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A westerly wind dominated Puna Plateau during
deposition of upper Pleistocene loessic sediments
in the subtropical Andes, South America

Alex Pullen® '™ David L. Barbeau Jr2, Andrew L. Leier?, Jordan T. Abell® 3, Madison Ward', Austin Bruner'* &
Mary Kate Fidler

The Tafi del Valle depression (~27° S) in the eastern Andes of Argentina provides a record of
late Pleistocene dust deposition in the subtropics of South America. We present large-n U-Pb
geochronology data for detrital zircons from upper Pleistocene loess-paleosol deposits. When
compared to regional data, the age spectra from the Tafi del Valle samples are most like the
southern Puna Plateau, supporting derivation largely from the west and northwest. This runs
counter to hypotheses suggesting these loessic sediments were derived from the low ele-
vation plains to the east or extra-Andean Patagonia. Mapping of linear wind erosion features
on the Puna Plateau yield a mean orientation of 125.7° (1s.d. =12.4°). These new data and
existing records are consistent with a westerly-northwesterly dominated (upper- and lower-
level) wind system over the southern Puna Plateau (to at least ~27° S) during periods of high
dust accumulation in Tafi del Valle.
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provides an opportunity to better understand ancient

wind and precipitation patterns, surface conditions, and
atmospheric dust loading which impacts the Earth’s radiative
forcing budget (e.g., ref.!). Once deposited, lithogenic dust
influences biogeochemical processes in terrestrial and ocean
environments (e.g., refs. 2-4). Dust in the Southern Hemisphere is
of particular importance because of the Southern Ocean’s iron
limitation on the productivity of photosynthetic organisms and
disproportionate role in modulating Pleistocene climate (e.g.,
refs. >©). A resolved understanding of Pleistocene dust production
and transport in South American provides critical information
about atmospheric circulation in the Southern Hemisphere and
the nature of dust transported to the Southern Ocean and Ant-
arctica during that interval.

The distribution of southern South America’s Quaternary dust
deposits have been well documented (e.g., ref.”), and broadly
include the southern Pampa loess®, the Chaco Plain loess, eolian
deposits of the northern Pampa—Rio de la Plata region!%!! and
smaller deposits in the eastern Andes (or pre-Andes; Fig. 1A, B)12.
Less certain, however, is the sediment provenance of these loess
provinces, which is currently interpreted by competing models.
Satellite data show that recent dust plumes originating from the

D etermining the provenance of loess and loessic paleosols

Altiplano-Puna Plateau generally track towards the southeast
across the low elevation plains crossing locations with upper
Pleistocene-Holocene loessic strata (Fig. 1A, B)!13. But synoptic
winds, lake levels, ice volumes, and precipitation were much dif-
ferent for long intervals during the late Pleistocene to early
Holocene (e.g., ref.14), making the practice of applying a post-
industrial dust transport model to the paleoclimate problematic.
Similarities in bulk geochemistry between loess deposits along
the eastern flank of the Andes with lower elevation loess deposits
in the Pampean plains to the east led to the interpretation that the
loess deposits along the eastern flank of the subtropical Andes
were derived from the south!®. In this scenario, late Pleistocene
loess deposits along the eastern flank of the Andes are envisioned
to mark the western edge of a dust source in the extra-Andean
regions of Patagonia carried by southerly winds!>1°. Alter-
natively, provenance of the late Pleistocene loess deposits along
the eastern flank of the Andes have also been attributed to the
Chaco Plain, including parts of eastern Bolivia, western Paraguay,
and northwest Argentinall; this ‘Chaco model’ implicates
northerly winds. Widely documented wind erosion of the
southern Altiplano-Puna Plateau (e.g., refs. 17-21) suggests that
the loess deposits along the eastern flank of the Andes were lar-
gely sourced from the west and northwest, and that low elevation
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plains of southern South America played a negligible role in the
sourcing of this eolian detritus. Satellite based studies show the
feasibility—at least under present-day-like climate conditions—of
the Puna-Altiplano Plateau supplying dust to the eastern flank of
the Andes and Chaco and Pampean plains to the east (e.g.,
refs. 1322). Many modern dust events between 28°-37° S along the
eastern flank of the Andes out to the Argentine plains result from
short duration polar front outbreaks?3. These short duration
shifts, on the order of several hours, most frequently occur in the
austral autumn-winter months and result in westerly katabatic
(referred to as Zonda) winds crossing the Andes and transporting
dust towards the Argentine plains?2>, Today, the core of the
dust-carrying modern Zonda winds tends to be around 32° S26.

