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Background: Despite being the second most common tumor in men worldwide, the
tumor metabolism-associated mechanisms of prostate cancer (PCa) remain unclear.
Herein, this study aimed to investigate the metabolism-associated characteristics of PCa
and to develop a metabolism-associated prognostic risk model for patients with PCa.

Methods: The activity levels of PCa metabolic pathways were determined using mRNA
expression profiling of The Cancer Genome Atlas Prostate Adenocarcinoma cohort via
single-sample gene set enrichment analysis (ssGSEA). The analyzed samples were
divided into three subtypes based on the partitioning around medication algorithm.
Tumor characteristics of the subsets were then investigated using t-distributed
stochastic neighbor embedding (t-SNE) analysis, differential analysis, Kaplan–Meier
survival analysis, and GSEA. Finally, we developed and validated a metabolism-
associated prognostic risk model using weighted gene co-expression network analysis,
univariate Cox analysis, least absolute shrinkage and selection operator, and multivariate
Cox analysis. Other cohorts (GSE54460, GSE70768, genotype-tissue expression, and
International Cancer Genome Consortium) were utilized for external validation. Drug
sensibility analysis was performed on Genomics of Drug Sensitivity in Cancer and
GSE78220 datasets. In total, 1,039 samples and six cell lines were concluded in our work.

Results: Three metabolism-associated clusters with significantly different characteristics
in disease-free survival (DFS), clinical stage, stemness index, tumor microenvironment
including stromal and immune cells, DNA mutation (TP53 and SPOP), copy number
variation, and microsatellite instability were identified in PCa. Eighty-four of the
metabolism-associated module genes were narrowed to a six-gene signature
associated with DFS, CACNG4, SLC2A4, EPHX2, CA14, NUDT7, and ADH5 (p <0.05).
A risk model was developed, and external validation revealed the strong robustness our
risk model possessed in diagnosis and prognosis as well as the association with the
cancer feature of drug sensitivity.
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Conclusions: The identified metabolism-associated subtypes reflected the
pathogenesis, essential features, and heterogeneity of PCa tumors. Our metabolism-
associated risk model may provide clinicians with predictive values for diagnosis,
prognosis, and treatment guidance in patients with PCa.
Keywords: prostate cancer, metabolism-associated subtype, risk model, tumor heterogeneity, immunotherapy
INTRODUCTION

Prostate cancer (PCa) is the second most frequent urinary
system-associated type of cancer, accounting for 13% of all
malignant tumors in men (1). Radical prostatectomy (RP) has
been used to cure PCa patients by removing the malignant
prostate. However, the recurrence rates after the surgery are
high. Recurrent cancer has risks of developing into castration-
resistant PCa, which will either continue progressing the pre-
existing PCa or spreading cancer to other parts of the body (2).
Therefore, exploring the tumor characteristic and finding a new
therapy for PCa remains crucial. Furthermore, identifying
biomarkers for disease-free survival (DFS) is needed to
improve patients’ prognosis with PCa.

Due to the unrestricted multiplicative nature of cancer cells,
tumors exhibit different metabolic statues from normal tissue,
thus provide a possible way to identify tumors through the
difference in metabolism. Recent studies have proven that
some metabolisms, such as citrate and choline metabolism, are
closely related to PCa (3). Studies have also shown that based on
the variance in metabolites, such as increased urea cycle
metabolites, PCa can be characterized (4).

Classification analysis based on a large number of samples
that can better reflect tumor features and heterogeneity becomes
possible with the advent of high-throughput sequencing. HIgh-
throughput sequencing has been successfully applied to classify
subtypes in different cancers. Subtypes are then used to either
guide immune therapy, portray multiple dimensions of tumor
characteristics, or assist patient prognosis prediction (5, 6).
Although many genome-wide analyses have been performed in
regards to PCa, there has been a lack of hierarchical cluster
analyses of the PCa transcriptome to exploring tumor metabolic
features. Meanwhile, almost all previous studies were based on
PCa tumor metabolism concentrated on individual tumor cells
rather than mixed tissue, including tumor cells, stromal cells, and
immune cells. These studies and therefore do not reflect the
metabolic characteristics of PCa in vivo (7). So a hierarchical
cluster analysis of the PCa transcriptome from a metabolic view
to exploring tumor heterogeneity is therefore crucial.

