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ABSTRACT
Tropical dry forests (TDFs) have been widely transformed by human activities

worldwide and the ecosystem services they provide are diminishing. There has been

an urgent call for conservation and restoration of the degraded lands previously

occupied by TDFs. Restoration experiences aim to recover species diversity and

ecological functions. Different restoration strategies have been used to maximize

plant performance including weeding, planting or using artificial mulching. In this

investigation, we evaluated whether different restoration practices influence animal

arrival and the reestablishment of biotic interactions. We particularly evaluated

lepidopteran larvae diversity and caterpillar predation on plants established under

different restoration treatments (mulching, weeding and control) in the Pacific

West Coast of México. This study corroborated the importance of plant host identity

for lepidopteran presence in a particular area. Lepidopteran diversity and herbivory

rates were not affected by the restoration treatment but they were related to

tree species. In contrast, caterpillar predation marks were affected by restoration

treatment, with a greater number of predation marks in control plots, while

caterpillar predation marks among plant species were not significantly different.

This study highlights the importance of considering the introduction of high plant

species diversity when planning TDF restoration to maximize lepidopteran diversity

and ecosystem functioning.

Subjects Conservation Biology, Ecology

Keywords Predation rate, Clay caterpillar model, Biotic interactions, Herbivore, Mexico,

Herbivory, Restoration, Management, Conservation, Insects

INTRODUCTION
Ecological restoration aims to recover species diversity and ecological functions (Society

for Ecological Restoration, 2007; Howe & Martı́nez-Garza, 2014). Different restoration

strategies have been used to maximize plant survival and performance including
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weeding, planting or using artificial mulching. In general, treatments that enhance soil

water content and minimize competition with background vegetation are the ones

showing better results for plant performance (Chalker-Scott, 2007; Barajas-Guzmán &

Barradas, 2011). However, when considering other aspects for restoring ecological

functions such as the arrival of primary and secondary consumers, very few

investigations have evaluated different restoration treatments. The recovery of animal

populations is fundamental for restoring ecological functions (Noreika et al., 2015; Jones

& Davidson, 2016). Therefore, there is a need to understand if differences in vegetation

performance due to different restoration treatments are translated into animal

communities and further into ecological functioning.

Lepidopterans are an important group of invertebrates in tropical forests because

they are a very diverse group and function as herbivores when larvae and pollinators

as adults. As herbivores they consume significant quantities of leaf tissue (Novotny

et al., 2002, 2004, 2006; Dyer et al., 2007) and as moths and butterflies account for the

pollination of at least 10% of plant species in tropical dry forests (TDFs) (Haber &

Frankie, 1989). Therefore, when considering the restoration of ecosystems, lepidopterans

are a group that should be considered since they can help safeguard plant reproduction.

Also, lepidopterans represent a significant food source for predators in these forests and so

are needed to restore the insectivore community.

Tropical dry forests are one of the most important vegetation types in Latin America.

They used to cover 50% of land (Murphy & Lugo, 1986; Sánchez-Azofeifa et al., 2005). In

Mexico in particular they covered 37% of the country, however due to anthropogenic

activities such as agriculture and cattle farming (Trejo & Dirzo, 2000), only 30% of the

original area remains pristine. The current scenario involves a mosaic of large areas of

degraded lands surrounded by secondary forests and few federal and state preserves

(Sánchez-Azofeifa et al., 2009). Therefore, there is an urgent need to restore degraded lands

to conserve ecological functions and guarantee ecosystem services (Ceccon et al., 2015).

Controversies around restoring TDFs have arisen due to their relatively high successional

speed. Some authors argue that fencing against cattle should be sufficient to ensure

forest recovery while others advocate for active interventions involving planting of

native tree species (Aide et al., 2000; Gonzáez-Iturbe, Olmsted & Tun-Dzu, 2002; Burgos &

Maass, 2004; Lebrija-Trejos et al., 2010). Recent investigations have found that fencing

against cattle in a TDF of Southern Mexico was more important for lepidopteran recovery

than planting (Juan-Baeza, Martı́nez-Garza & del-Val, 2015). However, active planting

has been shown to speed up plant regeneration and lepidopteran arrival in other

restoration experiences (Hernández et al., 2014).

