mM heme, while the expression of
genes on black bars was significantly altered at 500 mM heme. Vertical bars are drawn to scale and represent genes that were up-regulated (red) or
down-regulated (green).
doi:10.1371/journal.pgen.1001044.g006
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Figure 7. Functional validation of heme-responsive genes. (A) RNAi depletion in a transgenic heme-sensor strain. GFP quantification by
COPAS BioSort in strain IQ6011 fed HT115(DE3) bacteria grown in 5 mM heme and induced to synthesize dsRNA. RNAi of 288 hrgs identified six genes
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specifically in the intestinal cells of larvae and adults (Figure 8C),

and was regulated by exogenous heme (not shown). Unlike hrg-

4::gfp, we found that mrp-5::gfp was expressed in almost all worm

tissues examined. Altogether, these studies identify HRG-4 and

MRP-5 as membrane transporters that are essential for intestinal

heme homeostasis in C. elegans.

Discussion

A major impediment to the identification of heme uptake and

transport pathways has been the inability to disassociate the tightly

regulated process of heme synthesis from the downstream

pathways for heme transport [3]. C. elegans is unique among the

model organisms because it does not synthesize heme but, instead,

relies solely on exogenous heme for normal growth and

development [11]. Thus, worms allow the study of heme

homeostatic mechanisms in response to fluctuations in environ-

mental heme within the context of an intact, live animal.

Our study of the genome-wide transcriptional changes associated

with heme availability represents, to the best of our knowledge, the

first study of nutrient-gene interactions in C. elegans exploiting axenic

liquid growth medium. The mCeHR-2 medium permits fine

control of organismal heme levels as a function of heme in the

growth medium, allowing us to identify 288 heme-responsive genes (hrgs).

Some of the genes we identified were predictable, because they

encode either known heme-binding proteins or permeases for

transport of other small molecules. Other genes made sense in

retrospect, such as glutathione transferases (GST). A recent

proteomic analysis of C. elegans identified GST-19 as a highly

abundant protein that was proposed to sequester heme when

intracellular heme is in excess [29]. GSTs have also been shown to

bind heme in helminths such as hookworms and Barber pole worms

[30–32]. Our genomic analysis indicates that gst-22 and gst-16 were

upregulated at 500 mM heme. Whether these GST proteins also

bind heme remains to be determined.

GO and KEGG pathway analyses reveal that hrgs represent the

full spectrum of biological processes. Interestingly, only a few hrgs

are enzymes or proteins that are known to bind heme. We

speculate that the transcriptional regulation by heme primarily

targets the cellular pathways involved in heme homeostasis,

including uptake and sequestration, rather than the genes which

encode target hemoproteins. The vast majority of hrgs have no

known function and, therefore, do not have any biological

processes or pathways attributed to them. Furthermore, pheno-

types from RNAi studies involving the 288 hrgs reported growth

and developmental defects, plausibly because disruption of heme

homeostasis will affect hemoprotein function in diverse biological

pathways ranging from miRNA processing (DGCR8) to gas

sensing (soluble guanylyl cyclases) to circadian clock control (Rev-

erba) [33–35].

The 288 hrgs we identified also provide the first insight into

metazoan heme regulation. The fact that .40% of hrgs have

human homologs suggests that our study may provide genetic

insights into mammalian heme regulation. This is underscored by

the presence of human homologs for genes that were positive in

our functional RNAi screen. Indeed, recent studies using C. elegans

as a model system have led to the identification of HRG-1 as the

first bona fide metazoan heme importer that is conserved in

vertebrates [12].

Analysis of the presumptive promoters of all 288 hrgs in eight

categories identified no common cis elements [28]. A more detailed

analysis of the 67 genes in Category 2, to which hrg-1 and hrg-4

belong, found no overrepresented transcription factor binding sites

using all sequences against a control set of random promoter

sequences. These in silico results corroborate our experimental

studies (Chen, Sinclair, and Hamza, unpublished results) and

further support the concept that regulation of organismal heme

homeostasis is complex, multi-tiered, and effected by diverse cellular

modulators.

