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Synopsis
Adenosine-to-inosine (A-to-I) RNA editing, the most prevalent mode of transcript modification in higher eukaryotes,
is catalysed by the adenosine deaminases acting on RNA (ADARs). A-to-I editing imposes an additional layer of
gene regulation as it dictates various aspects of RNA metabolism, including RNA folding, processing, localization and
degradation. Furthermore, editing events in exonic regions contribute to proteome diversity as translational machinery
decodes inosine as guanosine. Although it has been demonstrated that dysregulated A-to-I editing contributes to
various diseases, the precise regulatory mechanisms governing this critical cellular process have yet to be fully
elucidated. However, integration of previous studies revealed that regulation of A-to-I editing is multifaceted, weaving
an intricate network of auto- and transregulations, including the involvement of virus-originated factors like adenovirus-
associated RNA. Taken together, it is apparent that tipping of any regulatory components will have profound effects on
A-to-I editing, which in turn contributes to both normal and aberrant physiological conditions. A complete understanding
of this intricate regulatory network may ultimately be translated into new therapeutic strategies against diseases driven
by perturbed RNA editing events. Herein, we review the current state of knowledge on the regulatory mechanisms
governing A-to-I editing and propose the role of other co-factors that may be involved in this complex regulatory
process.
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INTRODUCTION

Conversion of adenosine into inosine, otherwise known as A-to-I
(adenosine-to-inosine) RNA editing, is catalysed by members of
the adenosine deaminase acting on RNA (ADAR) family which
act specifically on dsRNAs. A-to-I editing is a pivotal cellular pro-
cess as demonstrated by mouse models, where ADAR1 knockout
is embryonically lethal [1,2] and knockout of ADAR2 results in
epilepsy and premature deaths [3]. In molecular aspects, A-to-I
editing increases both transcript and proteome diversities, as in-
osine is decoded as guanosine by general cellular machineries
(Figure 1). A-to-I editing in exonic regions of mRNAs can al-
ter the coding sequence and consequently introduce amino acid
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substitutions in the protein [4,5]. In addition, editing affects spli-
cing by creating or abolishing pre-mRNA splice sites [6,7] and
suppresses RNAi by either repressing miRNA processing [8]
or editing miRNA precursors [9,10]. Besides introducing nucle-
otide substitution, inosine itself confers distinct functional prop-
erties through interaction with inosine-specific binding proteins
[11,12]. Hyperedited transcripts are found to be retained in the
nucleus through binding to nuclear inosine-specific binding pro-
teins, such as p54nrb [11]. In addition, human endonuclease V,
a ribonuclease specific for inosine-containing RNA, promotes
degradation of edited transcripts [13].

Mammalian ADAR family comprises three highly conserved
members namely ADAR1, ADAR2 and ADAR3. ADAR mem-
bers possess a conserved C-terminal deaminase domain and
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Figure 1 ADARs catalyse hydrolytic deamination of adenosines to inosines
General cellular machineries decode inosine as guanosine, as inosine structurally resembles guanosine. This essentially
introduces nucleotide change and contributes to transcript diversity. A-to-I editing is a significant post-transcriptional
modification as it affects numerous cellular processes, including alternative splicing, miRNA processing, protein recoding,
RNA–protein interaction, RNA stability, structure and transport.

variable numbers of dsRNA-binding domains (dsRBDs) [14]
(Figure 2). Exclusively, the two ADAR1 isoforms have either one
or two zDNA-binding domains that recognize left-handed helical
DNA, an atypical structure associated with active transcription
[15–18]. In contrast, ADAR3 contains a unique arginine/lysine-
rich motif (R domain) that allows it to bind ssRNA substrates
[19].

The current consensus is that only ADAR1 and ADAR2 are
catalytically active [20,21] and they exhibit a certain degree of
overlapping substrate specificity [22]. In contrast, ADAR3, a
less studied ADAR member, has been described to be cata-
lytically inactive since purified ADAR3 failed to edit known
ADAR substrates such as glutamate-gated ion channel receptor
(GluR-B) and serotonin-2C receptor (5HT2CR) transcripts in vitro
[19]. Remarkably, there remains to be no in vivo evidence to

prove beyond reasonable doubt that ADAR3 does not have
any capacity to edit hitherto unknown ADAR substrates. With
the advancements in RNA-sequencing technology, in vivo stud-
ies aiming to investigate the editing role of ADAR3 on an
unbiased and global scale may come to fruition in the near
future.