With the aim of understanding the relative contributions of different restoration

treatments for biodiversity and ecological function recovery, in this paper we investigated

whether different restoration treatments in the TDF: (1) have differential impacts on

lepidopteran communities associated with introduced plants; (2) lead to differences in

herbivory rates; and (3) have differential impacts on predation rates on model

lepidopteran larvae.
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METHODOLOGY
Our experimental area is situated in the central Pacific coast of Mexico in the

surroundings of the Chamela-Cuixmala Biosphere Reserve (CCBR, 19�29′N, 104�58′
105�04′W), Jalisco, Western Mexico, in pastures formerly covered with TDFs in the

La Huerta municipality. The main vegetation in the area is TDF with a canopy height

between 5 and 10 m, and semi-deciduous forests along riparian zones; dominant plant

families are Leguminosae, Euphorbiaceae and Rubiaceae (Lott, Bullock & Solı́s-Magallanes,

1987; Noguera et al., 2002). Mean annual temperature is 24.6 �C (1978–2000) with a

monthly oscillation of 4.3 �C, and mean annual precipitation of 731 mm (Garcı́a-Oliva,

Camou &Maass, 2002). The rainy season is concentrated from July to November (Noguera

et al., 2002) followed by an intense dry season where precipitation is almost 0 mm. The

soil types are eutric regosols, which are highly drained, causing poor water retention

(Noguera et al., 2002). The surrounding area of the reserve consists of a mosaic of

secondary succession forests, agricultural fields and cattle pastures (Sánchez-Azofeifa et al.,

2009). The TDF found at Chamela-Cuixmala is considered one of the most diverse of its

kind with 1,200 plant species, comprising a high percentage of endemism (Lott, Bullock &

Solı́s-Magallanes, 1987; Trejo & Dirzo, 2000). The invertebrate inventory is quite small;

however, 1,877 invertebrate species have been described, 583 of which are lepidopteran

species (Pescador-Rubio, Rodrı́guez-Palafox & Noguera, 2002).

The restoration area where this investigation took place is located on private land

that had been used as cattle pasture for ca. 50 years, but since 2010 the land was put aside

for ecological restoration. Ten hectares covered with exotic pastures were restored using

11 native tree species following a blocked experimental design that included three

restoration treatments: plastic mulching, weed removal and a control group. Planted

species were Cordia alliodora (Ruiz & Pav.) Oken, Cordia elaeagnoides D.C., Caesalpinia

eriostachys Benth., Caesalpinia platyloba S. Watson., Caesalpinia pulcherrima, Lysiloma

microphylla Benth., Apoplanesia paniculata C. Presl, Leucaena leucocephala (Lam.) de Wit,

Guazuma ulmifolia Lam., Gliricidia sepium (Jacq.) Kunth ex Walp. and Heliocarpus

pallidus Rose. The treatments were replicated five times in each of five sites with a distance

no greater than 1 km (N = 25 plots; see Saucedo-Morquecho, 2016 for experimental

details, Fig. 1). Ten individuals approximately 1 m tall of each species were planted in

a 30 � 36 m plots in a 3 � 3 grid (N = 30 individuals/species/site/treatment, a total of

4,950 plants). To facilitate mycorrhizal colonization, at the time of planting we added ca.

300 g of soil collected at the sites where maternal trees were established. Plots were

randomly assigned to one of the following treatments: (1) Plastic mulching, which

consisted of covering the soil with an agricultural use plastic before planting; (2) cutting

grasses, which consisted of manually removing the vegetation around each sapling every

three months during one year; and (3) no management after planting.

Lepidopteran sample
In order to assess Lepidoptera larval diversity in the restoration treatments, in 2014,

three years after the experimental set up and when plants were 2 m in height on average

(Saucedo-Morquecho, 2016), we sampled a subset of the plots under the three legacy
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experimental treatments in three sites (N = 3 plots/treatment), including 11 experimental

plant species. Sampling was conducted on four plants per tree species (N = 44)

per plot (N = 396 plants). During the rainy season of 2014 (July–November) monthly

censuses were conducted looking for lepidopteran larvae in all selected plants, searching

for caterpillars on all leaves and stems. The presence of caterpillars were recorded, and

if unknown they were collected, transferred to the lab and reared into adulthood to

further identify the species.

Herbivory rates
At the end of the rainy season (November), we estimated leaf area consumed by

herbivores in five randomly selected mature leaves collected from the same plants used for

herbivore censuses. However, only seven species could be assessed as the other four species

(Leucaena leucocephala, Caesalpinia pulcherrima, Caesalpinia eriostachys and Lysiloma

microphylla) have very small leaflets in which leaf damage is difficult to assess. Leaves

were shade dried and scanned in the laboratory. Leaf area loss was assessed using the

program SigmaScan Pro, then we calculated leaf area lost per plant, per species in the

different restoration treatments.