Based on the information above, we performed unsupervised
clustering to explore the potential metabolism-associated subtypes
and explored the correlations between the subtypes and tumor
heterogeneity. Biomarkers associated with subtypes were also
selected. Finally, a risk model to predict PCa patients’ prognosis
was constructed. We hypothesize the metabolism-associated
characteristics of PCa to understand the PCa metabolic
mechanism better and further identify tumors. The risk model
will be able to guide the PCa diagnosis, prognosis, and treatment.
2

MATERIALS AND METHODS

Data Collection
Gene expression files, DNA mutation data, and copy number
variation (CNV) of prostate adenocarcinoma (PRAD) tissues
were downloaded from TCGA (https://portal.gdc.cancer.gov/).
Gene expression data were acquired using the Illumina HiSeq
RNA Sequencing platform and expressed as fragments per
kilobase of transcript per million fragments (FPKM). The
cBioPortal for Cancer Genomics (https://www.cbioportal.org/)
provided clinical data of the PRAD patients (8). RNA sequencing
(RNA-seq) data of normal prostate tissues from testing cohorts
for diagnosis were obtained from the Genotype-Tissue
Expression (GTEx) (https://www.gtexportal.org/) and tumor
tissue from the ICGC (https://icgc.org/). RNA-seq and
microarray data of PRAD tissues and clinical information from
testing cohorts for prognosis were obtained from the Gene
Expression Omnibus (GEO) database (https://www.ncbi.nlm.
nih.gov/gds/). The GEO search strategy of the GSE datasets
was as follows: 1) Include “prostate cancer” and dataset types
of RNA-seq or micro-array; 2) Include more than one hundred
PRAD samples with survival data; and 3) Include expression
information of six risk model genes. Two datasets that met these
requirements were identified, GSE54460 and GSE70768.
Microarray data of cell lines (including 22RV1, DU-145,
LNCaP-Clone-FGC, PC-3, PWR-1E, and VCaP), and RNA-seq
data of melanoma samples were downloaded from the Genomics
of Drug Sensitivity in Cancer (GDSC) (https://www.
cancerrxgene.org/) and GSE78220. We also acquired the
immunohistochemistry (IHC) data for PRAD and normal
prostate tissues from the Human Protein Atlas (HPA) data
portal (https://www.proteinatlas.org/). Immune infiltrate data
for PRAD tissues were downloaded from the Cistrome Project
(http://www.cistrome.org/) using the Tumor IMmune Estimation
Resource version 2.0 (TIMER2.0) (9).