Intriguingly, previous observations noted that ADAR expres-
sion levels do not always correlate well with editing frequencies
[23,24]. Therefore, it is evident that transcriptional regulation of
ADARs is not the sole mode of regulation and additional regulat-
ory mechanisms may exist on post-transcriptional, translational
and post-translational levels. However, to date, the precise regu-
latory mechanisms governing this critical process have only been
partially elucidated and the current state of knowledge will be
reviewed herein.
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Figure 2 Domain architecture of mammalian ADAR family members
There are three ADARs, ADAR1, ADAR2 and ADAR3, present in vertebrates. The ADARs share similar domain organization,
including a conserved C-terminal deaminase domain (in blue) and variable numbers of dsRBDs (in purple). There are
two predominant ADAR1 isoforms, p150 and p110, which are either constitutively expressed or inducibly expressed by
interferon respectively. In addition, zDNA-binding domains (in green) are an exclusive feature of ADAR1 isoforms, whereas
the R domain (in grey), an arginine/lysine-rich motif that binds ssRNAs, is unique to ADAR3.

THE CASE FOR ADARs: ISOFORMS,
SUB-CELLULAR LOCALIZATION AND
REGULATION

ADAR1
ADAR1 exists in two predominant isoforms, p110 and p150,
generated through transcription from alternative promoters [25].
As depicted in Figure 2, these two isoforms share general struc-
tural similarities except that the N-terminally-extended p150 iso-
form comprises an additional zα-DNA-binding domain, resul-
ted from usage of the translational initiation signal on exon 1
[25]. In contrast, the shorter p110 isoform utilizes the down-
stream AUG296 codon on exon 2 for translational initiation
[26]. Unlike p110 isoform, which expression is driven by a con-
stitutively active promoter, p150 expression is regulated by an
interferon-inducible promoter [26]. Consequently, p150 expres-
sion is closely affected by host innate immune state as activated
immune defence mechanism augments p150 expression through
elevated interferon level [25,26]. In congruence, a recent study
involving intracranial injection of a neurotropic strain of reovirus
infection was found to induce ADAR1 p150 expression; however,
it should be noted that this change in ADAR1 p150 level did not
result in corresponding changes in site-specific A-to-I editing
events [27].

In the cell, trans-acting regulators determine the sub-cellular
localization of ADAR1 and the p110 isoform localizes predom-
inantly in the nucleus [25,28]. Transportin-1, an import receptor,
mediates nuclear localization of ADAR1 by recognizing the
nuclear localization signal (NLS) within the third dsRBD of
ADAR1 [29,30]. Interestingly, although ADAR1 p110 is devoid
of the nuclear export signal (NES), exportin-5 is still able to ex-
port it from the nucleus to the cytoplasm [29,31]. In contrast,

p150 isoform exists mainly in the cytoplasm as it contains a
chromosomal region maintenance 1 (Crm1)-dependent NES on
its exclusive N-terminal zα-domain [32,33]. Within the nuc-
leus, p110 isoform shuttles between the nucleus and nucle-
olus and such a sub-nucleolar localization is highly dynamic
and dependent on the presence of editable substrates to re-
cruit ADAR1 p110 back into the nucleoplasm to catalyse edit-
ing [34]. Given that p110 isoform is found predominantly in
the nucleus, it is mainly restricted to editing substrates present
within the nucleus. Conversely, the ability of p150 isoform to
shuttle between nucleo-cytoplasmic compartments allows it to
catalyse editing of substrates present in both the cytoplasm
and the nucleus [35]. ADAR1 p150 expands the pool of edit-
able substrates, to include even cytoplasmic transcripts like viral
RNAs.

ADAR1 expression is regulated on a post-transcriptional level
by miRNAs, a class of small non-coding RNAs that regulate gene
expression on the post-transcriptional level. In general, miRNAs,
together with other players in the RNAi pathway, negatively reg-
ulate gene expression either by repressing translation or by pro-
moting transcript degradation. miRNAs are approximately 22 nts
in length and are at least partially complementary to the target se-
quences. In metastatic melanoma, it has been found that ADAR1
expression is frequently down-regulated by miR-17 and miR-432
[36].