Figure 1 Experimental set-up showing different experimental sites and restoration plots inside each

site. Restoration code treatments are as follows: Co, control with planting; Mu, planting with plastic

mulching; Wed, planting with weeding; No, control with natural regeneration. Note that in this article

we only report results from the Co, Mu, and Wed restoration treatments.
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Caterpillar predation
During the rainy season of 2015, we evaluated lepidopteran larvae predation at the

same restored sites. In this case, due to time constrains, we used five plants of nine species

in only two of the legacy restoration treatments (plastic mulching and control) in two

sites (we excluded Cordia alliodora and Leucaena leucocephala because of high mortality

during 2015; total sampled plants = 180). To infer lepidopteran predation we used

artificial clay caterpillar models as proposed by Richards & Coley (2007). Caterpillar

models were 3 cm by 0.5 cm thick. We used models in bright green and brown-yellow that

mimic the most common caterpillar colors in the region. We decided to use two caterpillar

colors since it has been reported that coloration plays an important role in predator

behavior and we wanted to test this hypothesis for the TDF. For each experimental plant,

we exposed four artificial clay caterpillars (two green and two brown-yellow), a total

of 180 caterpillars per restoration treatment per site. Artificial caterpillars were fixed to

leaf petioles or abaxial part of leaves using white glue. We exposed caterpillar models

to predators for 24 h and then we estimated predation by evaluating marks on the

clay models. Caterpillars with predation marks were photographed to be analyzed in

more detail using a computer. Predation types were assigned following Tvardikova &

Novotny (2012) proposal. We repeated the predation experiments four times between

July and October 2015, once every month. Missing caterpillars were not included in

the analyses since we do not know their final destiny; they accounted for 15% of clay

caterpillar models. Missing caterpillars may have fallen from the trees because the glue

was not strong enough or predators may have taken them away.

Statistical analysis
Lepidopteran richness and abundance was analyzed using nested ANOVAs, with plant

species and restoration treatment as the explanatory variables nested by plot/restoration

treatment. To analyze lepidopteran community similarities between plant species and

restoration treatments we obtained Bray–Curtis indices per plant species and per

treatment, we then plotted the resulting dendrograms showing Bray–Curtis distances

and performed a Mantel test with 100 permutations using the “vegan” library to assess

the tree significance. Herbivory rates were analyzed using the percent leaf area damaged

per plant transformed with arcsin. We also used a nested ANOVA using species and

restoration treatment as the explanatory variables nested by plot/restoration treatment.

We also performed a Pearson correlation between herbivory per plant and total

lepidopteran abundance. Caterpillar predation was analyzed using a lme (linear mixed

effect model) with total percent predation; green caterpillar percent predation and

brown caterpillar percent predation as response variables and restoration treatment,

with tree species and sampling month as explanatory variables. To analyze differences

in predator type we used ANOVA with percent caterpillar predated as a response

variable and presumed predator type, caterpillar color, restoration treatment, sampling

month and their interactions as explanatory variables. All analyses were performed with

R program version 2.14.0 (R-Core development).
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RESULTS
Lepidopteran diversity
During the 2014 rainy season, we found a total of 234 lepidopteran larvae from 89 species

(16 identified to species level, four to genus and 41 identified to family), 18 species

comprised most individuals (44.8%). Lymantriidae, Psychidae and Crambidae were the

best-represented families with 25, 19 and 15 individuals (Fig. 2). Lepidopteran abundance

and richness are not affected by the restoration treatment (F(2,42) = 1.22, P = 0.3) but were

related to the particular tree species sampled (F(10,42) = 2.6, P = 0.01), regardless of the

restoration treatment (plant species vs. restoration treatment interaction: F(18,42) = 0.67,

P = 0.81). Many lepidopteran species (45%) were present only in one restoration

treatment (Table 1) and the Bray–Curtis dissimilarity index between restoration treatments

was also high ranging from 71% (control vs. weeding treatment) to 85% (control vs.

mulching treatment). The Bray–Curtis dissimilarity index between plant species was very

high ranging from 63% to 100%, suggesting that lepidopteran community composition

was influenced by host identity (Table 2). Interestingly, lepidopteran communities

Figure 2 Total caterpillar abundance per family including all restoration treatments.