Modern observations add to the ambiguity surrounding the
provenance of the loess deposits along the eastern flank of the
Andes. In addition to dust production within the high elevation
Andes, present-day dust plumes originate at lower elevations (e.g.,
Mar Chiquita, a large saline lake in the central Argentine plains).
These plumes indicate components of north- and south-directed
atmospheric transport?’, further highlighting the uncertainty of
southern South American loess provenance. This is particularly
important considering the variability and differences between
atmospheric circulation during the late Pleistocene and the
present!4. To better understand Quaternary dust provenance and
wind erosion in southern South America and to help elucidate
synoptic wind patterns during periods of dust accumulation over
that time interval, we present new detrital-zircon geochronology
data from an upper Pleistocene loess-paleosol succession near
Tafi del Valle, Argentina, along with supporting wind erosion
data from the Puna Plateau.

Geologic setting

Tafi del Valle is located at ~2200m a.s.l. in a ~100 km? topo-
graphical depression in northwestern Argentina along the
boundary between the arid southern Puna Plateau and semi-arid
Chaco Plain (Fig. 1A, B). This area receives orographic pre-
cipitation when moisture-rich air of the South American low-
level jet travels southward along the eastern slope of the Andes?8.
Like other notable desert-fringing loess provinces such as the
Chinese Loess Plateau and the Negev Desert, the Tafi del Valle
loess has accumulated in an area along a steep precipitation
gradient. Several exposures of laterally and vertically continuous
interbedded loess and paleosol beds have been documented
within the Tafi del Valle areal?!°. The Las Carreras section,
studied here, contains a ~50 m thick stratigraphic section with 32
unique paleosol horizons interbedded with loess*®30 (Fig. 1B).
The base of the Las Carreras section is assigned a minimum age of
1.15Ma based on magnetostratigraphy??; an age that is corro-
borated by optically-stimulated luminescence dating of a nearby
42-m loess-paleosol succession3!. The age and number of inter-
bedded loess and paleosol beds exposed in Las Carreras suggests a
sub-100-ky orbital forcing signal on pedogenesis®. The N=8
loess and paleosol samples collected for this study range in age
from ~6 ka to ~1.05 Ma based on the Schellenberger et al. (ref. 2%)
age model (Fig. 2). This sampling strategy was taken to sample
strata presumably deposited around drier/cooler and wetter/
warmer intervals in Tafi del Valle across the late Pleistocene and
early Holocene.

The surface of the Puna Plateau to the west and northwest of
the field area indicates extensive wind modification. Geomorphic
features include yardangs, ventifacts, wind megaripples, and
bedrock keeling (‘wind tails’). Organization of gravel-mantled
ripples on the Puna Plateau and linear erosional bedrock features
indicate principally northwesterly geomorphically effective near-
surface winds!®1932 (Fig. 1; data presented herein). The southern

Puna Plateau includes up to 1.95 km of vertical wind deflation in
the Salina del Fraile—approximately 250 km northwest of the Tafi
del Valle field area—since the ~mid-Miocene?! (Fig. 1B).

The field area in Tafi del Valle (~27° S) is located beneath the
northernmost position of the present-day subtropical westerly jet
stream®>3%. During austral winter months, the subtropical jet
shifts northward, such that the middle-to-upper tropospheric
westerly winds move equatorward and further encompass Tafi del
Valle33 (Fig. 3). However, the interannual mean position of the
lower-level Southern Hemisphere westerlies remains south of Tafi
del Valle throughout the year with only periodic incursions
(Fig. 3). This puts Tafi del Valle to the north of most sustained
lower-level westerly wind activity, including Zonda winds, today.