Intriguingly, ADAR1 exerts both pro-viral and anti-viral func-
tions. Through the course of evolution, some viruses have evolved
and acquired advantageous mechanisms favouring their own rep-
lication. For instance, adenovirus encodes two non-coding, virus-
associated (VA) RNAs, known as VAI and VAII. The major form,
VAI RNA, antagonizes deaminase activity of ADARs and may al-
ter viral and cellular gene expression, mainly through modulation
of RNA editing [37].
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ADAR1 has also been shown to be post-translationally modi-
fied through SUMOylation. This is a highly dynamic and revers-
ible post-translational modification that involves covalent addi-
tion of small ubiquitin-like modifier (SUMO) on to the target pro-
tein. SUMOylation is involved in a myriad of cellular processes,
including apoptosis, cell cycle regulation, protein stability and
transcriptional regulation [38]. Human ADAR1, but not ADAR2,
can be SUMOylated on lysine residue 418 [39]. SUMOyla-
tion on Lys418 attenuates ADAR1 editing activity without af-
fecting its proper sub-cellular localization. It is hypothesized that
SUMOylation of Lys418, a residue between the zDNA-binding do-
main and the first dsRBD of ADAR1, attenuates its editing activ-
ity through stereochemically hindering the binding of dsRNA
and homodimerization of ADAR1, which are prerequisites for
editing activities.

ADAR2
ADAR2 gene expression can be stimulated by cAMP responsive
element-binding protein 1 (CREB1) [40]. In addition, various
alternatively-spliced ADAR2 isoforms have been reported [41–
44]; however, only two distinct isoforms, ADAR2a and ADAR2b,
possess disparate catalytic activities. ADAR2a and ADAR2b are
generated through alternative splicing at the 3’-end of the pre-
mRNA sequence encoding the deaminase catalytic domains [41].
The inclusion of additional 120 nts between the second and third
putative zinc-co-ordination motifs in ADAR2b isoform [41,42]
renders it less active as compared with ADAR2a [41].

ADAR2 negatively auto-regulates its activity through self-
editing of its transcripts [6]. ADAR2 catalyses an A-to-I editing
on its own pre-mRNA, converting an intronic AA dinucleotide
into an AI dinucleotide which mimics the signature AG se-
quence commonly found on 3′ splice junctions. This self-editing
event introduces an alternative proximal 3′-splicing acceptor site,
adding 47 nts to the ADAR2 coding region. Insertion of this 47-
nt cassette introduces a frameshift that gives rise to truncated
ADAR2 proteins, unless a downstream, in-frame translational
initiation codon is being used. However, the translational initi-
ation efficiency of this internal initiation codon is low and hence
little functional ADAR2 proteins can be translated from self-
edited ADAR2 transcripts. In agreement, transgenic mice lack-
ing ADAR2 self-editing capabilities have significantly higher
ADAR2 protein levels concomitant with elevated editing fre-
quencies of various ADAR2 substrates [42].

ADAR2 sub-cellular localization is determined by trans-acting
regulators. ADAR2 has a prominent nuclear localization charac-
teristic as it lacks NES and contains a non-canonical NLS within
the first 64 amino acid residues [34]. Phosphorylation-dependent
prolyl-isomerase (Pin1) functions as a positive regulator of
ADAR2 by ensuring proper nuclear localization of ADAR2. In
Pin1− / − mouse, ADAR2 was mislocalized in the cytoplasm of
embryonic fibroblasts, which resulted in reduced editing at the
GluR2 glutamine/arginine and arginine/glycine sites [45]. This
evidence shows that nuclear localization of ADAR2 is essential
for adequate editing frequencies. Besides Pin1, nuclear import of
ADAR2 is further modulated by importin α4 and α5 [46].

Similar to ADAR1, ADAR2 shuttles dynamically between the
nucleus and nucleolus and the presence of editable substrates
initiates its shuttling between the two compartments [34]. In
the absence of editable substrates, ADAR2 is sequestered into
the nucleolus by binding to nucleolar-enriched rRNA [47]. In-
triguingly, the association between ADAR2 and rRNA is only
transient and non-functional as these rRNA are not edited des-
pite having significant binding to ADAR2. This could represent a
regulatory mechanism that prevents aberrant editing activities by
maintaining low concentrations of ADAR2 at its active site when
there are limited editable substrates and yet maintaining a readily
available pool of functional ADAR2 to cope with a sudden influx
of substrates that need to be edited.