Studies have demonstrated that the infectivity of hookworms,

which feed on the blood of the host, is significantly lower in severely

anemic hamsters fed a low-iron diet [13]. Furthermore, filarial

nematodes, such as the causative agent of elephantiasis, harbor

Wolbachia – an intracellular bacterial symbiont that contains the

intact heme biosynthesis pathway [14,36]. Thus, nematodes may

have adapted to heme auxotrophy by evolving pathways to acquire

heme either from the host (extracellular) or from the symbiotic

relationship with the bacteria (intracellular). This auxotrophy can be

exploited to develop drugs that block parasite-specific heme uptake

or utilization. Indeed, genome database searches of heme

auxotroph parasites led us to identify 12 hrg homologs in protozoans

and 62 hrgs in clade V nematodes. This finding is significant because

these genes may encode proteins involved in heme uptake and

sequestration from the parasitized host. Further studies aimed at

elucidating the role of these hrgs in heme metabolism may validate

them as novel anti-parasitic drug targets.

We found that seven of the 41 hrgs that encode for proteins

which contain putative TMDs showed different levels of resistance

against GaPP toxicity. Among these were a heme permease

(HRG-4), ABC transporters (PGP-1 and MRP-5), and Major

Facilitator Superfamily transporters (HMIT-1.1 and Y37A1A.2).

The remaining 247 hrgs encoded proteins without any predicted

TMDs. These proteins may encode soluble effectors for heme

transport such as chaperones or sequestering proteins. In support

of this concept, cellular iron is stored in ferritin, a cytosolic multi-

subunit protein; cytoplasmic copper is delivered to membrane

bound P-type ATPases in the secretory pathway by the copper

chaperone Atox1 [37,38]. We propose that a similar network for

trafficking intracellular heme and maintaining homeostasis is likely

to exist in C. elegans and most metazoa [3].

Interestingly, HRG-4, MRP-5, and F22B5.4 were the only

positive candidates identified in both the heme-sensor and GaPP

functional RNAi screens. RNAi studies have implicated HRG-4 as

a heme transporter in the C. elegans intestine [12], while the

which caused a 2-fold increase or 2-fold decrease in GFP levels. Each data point represents the mean 6 SEM. Y-axis represents average GFP values of
all the gravid worms ($30 worms in each well) in duplicate wells normalized to the value of the GFP in worms that had fed on bacteria transformed
with the empty vector. (B) RNAi depletion in the presence of a toxic heme analog. Forty-one candidate genes encoding proteins with TMD were
screened by feeding RNAi to strain IQ6011 and assessing survival of progeny in the presence of the toxic heme analog GaPP. Both the total number
of eggs and the number of viable larvae were counted after 5 days of exposure to 1.5 mM GaPP as described in Materials and Methods. Each data
point represents the mean 6 SEM of two separate experiments and is depicted as percentage of survival compared to control plates with no GaPP.
Knockdown of 7 genes (shown) resulted in animal survival in the presence of GaPP. Asterisk indicates genes that also altered GFP levels in strain
IQ6011 worms (Figure 7A). (C) Summary of overlap between genes identified in (A,B). Six of the 288 hrgs were identified as interfering with heme
homeostasis, as evidenced by their altered GFP levels at 5 mM. Seven of the 41 hrgs that encode for proteins with putative TMD protect against GaPP
toxicity, as evidenced by an increase in progeny survival. When knocked down by RNAi, only three hrgs both alter the ability to sense heme and
protect against GaPP toxicity.
doi:10.1371/journal.pgen.1001044.g007
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Figure 8. Characterization of the three candidate genes identified from the functional RNAi screens. (A) Heme-dependent expression.
qRT-PCR was performed in triplicate for hrg-4, mrp-5, and F22B5.4 at the indicated heme concentrations, and the fold change (mean 6 SEM) is
reported for each gene at each concentration of heme. (B) Accumulation of ZnMP in worms depleted of candidate genes by RNAi. Synchronized wild-
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function of MRP-5 and the protein encoded by F22B5.4 are