Results
Linear wind erosion features on the southern Puna Plateau were
mapped using composite satellite images to better understand the
spatial distribution and orientations of these features with respect
to the Tafi del Valle field area. These features include yardangs,
wind streaks, and eolian modified interfluves (e.g., ref.3). The
n = 866 measurements yielded a mean orientation of 125.7° with
low variability (1 s.d. = 12.4° Fig. 1B; location and orientation of
mapped elements are provided in Supplementary Table S1).
Detrital zircon geochronology was applied to Tafi del Valle
deposits for its usefulness in assessing the provenance of highly
mixed loessic sediments. The detrital zircon ages range from
Pleistocene to Archean (Fig. 2A). The major age modes (and the
range in percent of sample composition) are as follows: 0-23 Ma
(6.5-11.8%); 450-650 Ma (38.5-50.0%), and 950-1200 Ma
(20.5-40.7%; Supplementary Table S2; Table S3; Supplementary
Fig. S1, S2). These major age modes also compose major com-
ponents in potential source areas for the Las Carreras loess-
paleosol sequence and are widely associated with the magmatic
history of western South America®. However, the major age
modes along with minor age components can be recognized in
different relative proportions by location through large-
observation (large-n) data sets (Fig. 2A; S2) like those presented
here (n =391-526).

Discussion

Comparison of the detrital zircon age spectra from Tafi del Valle
with those of potential source areas inform the provenance of
dust deposited in the subtropics along the eastern flank of the
Andes during the late Pleistocene and early Holocene. In Fig. 2,
we examine the age similarities and differences between the Tafi
del Valle deposits and potential source areas along observed and
proposed dust transport pathways (e.g., refs.!11319). This is
aimed at testing whether the upper Pleistocene and Holocene
loessic deposits in Tafi del Valle were sourced from: (1) the
lowlands of the Chaco Plain to the east'!, presumably when the
Chaco was drier; (2) the extra-Andean areas of Patagonia (e.g.,
ref. 1), with possible storage of sediment in the Pampean plains;
or (3) from the west-northwest on the Puna Plateau.

Zircon geochronology data from the southern Puna
Plateau338 are most similar to data for individual and aggregate
cumulative distributions of Tafi del Valle samples (Fig. 2A and
Supplementary Fig. S1, S2). These similarities are supported by
their locations in multi-dimensional scaling (MDS) space
(Fig. 2B). We interpret this to mean that the southern Puna
Plateau, to the west-northwest of the field area, contributed a
large portion of the >20 pm detritus—20 pm being the analytical
limit of the U-Pb measurements—to the upper Pleistocene and
Holocene Tafi del Valle loess-paleosol strata. Considering the
proximity of the southern Puna Plateau to Tafi del Valle, as well
as the intervening high topography of the Eastern Cordillera
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Fig. 2 U-Pb detrital zircon data. A U-Pb detrital zircon cumulative density functions for Tafi del Valle samples and comparison data. References for
comparison data in the Fig. 1 caption with descriptions in Supplementary Table S2. B 3-dimensional multi-dimensional scaling (MDS) plot of U-Pb detrital
zircon data for Tafi del Valle samples and comparison data. Measured and sampled stratigraphy, correlated with magnetostratigraphic timescale from
Schellenbreger et al. (ref. 29); tan denotes loess and crimson denotes paleosol layers. O meters represents the top of the section and youngest strata.

between wind eroded areas of the Puna Plateau and Tafi del Valle,
we speculate that most of the fine-grained fraction of detritus was
likely sourced from this area as well. Rivers regionally sample
bedrock, and river floodplains are often sources for desert-
fringing loess deposits3>40. To that end, in addition to using
bedrock samples for detrital zircon age comparisons, we quanti-
tatively compare our data with river samples from La Pampa and
the extra-Andean Patagonia regions as a proxy for detrital zircon
populations that could have been derived by winds to the south of
Tafi del Valle (Fig. 2B, S1, S2). The detrital zircon data from the
Sierra Pampeanas foreland, northern and southern Patagonian
Andes—all areas south of Tafi del Valle—indicate poor quanti-
tative similarities to the Tafi del Valle sediments (Fig. 2B). We
interpret this to mean that most of the silt and larger fraction of
detritus in the upper Pleistocene to Holocene Tafi del Valle loess-
paleosol strata was not derived from southerly winds as pre-
viously proposed. Published data from the Chaco Plain is also a
poor fit for the Tafi del Valle data, suggesting alternative wind
orientations played a limited role in supplying the dust deposited
in Tafi del Valle (Fig. 2B). Notably, the mobilization of Puna
Plateau sediments within the westerly-northwesterly winds is
consistent with inferences from bulk geochemical analysis of late
Pleistocene dust sampled from the Antarctic ice sheet that largely

point to the Altiplano-Puna Plateau as a prominent proto-source
for this dust*!. Such a sediment routing pathway is also largely
consistent with last glacial maximum (LGM) South American
dust flux in general circulation models (e.g., ref. ).