Table 1 Number of unique (diagonal in bold) and shared (below the diagonal) lepidopteran species

between restoration treatments.

Weeding Mulching Control

Weeding 14

Mulching 14 10

Control 19 10 11
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associated with the different species of the same genus, such as Caesalpinia or Cordia

did not form uniform groups; each Caesalpinia and Cordia species was found in a

different branch of the cluster (Supplemental Information 1).

Leaf damage by herbivores
Percent leaf area removed per species ranged from 2% in A. paniculata to 12%

in Guazuma ulmifolia and Gliricidia sepium (F(6,36) = 22.7, P < 0.001; Fig. 3).

However, herbivore damage was not different as a function of restoration treatments

(F(2,4) = 2.49, P = 0.19) for any host species (plant species vs. restoration treatment

interaction: F(12,36) = 1.03, P = 0.45). Leaf damage did not correlate with caterpillar

abundance per plant (r = 0.003, P = 0.96) or total caterpillar abundance per plant

species (r = 0.56, P = 0.14).

Caterpillar predation
During the 2015 rainy season, a total of 2,376 caterpillar clay models were exposed to

predation in the restoration plots, of which 352 (14.8%) presented marks suggesting

some type of predation (see Supplemental Information 2 for examples) and 359 (15.1%)

disappeared during the experiment. Caterpillar predation on different host species

ranged from 16% (in Cordia elaeagnoides) to 9% (in Gliricidia sepium) but because the

variance was high in all species we found no statistical differences across plant species

(F(8,39) = 0.656, P = 0.72; Fig. 4). Caterpillar predation was greater on trees growing in the

control treatment (56% vs. 44%; F(1,132) = 3.95, P = 0.048). Also, predation during the

rainy season was different between months, in both the control and mulching treatment

plots the percentage of predated caterpillars was lower in July (3% and 2%, respectively)

Figure 3 Percent leaf area removed (mean ± EE) in trees, averaged across all restoration treatments

in the TDF, F(6,36) = 22.7, P < 0.001.

Solis-Gabriel et al. (2017), PeerJ, DOI 10.7717/peerj.3344 8/15

http://dx.doi.org/10.7717/peerj.3344/supp-1
http://dx.doi.org/10.7717/peerj.3344/supp-2
http://dx.doi.org/10.7717/peerj.3344
https://peerj.com/


than later during the rainy season (13% in October for control plots and 10% in August

for mulching treatment plots; F(1,132) = 4.71, P = 0.03; Fig. 5A).

We found that color of artificial caterpillar clay models affected predation rates, where

green models were more predated (56%) than brown-yellow ones (44%; F(1,132) = 7.31,

P = 0.007), irrespective of host species (F(8,132) = 0.129, P = 0.997) or restoration

treatments (F(1,132) = 0.277, P = 0.59; Fig. 5B).

When analyzing the predator type attacking caterpillar clay models, we distinguished

two general predation marks: (1) beak marks imposed by birds; and (2) marks imposed

by invertebrates characterized by small holes or small scrapes presumably made by

mandibles (Supplemental Information 2). Marks attributed to invertebrate predation

were significantly more frequent than marks caused by bird predation (9.7% vs. 5% of

predated caterpillars, respectively; F(1,6) = 40.41, P = 0.0007). Temporal trends of bird

and invertebrate predation marks showed different patterns, with bird predation

being more important in August, while invertebrate peak predation was in September

(month vs. predator type interaction: F(3,6) = 10.059, P = 0.009; Fig. 6). Both types of

predators marks were greater on green caterpillars but the difference between colors

was more pronounced for bird predation marks (predator type vs. caterpillar color

interaction: F(1,6) = 8.69, P = 0.025).

DISCUSSION
This study corroborated the importance of plant host identity for the recovery of

caterpillar populations in restoration efforts. Even though plant species showed

differences in performance depending on the restoration treatment applied in the site

(Saucedo-Morquecho, 2016), lepidopteran species were not responsive to restoration

treatments, but showed large differences among host plant species in terms of richness

and abundance. This finding is similar to other studies that have found that lepidopteran

Figure 4 Percent predation on clay models (mean ± SE) associated with different plant species

during the rainy season of 2015, F(8,39) = 0.656, P = 0.72.
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communities are strongly determined by host species identity irrespective of land

use history (Hernández et al., 2014; Juan-Baeza, Martı́nez-Garza & del-Val, 2015).