currently unknown. We speculate that MRP-5, a member of a

family of membrane effluxers [39], may export heme from the

intestinal cells to extra-intestinal cells. These results are consistent,

in part, with the ubiquitous expression of mrp-5::gfp in worm

tissues, and with the RNAi studies which show that mrp-5 depletion

results in accumulation of ZnMP in the worm intestine and

resistance to GaPP toxicity. Unlike HRG-4 and MRP-5 which are

transporters with multiple TMD, F22B5.4 encodes a predicted

Type II membrane protein with a single TMD. Although our

results clearly implicate a role for F22B5.4 as an essential

component of heme homeostasis in C. elegans, it is unclear how

this protein may function in heme homeostasis. Excitingly,

microarray and RNAi studies identified F22B5.4 as a gene that

is highly upregulated by the hypoxia-inducible factor (HIF)

transcription complex, a master regulator of hypoxia response

[40–42]. HIF is regulated by degradation through hydroxylation

of proline residues, a process which requires the presence of

oxygen, 2-oxoglutarate, and iron [43]. Given the dependence of C.

elegans on heme for oxygen binding and sensing [44–46] and as a

nutritional source of iron [11], it is conceivable that F22B5.4 may

play an important role in coordinating heme transport and

availability with oxygen metabolism.

In the current study we have identified a novel catalog of genes

that are responsive to heme in C. elegans. Although it is unclear

mechanistically how worms respond to heme at the mRNA level, a

thorough study to identify the cis regulatory elements and the

corresponding trans acting factors will significantly accelerate our

understanding of how C. elegans adapts to environmental and

nutritional changes. Using the facile and genetically tractable C.

elegans model system, the RNAi screen with the hrg mini-library can

be easily adapted for whole genome screens to identify regulatory

pathways which govern how metazoans sense and respond to

heme at an organismal level.

Materials and Methods

Biological materials, strains, and worm culture
C. elegans wild-type N2 strain worms were grown either in an

axenic liquid mCeHR-2 medium [47] or on NGM agar plates

spotted with E. coli OP50 or HT115(DE3) strains [48].

Synchronized, L1 larvae were obtained by bleaching P0 gravid

worms grown in mCeHR-2 medium supplemented with hemin

chloride [11]. Hemin chloride and gallium protoporphyrin IX

were purchased from Frontier Scientific, Inc (Logan, UT).

Plasmids for cloning and injecting into worms were part of the

Fire Vector Kit (Addgene, Cambridge, MA). Primers designed to

PCR amplify worm open reading frames were based on

Wormbase predictions and ordered from IDT (Coralville, IA).

The PCR products were TA cloned into the L4440 plasmid.

Total RNA isolation
Equal numbers of F1 larvae in the L1 stage were inoculated in

mCeHR-2 medium with 4, 20, or 500 mM hemin chloride and

grown with gentle shaking at 20uC. Synchronized, F2 larvae in the

L1 stage were obtained by hatching the eggs obtained from F1

gravid adults in M9 buffer containing 4, 20, or 500 mM hemin.

Equal numbers of F2 larvae in the L1 stage were inoculated in

mCeHR-2 medium supplemented with 4, 20, or 500 mM hemin.

The F2 worms were allowed to develop to the late L4 stage,

harvested, flash frozen in liquid nitrogen, and stored at 280uC.

Frozen worm pellets were ground into a fine powder, and total

RNA was extracted using Trizol (Invitrogen, Carlsbad, CA). RNA

thus obtained was subjected to RNase-free DNase treatment for

1 h at 37uC and purified using the RNeasy kit (Qiagen,

Germantown, MD). Total RNA from three biological replicates

was used to make cDNA, which was then hybridized to C. elegans

Whole Genome Arrays (Affymetrix, Santa Clara, CA).

cDNA synthesis and quantitative real-time PCR
First strand cDNA was synthesized using 2 mg of total RNA

using a Superscript II First Strand cDNA synthesis kit (Invitrogen).

For quantitative real-time PCR (qRT-PCR), primers spanning at

least one intron were designed using Primer Express (Applied

Biosystems) and Beacon designer 4 (Premier Biosoft) programs.