The high concentration of volcanic-derived particles in Tafi del
Valle strata has been used to argue for a significant direct volcanic
contribution to the loess-paleosol succession!230. However, only
n =2 detrital zircons (of n =4011) in the Tafi del Valle samples
yielded U-Pb ages that overlap (within uncertainty) the deposi-
tional ages of the respective samples. We interpret this to mean
that direct volcanic contribution to the silt and larger fraction of
the loess-paleosol strata was perhaps lower than previously
thought—present but likely overwhelmed by the signal from older
(e.g., Miocene) volcanic bedrock. Despite the absence of directly
deposited volcanic zircons in our data, the percentage of detrital
zircon with ages younger than 23 Ma is significant. This, coupled
with observations of wind eroded volcanic deposits on the
southern Puna Plateau, suggests substantial eolian reworking of
Miocene and younger volcanic rocks.

Near surface wind orientations reconstructed from bedrock
erosion features on the Puna Plateau and the volumetrically large
wind deflation documented in areas like Salina del Fraile?!
(Fig. 1B) could explain the abundance of loessic deposits along
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Fig. 3 The zonal components of wind at 500 hPa and 850 hPa for 1979-2021. Data from the ERA5 Reanalysis product’3. Positive values (red) denote
westerly winds, whereas negative values (blue) denote easterly winds. The white star indicates the field location in Tafi del Valle.

the eastern flank of the subtropical Andes. Tafi del Valle, at least
presently, is located along a steep precipitation gradient, but
synoptic changes in moisture are needed to explain the inter-
bedding of loess and paleosol strata.

In addition to evidence of westerly-northwesterly wind-sup-
plied eolian sediment to the subtropical eastern Andes, the Tafi
del Valle data do not indicate a significant shift in provenance
throughout the stratigraphic section studied here at large-n. This
observation is valuable for several reasons. (1) It implies little
change to the sourcing of loessic sediment to Tafi del Valle across
the Mid-Pleistocene Transition—an important change in the
forcing of Earth’s glacial climate*>44. (2) The lack of variability in
detrital zircon provenance between loess and paleosol strata
implies either little variation in sediment sourcing between dry
and humid periods (assuming a relatively continuous accumula-
tion of dust)—albeit with potentially different accumulation rates
—or a preponderance of dust accumulation during drier periods
with pedogenesis occurring during more humid intervals (as
noted by ref. 30).

Presumably dust production in central and southern South
America looked different throughout much of the late Pleistocene
relative to present-day because of much different climatic and
surficial conditions (e.g., ref. 14). This would include changes in
wind intensity and position across spatial and temporal scales.
Geomorphic evidence from the low elevation Pampean plains
point toward important differences in near surface winds and
surficial conditions during intervals of the late Pleistocene and
early Holocene. Eolian dune fields of the Pampean Sand Sea were
periodically active during the late Pleistocene and early Holocene
but are mostly vegetation-stabilized at present*>. The Pampean
Sand Sea covers >2*10° km? (Fig. 1A)#%, which includes extensive
low-amplitude (<10 m), longitudinal, kilometer-scale deflationary
zones. Referred to as ‘las cubetas de deflacién’, these deflationary
depressions exhibit an anticlockwise pattern in satellite images
across >1*10°km?2 of the Pampean plains, retaining the geo-
morphically effective wind pattern that formed them, which may
be a poor fit for present-day winds*’. A higher present-day water
table compared to when the deflation depressions formed has
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resulted in widespread shallow lakes across the Pampean plains,
highlighting a lack of ongoing deflation. These geomorphic fea-
tures in the Argentine lowlands are an indication of much dif-
ferent surface, moisture, synoptic wind, and dust production
conditions during much of the late Pleistocene and early Holo-
cene. To that end, applying a present-day-like dust model to
South America for the Pleistocene would be imprudent.