Excitotoxic level of glutamate induces specific ADAR2 pro-
teolytic cleavage between the two dsRBDs [48]. This proteolytic
cleavage requires activation of N-methyl-D-aspartate (NMDA)
receptor which then initiates a cascade of events to ultimately ac-
tivate the effector, calpain protease. The cleaved ADAR2 is now
rendered non-functional due to its inability to bind to dsRNA
substrates. The physiological impact of ADAR2 cleavage is pro-
nounced. The decrease in GluRA2 glutamine/arginine editing
causes a high calcium influx and excitotoxic neuronal death.
However, it remains to be determined whether proteolytic cleav-
age of ADAR2 is a common mode of regulation in other non-
neuronal cell types.

Other factors that regulate ADAR2 have also been described.
The crystal structure of ADAR2 unveiled a unique feature of its
catalytic domain. A molecule of inositol hexakisphosphate (IP6)
was found to be buried within the enzyme core of ADAR2 and
is essential for proper protein folding and enzymatic activity of
ADAR2 [49].

Besides affecting nuclear localization of ADAR2, Pin1 also
enhances the stability of ADAR2 proteins. ADAR2 mutants that
can no longer interact with Pin1 were found to be less stable and
the presence of Pin1 delays ADAR2 degradation [45]. In contrast
to Pin1, the E3 ubiquitin ligase WW domain-containing protein
2 (WWP2) destabilizes ADAR2 by catalysing its ubiquitination
and subsequent degradation [45].

A heterologous editing assay that screens for editing regu-
lators in yeast allowed the identification of ribosomal protein
S14 (RPS14), Serine/Arginine-rich splicing factor 9 (SFRS9)
and DEAH box polypeptide 15 (DDX15). Although the detailed
regulatory mechanisms adopted by these proteins have not been
studied, it has been proposed that the landscape of ribonucleo-
proteins (RNPs) affects RNA editing [50].

CROSS-TALKING OF ADAR1 AND
ADAR2 WITH ADAR3, THE THIRD
ADAR MEMBER

Homodimerization of ADARs is necessary for RNA editing activ-
ity [51,52]. However, the possibility of heterodimerization of
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ADAR members has been a matter of controversy, with confound-
ing experimental observations made by different research groups
[19,53]. FRET analysis in HeLa cells subsequently showed that
ADAR1 and ADAR2 do interact, albeit with a low efficiency [53].
Further, studies showed that each ADAR member can attenuate
or modulate the editing activity of other members [19,54,55].
Presumably, the antagonistic relationship between ADAR1 and
ADAR2 is due to the formation of non-functional heterodimers
[53] and/or the non-productive competition for substrates [54].

ADAR3 remains to be a peculiar member of ADARs as it
has no demonstrable editing activity in vitro [19]. As mentioned
earlier, the precise roles of ADAR3 in RNA editing have not been
fully elucidated. Plausibly, ADAR3 may utilize its exclusive N-
terminal arginine-rich motif, which is thought to recognize and
bind to specific stem-loop structures of ssRNA substrates, to tar-
get a selected set of substrates. Notably, in vitro experiments
demonstrated that ADAR3 effectively suppresses editing of
5HT2CR RNA by ADAR1 and ADAR2 [19]. However, the mech-
anism of this suppression remains unknown. This observation
supports the hypothesis that ADAR3 might play a negative regu-
latory role in A-to-I editing. Heterodimerization of ADAR3 with
either ADAR1 or ADAR2 might render ADAR1 and 2 inactive.

Capitalizing on the probable regulatory role of ADAR3 in
A-to-I editing, it may be useful to understand the sub-cellular
localization of this protein. Sub-cellular localization of ADAR3
is mostly nuclear as importin α1 specifically recognizes the R-
motif to mediate nuclear transport [46]. Till now, due to the
paucity in our understanding of ADAR3, it is unclear whether
importin α1-mediated nuclear import has any contributing roles
to ADAR3 functions.

SPECIES-, TISSUE- AND
CELL-SPECIFIC A-TO-I EDITING
REGULATIONS

RNA editing is a process under dynamic regulation. High
throughput transcriptome sequencing revealed partially distinct
A-to-I editing landscapes in brains of humans, chimpanzees and
macaques [56]. Despite the distinct editing landscapes, certain
editing sites are evolutionarily conserved. It has been proposed
that conservation of specific editing sites between related species
requires simultaneous conservation of cis-elements, especially
the elements providing the essential RNA structures for ADAR
recognition [57,58]. However, no species-specific transregulator
has been identified to be responsible for the distinct A-to-I editing
landscapes in related species.