PCR was performed using the iCycler iQ Real-time PCR

Detection System (BioRad) with 0.12 U/ml Taq DNA polymerase,

40 nM fluorescein (Invitrogen), and SYBR Green I Nucleic Acid

Gel Stain (Invitrogen) diluted 1:10. The PCR amplification was

run for 40 cycles. The PCR products were between 150 and

200 bp in length. Quality of the PCR products was determined by

dissociation curve analysis and gel electrophoresis. Each experi-

ment was performed in triplicate. Average CT values were used for

22DDCt calculations of relative fold changes in gene expression

[49].

Microarray data analysis
Expression data were normalized and analyzed using MAS 5.0

suite software (Affymetrix). Data from worms grown in mCeHR-2

medium with 4 and 500 mM hemin were compared to data from

worms grown in medium containing 20 mM hemin (baseline

samples). Microarray data were verified with the Robust Multichip

Average Method (RMA, R package). Quantile normalization and

background corrections were performed using perfect match

probe intensities. Using an initial cut-off of $1.2-fold change in

mRNA expression for RMA and a $1.6-fold change for MAS 5.0

resulted in the identification of 370 genes. Increasing the

stringency to $1.6-fold change for both RMA and MAS 5.0

reduced the number of genes identified as heme responsive to 288

genes. To identify putative human orthologs, worm protein

sequences were used to query human genome databases at NCBI

by reciprocal BLAST analysis with an E-value cut-off $1024.

Sequences for each of these 288 genes were obtained from

WormBase and further analyzed for topology (TMHMM 2.0,

SOSUI), motifs (ELM, BLOCKS, Pfam), and pathway classifica-

tion (GO and KEGG).

Generation of the hrg mini-library
The Ahringer and Vidal feeding libraries were replicated to

individual 96-well plates [50,51]. Thirty-four clones in the initial

list of 370 hrgs were absent from both libraries. To complete the hrg

mini-library, we PCR amplified the missing genes from N2 worm

type strain worms in the L1 stage were transferred from mCeHR-2 medium containing 2 mM heme to plates seeded with a lawn of bacteria producing
dsRNA against vector, hrg-4, mrp-5, or F22B5.4 and allowed to develop for <72 h to the late L4 stage. At this point, worms were incubated in mCeHR-
2 medium containing 5 mM ZnMP overnight. Images of a region of worm intestine were captured using a Leica DMIRE2 microscope equipped with a
Rhodamine filter and a CCD camera. (C) Expression of hrg-4 and mrp-5 GFP transcriptional reporters. Transgenic worms expressing GFP under the
control of 3 kb of the hrg-4 (bottom) or mrp-5 (top) putative promoters. Transgenic worms were grown in mCeHR-2 medium containing 4 mM heme
for one generation. Representative images of worms were obtained with a Leica DMIRE2 microscope using a CCD camera.
doi:10.1371/journal.pgen.1001044.g008
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genomic DNA and cloned the PCR fragments by TA cloning into

the RNAi feeding vector pL4440. Only 19 of the 34 RNAi clones

were in the final list of 288 hrgs. DNA for all 288 hrgs was

sequenced to confirm authenticity.

Analysis of RNAi on GFP expression in the IQ6011 and
vha-6::gfp strains

NGM agar plates containing IPTG, carbenicillin, and

tetracycline were seeded with HT115(DE3) bacteria expressing

double-stranded RNA (dsRNA) against each clone in the hrg

mini-library. Duplicate bacterial cultures of each clone had been

grown for 5.5 h in LB containing carbenicillin and tetracycline

and 5 mM or 25 mM heme. Plates were seeded with a lawn of

bacteria and dsRNA induction occurred for <20 h at room

temperature. Subsequently, forty L1 larvae from gravid IQ6011

worms which had been grown in liquid media supplemented with

10 mM heme were added to each well of the 12-well plates. Each

12-well plate had 10 wells seeded with experimental clones and

one well seeded with each of the control clones – vector and hrg-4.

The plates were incubated at 15uC overnight and then incubated

at 20uC for three additional days. The GFP levels in gravid adults

were observed visually using a Leica Microsystems MZ16FA

stereoscope. The intensity and pattern of GFP in gravid worms

feeding on bacteria producing dsRNA against each hrg was

compared to the intensity and pattern of GFP in same-stage

worms feeding on bacteria transformed with the empty vector.