ssGSEA Assessment of Metabolism-
Associated Pathways Expression Levels
Data for 41 metabolism pathway gene sets were acquired from
Molecular Signatures Database (MSigDB; https://www.gsea-
msigdb.org/) (10) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) (11) and the PCa related activity levels were
calculated using ssGSEA and the gene set variance analysis
(GSVA) R package 1.34.0 (10). The metabolism-associated
signatures used included galactose metabolism, ascorbate and
aldarate metabolism, fatty acid metabolism, purine metabolism,
pyrimidine metabolism, alanine aspartate and glutamate metabolism,
glycine serine and threonine metabolism, cysteine and methionine
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metabolism, arginine and proline metabolism, histidine metabolism,
tyrosine metabolism, phenylalanine metabolism, tryptophan
metabolism, beta alanine metabolism, taurine and hypotaurine
metabolism, selenoamino acid metabolism, glutathione metabolism,
starch and sucrose metabolism, amino sugar and nucleotide sugar
metabolism, glycerolipidmetabolism, inositol phosphate metabolism,
glycerophospholipidmetabolism, ether lipidmetabolism, arachidonic
acid metabolism, linoleic acid metabolism, alpha linolenic acid
metabolism, sphingolipid metabolism, pyruvate_metabolism,
glyoxylate and dicarboxylate metabolism, propanoate metabolism,
butanoate metabolism, riboflavin metabolism, nicotinate and
nicotinamide metabolism, retinol metabolism, porphyrin and
chlorophyll metabolism, nitrogen metabolism, sulfur metabolism,
metabolism of xenobiotics by cytochrome P450, drug metabolism
cytochrome P450, and drug metabolism other enzymes (Table S1).
Identification of PRAD Subtypes by
Partitioning Around Medication (PAM) and
T-Distributed Stochastic Neighbor
Embedding (t-SNE) Analyses
Unsupervised clustering analysis using the PAM algorithm was
performed based on the ssGSEA score of each sample using the R
package ConsensusClusterPlus function (12). The samples were
then divided into three subtypes. The t-SNE analysis of the
ssGSEA scores using R package Rtsne identified three clusters.
Kaplan–Meier (K–M) survival analysis of the three metabolism-
associated subtypes was performed using R package survival.
Stemness Index Calculation and Immune
Infiltration Estimation of PRAD Tumors
To evaluate the tumor stemness index, we downloaded the
mRNA expression-based stemness index (mRNAsi) calculated
by machine learning in previous studies (13). The stem cell gene
set was obtained in a previous study (14), and the ssGSEA
stemness index (ssGSEAsi) was calculated using the GSVA R
package 1.34.0 (10). Tumor purity was calculated using R
package ESTIMATE 1.0.13 (15) and then used to correct the
stemness index. The immune scores, stromal scores, and
ESTIMATION scores calculated using the R package
ESTIMATE 1.0.13 (15) were used to evaluate immune cell and
stromal cell abundance in the PRAD tumors.
Metabolism-Associated Module Genes
Filtered by WGCNA and Functional
Enrichment Analysis
After selecting the metabolism-associated genes, we generated an
adjacency matrix (AM) and topological overlap matrix (TOM)
using the gradient method based on power values ranging from 1
to 20. When the correlation between the average degree of
connectivity (k) and p (k) reached 0.88, we obtained the
optimal power value and constructed a scale-free topology
network. Network connectivity of the genes was measured
using a TOM transformed from an AM (16). Modules were
calculated using a divided cluster tree (17). Finally, we linked the
Frontiers in Oncology | www.frontiersin.org 3
module eigengenes (MEs) with the subtypes in the current study
related to metabolism-associated status (C1, C2, and C3) and for
the next analysis, selected the module with the highest
correlation based on module-trait correlation coefficients and
gene significance (GS) with C1 and C3 (ǀcorǀ >0.3). These genes
were considered metabolism-associated module genes. To
annotate the molecular functions of the genes, Gene Ontology
(GO) and KEGG functional enrichment analyses of the
metabolism-associated module genes were performed using the
clusterProfiler R package 3.42.0 (18).
Biomarker Selection and Risk Model
Construction
The correlation between metabolism-associated genes and DFS
of PRAD was calculated and analyzed using univariate Cox
analysis with R package survival 3.1.8, and candidate
biomarkers were screened at p values <0.05. LASSO regression
using R package glmnet 3.0.2 (19, 20) was then applied to resolve
any multilinear problem that may have existed in the regression
analysis, and the biomarkers were filtered. Multivariate Cox was
used next to build a risk model and to obtain estimated
regression coefficients. Finally, we calculated the risk score for
each sample to quantify the prognosis risk of each patient with
PRAD. Survival data were analyzed as K–M survival curves via R
package survival 3.1.8. To evaluate the precision of the risk model
and nomogram, time-dependent receiver operating characteristic
(ROC) analysis was applied using the R package survival ROC
1.0.3. An area under the ROC curve (AUC) >0.60. indicated the
prediction ability of the model was meaningful, and an AUC >0.70
indicated an outstanding predictive value of the model. To
investigate the function of risk model genes, we performed
GSEA of the TCGA cohort according to the high-risk group
and low-risk group divided by the risk score medium value. The
correlation between clinical variates and the DFS of PRAD was
analyzed and calculated using univariate and multivariate Cox
with the R package survival v3.1.8. The nomogram was obtained
with the R package survival v3.1.8. The C-index analysis was
performed with the R package pec v2019.11.3 (21).
HPA Analysis
Protein levels of six risk model genes expressed in PRAD and
normal prostate samples were analyzed using IHC staining data
obtained from the HPA database. Four categories of high,
medium, low, and not detected were used to evaluate
expression levels. These categories included a scoring system
based on the proportion of positive-stained cells (>75, 25–75, or
<25%) and staining intensity (strong, moderate, weak,
or negative).