Lepidopteran association with particular plant species is dictated by plant nutritional

Figure 5 Percent predation on caterpillar clay models (mean ± SE) during the rainy season of 2015:

(A) in the control and mulching restoration sites, month vs. predator type interaction: F(3,6) =
10.059, P = 0.009, (B) on green and brown caterpillar clay models (mean ± SE) in control and

mulching restoration treatments.

Figure 6 Percent predation caterpillar clay models (mean ± SD) per guild type (bird or invertebrate)

during the rainy season of 2015.
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quality, plant appearance and by predation experienced in particular plants. In

particular, plant nutritional quality has been associated with nutrient concentration,

secondary metabolites and physical defenses (thickness, trichomes and waxes) (Dyer

et al., 2007). These characteristics are known to vary not only among species but also

across sites (Pennings, Siska & Bertness, 2001; Boege & Dirzo, 2004). However, because we

did not assess these traits, further studies are needed to test how they may have

influenced the herbivore communities.

Leaf area removed by herbivores followed the same pattern observed in lepidopteran

diversity; some tree species had greater damage than others (in particular Gliricidia

sepium showed the highest percent of leaf area consumed). Since we did not find a

significant correlation between lepidopteran abundance and leaf damage in individual

plants or at the species level, it is possible that the observed damage can be due to

other herbivores such as coleopteran larvae, grasshoppers or ants, which are known

to be important herbivores in the Chamela TDF; this hypothesis also warrants further

investigation. Interestingly, herbivore damage levels found in this study are similar to

previous investigations in the region concentrated in conserved forests (Dirzo & Boege,

2008). Hence, we conclude that our restoration plots attracted herbivores with similar

ecological functions to those found in mature forests (i.e., similar pressures on plants

due to leaf consumption), and herbivores are not increasing their abundance in a

disproportionate way behaving as pests. This finding is particularly relevant, since it has

been suggested that restoration efforts may concentrate resources for herbivores and

plants can fail to establish because of increased herbivore pressure (King & Keeland, 1999;

Blanco-Garcı́a & Lindig-Cisneros, 2005; Sweeney, Czapka & Petrow, 2007). In our case, leaf

damage was not exacerbated and plants were not particularly affected, therefore the

restoration efforts were not hampered by herbivores.

Our results showed a very high lepidopteran species turnover between restoration

treatments and also between plant species. This result mirrors the lepidopteran beta

diversity characteristic of Mexican TDFs (López-Carretero, 2010, 2014). Due to this

high diversity, TDFs represent a challenge for ecological conservation and restoration,

hence we recommend ensuring high plant diversity and heterogeneity in lepidopteran

conservation/restoration programs.

Lepidopteran predation
Caterpillar clay models were useful to measure lepidopteran predation by birds and

invertebrates in the restoration experiments. We were able to infer that invertebrate

predation was stronger than bird predation for caterpillars irrespective of color or

plant species. Richards & Coley (2007) and Suzuki & Sakurai (2015) with the same

methodology also reported that invertebrates are the main predators in a tropical rainforest

in Costa Rica and in Japan, respectively. However, Sam, Koane & Novotny (2015) in

Papua New Guinea showed that the predator guild changed across an altitudinal gradient,

where birds were more important at high altitudes and ants were more important at

low altitudes.
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We predicted that caterpillar predation should differ among host species due to

differences in canopy cover, height and structure. Other studies investigating

insectivorous bird visitation rates to tree species have found that they prefer certain

species, in particular the ones with greater insect abundance (Gantz et al., 2015) or

with higher canopies (Fink et al., 2009). However, it is likely that young saplings planted

at the same time in our experiment did not have pronounced architectural

differences yet and this may have obscured possible predator preferences. Further

investigation is needed to understand the relative importance of predation for herbivory

at a plant community level, since we measured herbivory and predation rates in

different years.

CONCLUSION
This study concurs with previous restoration experiences in that restoring TDF is a

viable option to recover biodiversity and highlights the importance of including a

diverse community of plants to enhance biodiversity recovery. Although restoration

treatments did influence plant growth (Saucedo-Morquecho, 2016), they did not scale-up

to influence lepidopteran communities and predation rates. Hence, the reestablishment

of ecological functions was independent of initial restoration treatment. It appears

that once plants are established, if the restoration outcome is close to a conserved

forest, as is the case in this study, herbivores and predators are able to colonize and resume

biotic interactions. In this context, we suggest the use of the most economical option

for future restoration efforts.
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