Worms that displayed altered GFP in both replicates were

designated as potential modulators. Potential modulators were

screened in a strain that produced GFP under the control of a

promoter that was not responsive to heme (vha-6::gfp). Any clone

that altered GFP levels in the vha-6::gfp strain worms was removed

from the list of modulators, since the change in GFP was not in

response to heme.

GFP quantification in IQ6011 strain
A COPAS BioSort worm sorter (Union Biometrica, Holliston,

MA) was used to measure GFP levels in live worms. Plates,

bacteria, and worms were prepared and treated as described in the

previous section. After 84 h on RNAi plates, P0 gravid and F1 L1-

stage worms were washed from each well with 600 mL of M9

buffer containing 0.01% Tween-20, transferred to a 1.5-mL

microcentrifuge tube, and allowed to settle for 5 min. The

supernatant was removed and discarded. Each worm pellet was

transferred to an individual well of a 96-well plate. Duplicate

samples were transferred to successive wells in the 96-well plate

and were separated from other samples by an empty well, which

served to flush the flow cell where worms are analyzed and prevent

contamination of subsequent samples. The contents of each well

were washed, aspirated, and analyzed by a COPAS BioSort worm

sorter. The GFP gain was set to 2, and the GFP PMT setting was

400. Using highly synchronized worms in the gravid stage, we had

previously defined the gate settings in order to ensure that the data

obtained from P0 gravid animals would be easily and quickly

separated from the data obtained from worms in other

developmental stages. Text file data was imported into Microsoft

Excel and sorted based on the gating parameters recorded in the

‘‘Status Select’’ column. The worm sorter records a fluorescence

profile of each worm in the form of a curve, which reflects the

intensity of GFP from the mouth to the tail. The ‘‘Green’’ column

recorded the GFP value of the area under the curve, reduced by a

factor of 40,000. The background levels of GFP were subtracted

from all values used to generate Figure 7A. The background level

of GFP was equal to the GFP levels in IQ6011 worms feeding on

HT115(DE3) bacteria transformed with the gfp RNAi vector. The

COPAS BioSort detects very low levels of GFP in these worms.

The mean of all values for each sample was determined, and the

average of each duplicate was calculated. This mean was

normalized to the average value for the GFP obtained from the

vector-only sample, and reported in arbitrary units 6 SEM for

each clone analyzed.

GaPP toxicity assays
Synchronized, F1 wild-type worms in the L1 larval stage were

obtained from P0 worms grown in mCeHR-2 containing 1.5 mM

hemin. Equal numbers of these F1 worms were placed on NGM agar

plates containing 2 mM IPTG, 50 mg/mL carbenicillin, 12 mg/mL

IPTG and plated with a lawn of HT115(DE3) RNAi feeding bacteria

harboring the respective L4440 plasmid that had been grown in LB

broth with carbenicillin and tetracycline [12]. Worms were fed on the

RNAi bacteria for <60 h and allowed to develop to the late L4 stage.

At this point, worms were transferred to fresh RNAi plates containing

1.5 mM GaPP. Worms developed to the gravid stage and laid eggs.

After 24 h of egg-laying, the P0 worms (all in the gravid stage) were

discarded in order to prevent additional eggs from being laid. On day

5, both the total number of surviving larvae and the number of

unhatched eggs were counted. P values for statistical significance were

calculated by using a one-way ANOVA with Student–Newman–

Keuls multiple comparisons test by using GraphPad InStat v. 3.06

(GraphPad, San Diego, CA).

ZnMP uptake assays
Equal numbers of synchronized N2 L1 larvae obtained from P0

worms grown in mCeHR-2 plus 2 mM hemin were exposed to the

RNAi bacteria on NGM plates containing 2 mM IPTG for 72 h.

This was followed by exposure to 5 mM ZnMP plus 1.5 mM hemin

chloride for 16 h in mCeHR-2 medium. ZnMP fluorescence

intensity was measured as described previously [12].