Statistical Analysis
All statistical analyses were conducted using R software (version
3.6.1). The Mann–Whitney U-test was used to compare two
groups with a non-normal distribution of variables. For
comparisons of three groups, Kruskal–Wallis tests of variance
were used as nonparametric methods. Correlation analysis was
November 2020 | Volume 10 | Article 598801
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performed using the Person coefficient. All statistical tests were
two-sided, and p-values < than 0.05 were considered
statistically significant.
RESULTS

Metabolism-Associated Subtypes
Identified by ssGSEA and PAM Analysis
A schematic of our research workflow is shown in Figure 1A,
and the clinical information regarding the TCGA PRAD cased
included in our study is summarized in Table 1. To determine
the level of activity of the metabolic pathways in each PRAD
sample, we calculated the enrichment scores of 41 metabolism-
associated gene sets using ssGSEA (Table S1). We then
performed PAM analysis of ssGSEA scores for 499 PRAD
samples and determined the matrix heatmap of the ssGSEA
scores retained sharp and clear sides when k = 3, which indicated
there were three different metabolism-associated clusters, C1, C2,
and C3 (Figure 1B and Figures S1A–F). To verify the subtype
distribution, we performed t-SNE to dimensionally reduce the
ssGSEA scores and found the subclass assignment was
approximately accordant with the t-SNE coordinates
designation (Figure 1C).

To explore the characterization of each subtype, we described the
clustering hot map of the metabolic pathway scores (Figure 2A).
Frontiers in Oncology | www.frontiersin.org 4
Compared to that of cluster C1, C2 had higher enrichment scores in
most metabolic pathways, indicating that tumors from C2 exhibited
higher metabolic activity than that of tumors from C1.
Concomitantly, the highest specific metabolic pathways scores
were observed for cluster C3 and included retinol metabolism,
metabolism of xenobiotics by cytochrome P450, drug metabolism
cytochrome_P450, drug metabolism other enzymes, starch and
sucrose metabolism, ascorbate and aldarate metabolism, and
porphyrin and chlorophyll metabolism. The other pathway scores
of C3 were higher compared to those of C1, but lower than those of
C2. This indicated that tumors from C3 might have had a medium
metabolic status at levels between those from C1 and C2 and, at the
same time, exhibited some unique metabolic characteristics.

Clinical analysis comparing the different subtypes revealed
patients from C1 and C3 had higher primary tumor (T) stage and
Gleason scores than patients from C3, but the age and regional
lymph nodes (N) stage differences of the patients among these
subtypes were not significant (Figures 2B, C and Figures S2A,
B). Prostate-specific antigen (PSA) is the most common index
used in the diagnosis and prediction of prognosis for PCa (22).
Differences in PSA levels among the three subtypes indicated the
subtypes were independent of PSA without any detectable
connection (Figure S2C). We then performed a K–M survival
analysis of patients with PARD from each subtype. The results
suggested there were considerable differences in DFS among the
three subtypes (p < 0.05; Figure 2D). The patients from C1 had
the shortest DFS compared to those from the other subtypes.
A B

C

FIGURE 1 | Identification of metabolism-associated subtypes of PRAD using PAM algorithm based on ssGSEA score. (A) Workflow in this study. (B) Delta area
curves for consensus clustering indicating the relative change in area under the cumulative distribution function (CDF) curve for each category number k compared to
k − 1. The horizontal axis represents the category number k, and the vertical axis represents the relative change in area under CDF curve. (C) t-SNE analysis
supported the stratification into three metabolism-associated subtypes of PRAD.
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This result indicated that the metabolism-associated subtypes
would be associated with different prognoses, and tumors from
the different subtypes exhibited considerable differences in their
metabolic status.
Frontiers in Oncology | www.frontiersin.org 5
Correlation of PRAD Subtypes With
Cancer Stem Cell Characteristics
In previous studies, cancer stem cell characteristics have been
shown to represent the capability of tumor proliferation and are
associated with the development and progression of PRAD (23,
24). To determine the heterogeneity of the current study
subtypes, we compared the stemness index of each subtype
that was calculated using one-class logistic regression (OCLR)
machine learning and ssGSEA. We initially obtained two
stemness indices, mRNAsi, and ssGSEAsi (Table S2).