Spatiotemporal regulation of A-to-I editing further complic-
ates the regulatory network in cells [59–61]. Specific tissues
modulate their ADAR2 protein levels through tissue-specific al-
ternative splicing of the ADAR2 pre-mRNA. Inclusion of exon
7a generates in-frame premature termination codons which are
inducers of non-sense-mediated mRNA decay (NMD), a sur-
veillance pathway to degrade mRNAs with premature termin-

ation codons. This selective splicing event allows tissues with
low basal editing levels to down-regulate their ADAR2 levels
on a post-transcriptional level [62]. Capitalizing on the fact that
certain sites are specifically edited in particular tissues, or in a
precise spatiotemporal manner, strongly suggests the existence
of regulators that are currently unknown.

PERTURBED A-TO-I EDITING
REGULATION AND DISEASES

Given the prominent effects of A-to-I editing on transcriptome, it
is not surprising that aberrant A-to-I editing contributes to vari-
ous diseases. Pioneering studies mainly focused on neurological
functions, development and diseases, as A-to-I editing was first
found to be a widespread process in the mammalian brain. These
individual studies revealed that transcripts of numerous neuro-
transmitter receptors are precisely edited and dysregulated edit-
ing results in neurological diseases such as amyotrophic lateral
sclerosis (ALS), transient forebrain ischaemia, Prader–Willi syn-
drome and psychiatric disorders [63]. Besides, perturbed ADAR
activities also contribute to other diseases.

Recently, ADARs have emerged as promising therapeutic tar-
gets in cancer, a disease that is thought to arise from accumulation
of various driver mutations that favour cell survival and prolifer-
ation. In the past, attention was on genomic mutations. However,
increasing evidence demonstrates inconvertibly that mutations on
the transcriptome level, owing to dysregulated RNA editing activ-
ities, have similar pathological effects. To date, perturbed A-to-I
editing has been shown to be involved in various cancers, includ-
ing acute leukaemia, breast cancer, hepatocellular carcinoma and
neuroblastoma [63].

The tight link between dysregulated A-to-I editing and dis-
eases highlights the essentiality for a balanced regulation and
regulators responsible for maintaining the balance are promising
therapeutic targets.

CONCLUSION AND PERSPECTIVE

The precise underlying regulatory mechanism of A-to-I editing
has only been partially elucidated. In the present review, we
reinforced the notion that ADARs, like many other crucial
cellular components, are tightly regulated on transcriptional,
post-transcriptional and post-translational levels (Figure 3).
Although ADAR1 and ADAR2 are the sole factors needed to
catalyse RNA editing in vitro [64,65], it is apparent that the
activity and selectivity of ADARs in cells are precisely regulated
in a multifactorial manner. They are, perhaps, governed by an ed-
itosome complex, comprising numerous essential regulators. The
factors determining substrate selectivity of ADARs have been a
challenging conundrum for researchers in the field of A-to-I RNA
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Figure 3 Known regulatory mechanisms in A-to-I editing
Regulation of A-to-I editing is multifaceted. ADAR1 has been shown to be negatively regulated by VA RNA (VAIs), miRNAs,
SUMOylation and nucleolar rRNAs. ADAR2 is down-regulated by nucleolar rRNAs, self-editing, proteolytic cleavage and
ubiquitin-dependent degradation. Conversely, ADAR2 gene expression can be up-regulated by CREB1 and Pin1 ensures
proper localization of ADAR2 in the nucleus and delays ADAR2 degradation.

editing. The lack of RNA sequence similarity in ADAR sub-
strates strongly suggests that substrate structure plays a more
pivotal role in determining substrate specificity of ADARs.
Building on this, it is highly plausible that RNA helicases may
have regulatory functions in A-to-I editing, through remodelling
of the substrate structures.

Thus far, little advances have been made to investigate the
substrate structures as RNA structome, the study of RNA struc-
tures, is technically challenging. With the introduction of select-
ive 2′-hydrox acylation analysed by primer extension (SHAPE),
coupled with RNA-sequencing technique, it might now be feas-
ible to probe for in vivo RNA structures in a high throughput
manner [66–68].

In sum, our knowledge of A-to-I RNA editing is steadily
increasing. Comprehensive delineation of the regulatory mech-
anisms underlying this pivotal process might eventually prove to
be beneficial, especially in translational research. Promisingly,
the invention of methods to correct specific RNA editing events
[69–71] has opened up possibilities of devising novel therapeutic
strategies to ameliorate diseases caused by aberrant A-to-I
editing.
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