Generation of GFP reporter constructs
GFP reporter fusion constructs were created using the Gateway

cloning system (Invitrogen, Frederick, MD). The promoter of

interest, gfp gene, and the 39 untranslated region of the unc-54 gene

were cloned by recombination into the entry vectors pDONR P4-

P1R, pDONR 221, and pDONR P2R-P3, respectively, using the

Gateway BP Clonase kit. Sequence verified entry clones were then

recombined into a destination vector pDEST R4-R3 using the

Gateway LR Clonase II plus enzyme kit to produce the final

recombinant plasmid.

Production of transgenic worm strains
For microparticle bombardment, <56106 unc-119 (ed3) gravid

worms were co-bombarded with 10 mg of Gateway reporter

construct and 5 mg of unc-119 rescue plasmid (pDM016B) using

the PDS-1000 particle delivery system (Bio-Rad, Hercules, CA).

Worms were washed from bombardment plates and transferred to

plates seeded with a lawn of E. coli strain JM109. After two-weeks

at 25uC, multiple wild-type F2 worms were screened for gene

integration either by PCR or transgene expression. Individual

transgenic lines were isolated and transferred to axenic liquid

mCeHR-2 medium supplemented with antibiotics. After two

weeks of serial passages, worms were bleached and maintained as

transgenic strains in axenic liquid mCeHR-2 medium.

Gene Expression Omnibus information
The microarray data was submitted to GEO on Aug 6, 2007.

The GEO accession number is GSE8696 and available at http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?acc = GSE8696.
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Supporting Information

Figure S1 Heat map for the heme microarrays. A compilation

of heat maps generated following normalization of the data (see

Figure 2 legend) using GeneSpring (v7.2) for each category of the

288 hrgs with data from all nine chips represented. The up and

down arrows indicate upregulation or downregulation in 4 or

500 mM heme when compared to 20 mM heme. Yellow represents

no change in signal intensity, blue indicates a decrease, and red

indicates an increase in signal intensity. The data from the first

replicate sample from 4 mM heme, indicated with an asterisk at the

top of the column, were inconsistent with the data from the other

two biological replicates as determined by both principal

components analysis and K-means clustering of the data.

Found at: doi:10.1371/journal.pgen.1001044.s001 (2.43 MB TIF)

Figure S2 Gene ontology (GO) enrichment analysis of heme-

responsive genes. (A) hrgs downregulated at 4 mM heme. (B) hrgs

upregulated at 500 mM heme. (C) hrgs downregulated at 500 mM

heme. Of the 288 hrgs identified in the study, 115 were annotated

with a biological process. Genes were analyzed using the Fisher’s

exact test and the topGO package from R. The most significant

GO terms and their associated parent terms were used to construct

a hierarchical graph such that the specificity of the terms increased

as we moved from top to bottom. The text in each rectangle

provides the GO ID and the ratio of the number of genes

annotated with the GO term in the tested subset to that in the total

gene set. The shade of green of each rectangle corresponds to the

significance of the GO result. Full GO terms are provided solely

for genes with P,0.005. The complete table of P-values and a full

description of the GO term associated with each gene can be

found in Tables S7, S8, and S9.

Found at: doi:10.1371/journal.pgen.1001044.s002 (0.08 MB PDF)

Table S1 The 288 heme-responsive genes identified by the

microarray. Data was collected using the Affymetrix C. elegans

whole genome array and analyzed by both Affymetrix MAS 5.0

software and RMA. Each entry in the table represents a gene

whose expression changed at least 1.6 fold at one or both of the

experimental heme concentrations. The table has six columns for

each hrg. The ‘‘Description’’ column lists the unique Gene ID

assigned by Wormbase to every gene in the C. elegans genome. The

‘‘Gene name’’ column provides the name of a gene, when one has

been assigned. The first ‘‘4 mM’’ column gives the value of the

change of expression of each gene, and the second ‘‘4 mM’’

column indicates whether the gene expression was increased (up)

or decreased (down). If the column is blank, then the change was

less than 1.6-fold. The pattern for the ‘‘500 mM’’ columns is the

same as for the ‘‘4 mM’’ columns.