Differential analysis of mRNAsi indicated there were
significant differences among the three subtypes (p <0.05;
Figure 3A). C1 had the highest stemness index, whereas C2
had the lowest. Moreover, ssGSEAsi analysis indicated that C3
had the highest stemness index (p <0.05; Figure S3A). To
compensate for the impact of tumor purity on the stemness
index, we recalculated the indices using corrected mRNAsi and
ssGSEAsi values by dividing them by their respective tumor
purity values and then re-performing the differential analysis.
The results for the two corrected stemness indices were in
approximate accordance with the original results (Figure 3B
and Figure S3B). This suggested the tumors from clusters C1
A

B DC

FIGURE 2 | Association between clinical characteristics and the metabolism-associated subtypes. (A) Heatmap of the ssGSEA score calculated by metabolic
pathways gene sets and specific metabolic pathways of C3 in the red frame. Gleason score (B) and Primary Tumor (T) stage (C) for each metabolism-associated
subtype in the TCGA cohort. The P values are labeled above each boxplot with asterisks (ns represents no significance, *P < 0.05, **P < 0.01, ***P < 0.001).
(D) Survival curves for each metabolism-associated subtype in the TCGA cohort. The horizontal axis represents survival time (year), and the vertical axis represents
the probability of survival. The log-rank test was used to assess the statistical significance of the differences between the three subtypes.
TABLE 1 | Clinical information from the 545 PCa patient of TCGA.

Clinical parameters Variable N (total = 545) Percentages (%)

Age (years) <=60 242 44.40%
>60 303 55.60%

T/N grade T2 188 34.50%
T3 295 54.13%
T4 10 1.83%
unknow (T stage) 52 9.54%
N0 348 63.85%
N1 79 14.50%
unknow (N stage) 118 21.65%

Gleason score 6 48 8.81%
7 285 52.29%
8 66 12.11%
9 & 10 146 26.78%

Survival status Dead 10 1.83%
Alive 482 88.44%
unknown 53 9.72%
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and C3 had a stronger capacity for invasion, proliferation, and
self-renewal compared to that for those from C2.

Because C3 demonstrated the highest ssGSEAsi and
COssGSEAsi and had specific metabolic pathways, we
performed a correlation analysis between COssGSEAsi/
ssGSEAsi and the specific metabolic pathways. The results
indicated the starch and sucrose metabolism and porphyrin
and chlorophyll metabolism pathways were highly correlated
with the PRAD stemness index (cor >0.3; Figure S3C).

Relationship Between PRAD Subtypes
and TME
To further investigate PRAD tumor heterogeneity, we compared
the TME among the metabolism-associated subtypes. In
previous studies, TME compounded by both stromal and
immune cells played a crucial role in the occurrence and
progression of PRAD (25, 26). Moreover, TME may reflect a
tumor’s sensitivity to immunotherapies (27, 28). Accordingly, we
obtained stromal scores and immune scores for the PRAD
tumors in the current study using the ESTIMATE algorithm
and then performed a differential analysis of the three subtypes.
The results showed that C1 tumors had lower stromal and
immune scores compared to those C2 and C3 tumors (Figures
4A–C). This suggested that tumor tissue from C1 had higher
tumor purity and lower immune infiltration compared to tumor
tissues from C2 and C3. To further investigate the differences in
stromal cells among the three clusters, we calculated ssGSEA
Frontiers in Oncology | www.frontiersin.org 6
scores for epithelial-mesenchymal transition (EMT),
extracellular matrix (ECM), and transforming growth factor-
beta (TGF-b) using the corresponding gene sets downloaded
from the Molecular Signatures Database (Table S2). Differential
analysis of these ssGSEA scores suggested C1 tumors had the
lowest scores for all three gene sets, which was consistent with
the results from the comparison of the stromal scores for the
three subtypes (Figures 4D–F).