Westerly-northwesterly winds supplied dust to Tafi del Valle
during the late Pleistocene and early Holocene. But the nature of
this westerly-northwesterly system(s) and the duration of its
emplacement when dust was generated on the southern Puna and
deposited in Tafi del Valle is uncertain. Paleoclimate data
demonstrate that conditions in South America during the Pleis-
tocene and Holocene were, for long intervals, much different than
the present-day, with only brief periods approximating present-
day-like conditions (e.g., ref. 14). A model aimed at explaining
central South American dust dynamics across most of the late
Pleistocene to early Holocene would need to consider not only the
data presented here, but also explain (1) a < 100-ky periodicity in
pedogenesis in Tafi del Valle, and (2) major differences between
the present-day and late Pleistocene and early Holocene in the
low elevation plains of southern South America to include large-
scale eolian dune mobilization and deflation. To that end, we
provide a brief discussion of the possible scenarios which could
satisfy (most of) the available data.

Tafi del Valle is located at or slightly beyond the northern
influence of present-day Zonda winds?>2> and within the dust
generating influence of the Southern Hemisphere subtropical jet,
particularly during the austral winter months. In a seminal study,
Gaiero et al.13 utilized satellite data, a particle transport model,
and geochemical analyses to suggest that dust storms in 2009 and
2010 originating from the Puna Plateau were associated with
northward incursions of polar frontal systems, and experienced
subsequent eastward transport related to the subtropical jet.
While dust can be generated in this region year-round, today it is
these short-term (hour- to day-long) events that drive substantial
dust production. If this same concept was proposed for longer-
term dust generation (i.e., the time interval covered by the geo-
chemical data in this study), it would explain the uniformly
westerly-northwesterly derived dust at Tafi del Valle, but it would
be insufficient to explain the periodicity of loess accumulation
and pedogenesis, which would have to be controlled by longer
duration synoptic changes. Additionally, short-term displace-
ments in zonal winds would not (alone) explain prolonged per-
iods of greater-than-present aridity, wind erosion, and dust
production in the Pampean plains.

Alternatively, longer-term, orbitally-forced processes may
explain the loessic sediments and pedogenic cycles in Tafi del
Valle, and provide a mechanism for changes in eolian transport
and wind erosion at lower elevations in the Pampean plains. One
possibility is that the frequency of the storm systems driving cold
air advection to lower latitudes, and thus generating dust out-
breaks on the Puna Plateau, varies temporally, which would be
associated with changes in the jet streams and midlatitude
westerlies*$. An additional mechanism could relate to a time-
varied mean position of the Zonda winds, which today pre-
dominantly affect ~32-33° $23, but have been suggested to shift
with climate changes in the past (e.g., ref. 4%). These local features
of atmospheric circulation are fundamentally connected to the
subtropical jet stream and/or the midlatitude westerlies, and there
is abundant evidence for variations in both of these systems at
precessional (~19-23 ky), obliquity (~41ky), and eccentricity
(~100ky) timescales across the Pleistocene and Holocene®->2,
Considering the new geochemical and geomorphologic data
produced here, as well as existing records of pedogenesis, eolian
activity, and hydrologic changes in nearby regions, we suggest

that longer-term displacements in synoptic winds likely need to
be invoked to explain the provenance of the loessic strata in Tafi
del Valle. We note that our records of dust provenance cannot
distinguish the timescales of atmospheric circulation changes, but
sub-eccentricity variability is likely present30.

In summary, comparisons of U-Pb detrital zircon age spectra
from upper Pleistocene loess and paleosol strata in the Tafi del
Valle area of the Andean foothills with potential source areas
indicate these crystals were sourced to the west and northwest on
the Puna Plateau. This challenges previous assertions that the
subtropical loess along the eastern flank of the Andes in South
America was primarily sourced from extra-Andean Patagonia or
the Chaco Plain. However, westerly-northwesterly derivation is
consistent with extensive bedrock wind erosion on the Puna
Plateau. If this provenance scenario is valid, it implies the
emplacement of a westerly-northwesterly dominated wind system
at ~27° S during periods of high dust accumulation at Tafi del
Valle in the late Pleistocene and early Holocene.