Found at: doi:10.1371/journal.pgen.1001044.s003 (0.10 MB PDF)

Table S2 Heme-responsive genes whose expression is upregu-

lated greater than 1.6 fold in worms grown at 4 mM heme. The

gene ID (description), gene name, and amount of change at 4 mM

compared to the control (20 mM) are provided for each gene

whose expression increased at 4 mM.

Found at: doi:10.1371/journal.pgen.1001044.s004 (0.08 MB PDF)

Table S3 Heme-responsive genes whose expression is upregu-

lated greater than 1.6 fold in worms grown at 500 mM

heme. The gene ID (description), gene name, and amount of

change at 500 mM compared to the control (20 mM) are provided

for each gene whose expression increased at 500 mM.

Found at: doi:10.1371/journal.pgen.1001044.s005 (0.73 MB TIF)

Table S4 Heme-responsive genes used to corroborate the

microarray results. Three genes were selected from each of the

eight categories designed to show whether the expression of a gene

increased, decreased, or did not change at a given heme

concentration compared to the 20 mM control.

Found at: doi:10.1371/journal.pgen.1001044.s006 (1.15 MB TIF)

Table S5 Heme-responsive genes with known Gene Ontology

terms. Of the 288 hrgs whose expression changed significantly in

response to heme, the results of a gene ontology analysis were used

to assign a known biological process and molecular function to 63

genes.

Found at: doi:10.1371/journal.pgen.1001044.s007 (1.02 MB TIF)

Table S6 Gene Ontology analysis of heme-responsive genes

upregulated at 4 mM heme. Each GO ID is assigned a unique

function or association. Both are listed here, even if the GO ID

was not used in the GO analysis figure. Green shading indicates

that term was included in the corresponding GO enrichment

figures.

Found at: doi:10.1371/journal.pgen.1001044.s008 (0.06 MB

PDF)

Table S7 Gene Ontology analysis of heme-responsive genes

downregulated at 4 mM heme. Each GO ID is assigned a unique

function or association. Both are listed here, even if the GO ID was

not used in the GO analysis figure. Green shading indicates that

term was included in the corresponding GO enrichment figures.

Found at: doi:10.1371/journal.pgen.1001044.s009 (0.06 MB

PDF)

Table S8 Gene Ontology analysis of heme-responsive genes

upregulated at 500 mM heme. Each GO ID is assigned a unique

function or association. Both are listed here, even if the GO ID

was not used in the GO analysis figure. Green shading indicates

that term was included in the corresponding GO enrichment

figures.

Found at: doi:10.1371/journal.pgen.1001044.s010 (0.09 MB

PDF)

Table S9 Gene Ontology analysis of heme-responsive genes

downregulated at 500 mM heme. Each GO ID is assigned a

unique function or association. Both are listed here, even if the

GO ID was not used in the GO analysis figure. Green shading

indicates that term was included in the corresponding GO

enrichment figures.

Found at: doi:10.1371/journal.pgen.1001044.s011 (0.09 MB

PDF)

Table S10 Heme-responsive genes assigned to a biological

pathway by KEGG analysis. The algorithms available on the

Kyoto Encyclopedia of Genes and Genomes website were used to

make functional predictions for each of the 288 hrgs identified in the

microarray. Ten hrgs were mapped to KEGG pathways.

Found at: doi:10.1371/journal.pgen.1001044.s012 (0.59 MB TIF)

Table S11 Previously reported RNAi phenotypes of heme-

responsive genes. Phenotypes observed when hrgs were knocked

down in experiments performed by other laboratories and

compiled on Wormbase.

Found at: doi:10.1371/journal.pgen.1001044.s013 (0.85 MB TIF)

Table S12 Heme-responsive genes with predicted TMDs. Worm

protein sequences obtained from Wormbase were analyzed using

TMHMM 2.0 and SOSUI to identify 41 proteins with putative

hydrophobic membrane-spanning domains (TMDs). The 41 genes

with putative TMDs have been arranged according to the number of

TMDs. The change in levels of gene expression at 4 and 500 mM

heme is indicated. Negative fold change implies down regulation.

Found at: doi:10.1371/journal.pgen.1001044.s014 (0.74 MB TIF)
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