Because of the significant difference in immune scores
between PRAD subtypes, we explored immune infiltration to
identify their respective immunologic landscapes. The
abundance of six immune-related cell types, B cell, dendritic,
macrophage, neutrophil, CD4+ T cell, and CD8+ T cell, was
download from TIMER2.0. Significant differences for all six
immune cell types were verified among the cluster subtypes,
with the tumors from C2 having the highest abundance of all
immune cells, except B cells. The cluster with the highest
abundance of B cells was C3, whereas C1 tumors had the
lowest abundance of all the immune cell types evaluated
(Figure 4G). Our results indicated that the metabolism-
associated subtypes of PRAD exhibited remarkably distinct
characteristics with respect to immune infiltration.

PRAD Subtype Relationship With DNA
Mutations, CNV, and MSI
To determine the reason for cluster subtype heterogeneity, we
investigated whether differences existed among the three
A B

FIGURE 3 | Association between the stemness index and the metabolism-associated subtypes. The pairwise comparison of the mRNAsi (A) and COmRNAsi (B)
between three subtypes. The P values are labeled above each boxplot with asterisks (ns represents no significance, *P < 0.05, **P < 0.01, ***P < 0.001).
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subtypes in DNA mutation burdens and patterns of somatic
mutation rates. By displaying the 15 genes determined to have
the highest frequency of DNA mutations in PRAD in a waterfall
plot, we observed remarkably different landscapes for each of the
PRAD subtype (Figure 5A). Mutation of TP53 was the most
frequent DNAmutation in cluster C1 and mutation of SPOP was
the most frequent in cluster C2. These results indicated that the
TP53 mutation was a characteristic mutation of C1 tumors, and
the SPOP mutation was a characteristic mutation of C2 tumors.
The C3 cluster had high mutation rates of both SPOP and TP53.
This may explain why tumors from C3 exhibited a status
between those of C1 and C2, regardless of the stemness index
or TME analysis.

Tumor mutation burden (TMB) is considered to reflect the
sensitivity of tumors to targeted drug therapies (29). To further
investigate the features of DNA mutations and clinical treatment
options for PARD subtypes, we compared the differences in the
number of DNA mutations among the subtypes. We found that
tumors of subtypes C1 and C3 had higher mutation counts than
those of subtype C2 (Figure 5B). This further indicated that
tumors from C1 and C3 exhibited greater heterogeneity
compared to those from C2.

CNV occurring upstream of genes regulates gene expression
and influence tumor occurrence and development (30). To
further explore whether this DNA element may lead to
increased heterogeneity among the metabolism-associated
subtypes, we downloaded a list of metabolism-relevant genes
(31) and analyzed the number of amplifications and deletions
regarding the CNV in these genes. We found that the number of
CNV amplifications and deletions was highest in subset C1,
followed by that in subset C3, with the fewest being observed in
Frontiers in Oncology | www.frontiersin.org 7
subset C2 (Figures 5C, D). These results suggest that CNV
results in significant heterogeneity among the three subtypes.

Previous studies have shown that MSI is a crucial indicator of
genome instability and is associated with many genetic diseases
(32). In our studies, we obtained level data from MSI of each
PRAD sample calculated in a previous study (33) and performed
differential analysis. The results indicate that C1 has a higher
level of MSI than C2 (p <0.05) (Figure 5E), suggesting that MSI
may be the resource of tumor heterogeneity in C1.

Identification of Metabolism-Associated
Signatures
We selected 2,029 metabolism-associated genes among the
TCGA PRAD cohort samples and constructed a co-expression
network through co-expression analysis (31). Average linkage
hierarchical clustering identified five modules. To realize the
scale-free co-expression network, a power of b = 3 was used
(Figure S4A). We then adopted the dynamic hybrid tree cut
method to combine highly similar modules using a cutoff value =
0.25 and module size = 50 (Figure S4B). Although we failed to
identify a module associated with the C3 subtype, the green and
blue modules showed a strong association with C1 and C2
subtypes (cor > 0.3 or <−0.3; Figures 6A and S4C). Ultimately,
489 associated genes were identified, including 388 genes in the
blue module and 101 genes in the green module. Of the 489
genes, 84 (cor of GS with C1 and C2 >0.3 or <−0.3) were
determined as metabolism-associated module genes (Figure 6B
and Table S3).