Methods

Sampling and mineral separation. U-Pb detrital zircon samples were collected
from the Las Carreras upper Pleistocene to Holocene section described in Schel-
lenberger et al?. and Schellenberger and Veit??. A handheld GPS and photos from
Schellenberger and Veit?? were used to confirm the location of the Las Carreras
section. The field investigation and sample collection were completed with per-
mission of the landowner. Samples were exported with permission of Argentine
Customs Authority for academic use. Following the convention of Schellenberger
and Veit3), the section was measured from the stratigraphically youngest paleosol
(S0) down to the base of the measured section. We used two investigators on the
outcrop and one spotter to improve reproducibility of the stratigraphic measure-
ment. N = 8 samples, weighing 2-3 kg each, were collected at 0.2 m (19AR106),
5.1m (19AR107), 5.9 m (19AR108), 19 m (19AR109), 28.7 m (19AR110), 30.2 m
(19ARI111), 42 m (19AR112), and 43.2 m (19AR113) depth.

Zircon crystals were separated from the loess and paleosol samples using low
hydraulic energies and ultrasonic disruption to minimize mineral separation
induced grain-size age biases. Once the clay fraction was isolated from the zircon
containing mineral fraction, methylene iodide was used to isolate the dense
minerals. The zircon fraction was then isolated from the dense fraction using a
barrier Frantz instrument. Aliquots of samples at different magnet settings were
investigated under a reflected light microscope to check for the presence of zircon
in the ‘magnetic’ fraction thus minimizing the introduction of mineral separation
induced age bias. Zircon separates were homogenized and then poured onto
double-sided tape to create 2.5 cm diameter cylindrical epoxy mounts for each
sample. The epoxy zircon mounts were imaged using BSE on a Hitachi 3400 N
SEM. These images were used to identify and avoid non-zircon on mounts and to
avoid inclusions within zircon during LA-ICP-MS analysis.

Laser-ablation inductively-coupled-plasma mass-spectrometry. A Photon
Analyte-G2 193 nm Excimer laser with a HelEx sample cell was used to ablate the
detrital zircon crystals. Laser energy was set to 7 m]J. A He carrier gas was used to
deliver analyte to the plasma. MFCI was set to 0.10 1 min~! and MFC2 was set to
0.301min~1. A 3 burst 50 um circular pre-ablation pass was used to clean sample
surfaces and a 20 um circular spot was used for analysis. Isotope ratios were mea-
sured on a Nu Instruments HR Multi-collection ICP-MS. Cool gas was set to
13.01 min~1, auxiliary gas to 0.80 1 min~!, and sample/make-up gas to 1.06 1 min~1.
RF power was set to 1300 W. Faraday collectors were used to measure 29°Pb, 207pb,
208pp, 232Th, 238U, whereas 202Hg and 204Pb + Hg were measured on ion counters.
Isotope ratios were determined from a 6 s ablation window using a total counts
method. Elemental and mass fractionation, initial-Pb correction, and instrument
drift were corrected using the FC-1 and R33 zircon reference materials and the
open-source data reduction AgeCalcML MATLAB code?3.

External uncertainties on 206Pb/238U for all samples ranged from 0.80% (20) to
0.38% (20), whereas the external uncertainties on 206Pb/207Pb ranged from 0.50%
(20) to 0.36% (20). Following convention, the uncertainties shown below with the
ages include only the internal uncertainties shown at 1o. The ‘Best Age’ was
assigned as 206Pb/238U age when the 29°Pb/238U was <900 Ma, whereas the 20°Pb/
207Pb age was used when 206Pb/238U was >900 Ma. Ages >600 Ma with >20%
discordance or >5% reverse discordance were not considered; as were dates
with > +10% internal uncertainty.

Geomorphic mapping. Linear wind erosion features were mapped on Landsat
images in Google Earth (GE) Pro. Measurements between Landsat images in GE
Pro were avoided to minimize errors induced from georegistration problems.
Linear features were mapped as lines in GE Pro defining the long axis of the
lineation. The geomorphic nature of linear features was determined through
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analysis of landform geometry, size, local- and regional slope, and relief in GE.
Geographic coordinates for the starting and ending positions of lines were con-
verted to azimuth (°) in Excel.

Data availability
All new data generated in this study are available in the manuscript and supplementary
material.
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