To determine the biochemical functions of the metabolism-
relevant module genes, we performed GO and KEGG function
enrichment analyses. Some metabolic pathways, such as alcohol
A B D

E F G

C

FIGURE 4 | Association between the tumor microenvironment and the metabolism-associated subtypes. The pairwise comparison of the stromal score (A), immune
score (B), ESTIMATE score (C), ssGSEA score of EMT (D), ssGSEA score of ECM (E), and ssGSEA score of TGF-b (F) between three subtypes. (G) The differential
analysis of the abundance of immune cells between three subtypes. The P values are labeled above each boxplot with asterisks (ns represents no significance,
*P < 0.05, **P < 0.01, ***P < 0.001).
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metabolic process, sulfur compound metabolic process, cellular
modified amino acid metabolic process, phenylalanine
metabolism, drug metabolism cytochrome P450, and
glutathione metabolism were significantly enriched by these
genes (Figures 6C, D; Table S4). This further confirmed that
the functions of the selected genes were closely associated with
PRAD metabolism.

Metabolism-Associated Risk Model
Development and Validation
Patients with DFS <20 d and those without available DFS
information were excluded. A total of 489 patients in the
TCGA database were included in the training cohort of this
study (Table 2). We performed a univariate Cox regression
analysis of the 84 previously selected variables to identify
potential optimal prognostic targets. A total of 23 genes that
met the prognostic criteria were identified (p <0.05; Table S5).
To avoid overfitting of the model. The prognostic biomarkers
that highly correlated with one another were first removed using
LASSO regression, resulting in six candidate prognostic genes
(Figures S5A, B). These six genes were then analyzed using the
Frontiers in Oncology | www.frontiersin.org 8
multivariate Cox proportional hazards regression method.
Finally, metabolism-associated module genes related to DFS of
PRAD were identified, including CACNG4, SLC2A4, EPHX2,
CA14, NUDT7, and ADH5 (Table 3). The formula used for
calculating the risk score was as follows:

Risk   score = (� 0:0:83� FPKM   of  CACNG4)

+ (� 0:0980� FPKM   of   SLC2A4)

+(� 0:0161� FPKM   of   EPHX2)

+ (� 0:2182� FPKM  of  CA14)

+ (� 0:2055� FPKM   ofNUDT7)

+(� 0:0213� FPKM   of  ADH5)

To verify the robustness of the risk model, two external
cohorts available in the GEO repository, datasets GSE54460
and GSE70768, were obtained and used as validation cohorts.
Each cohort was separated into two groups according to the
median value of each risk score. To evaluate the differences in
prognosis between the high-risk and low-risk groups, a K–M
A

B D EC

FIGURE 5 | Association between metabolism-associated subtypes and DNA mutation and copy number variation. (A) The waterfall plot of the top 15 genes of DNA
mutation in three subtypes. The pairwise comparison of the mutation count (B), the number of amplification (C), the number of deletions (D), and MSI (E) between
three subtypes. The P values are labeled above each boxplot with asterisks (ns represents no significance, *P < 0.05, **P < 0.01, ***P < 0.001).
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survival curve was constructed based on the log-rank test.
Patients in the high-risk group of the TCGA cohort GSE54460
dataset exhibited poorer outcomes compared to those in the low-
risk group (p < 0.05; Figures 7A, B). As for the GSE70768
cohort, the arrangement characteristic of microarray data
differed from RNA-seq data. Therefore, we divided the cohort
according to most cutoff value, which was calculated using X-tile,
and found there was a significantly different prognosis between
the high-risk and low-risk groups (Figure 7C). We used a time-
dependent ROC curve to investigate the predictive accuracy of
our model and determined the AUC of the prognostic model
using the TCGA training cohort was 0.769 at one year, 0.702 at
three years, and 0.705 at five years (Figure 7D). For the testing
cohorts, the AUC of the prognostic model for the GSE54460
Frontiers in Oncology | www.frontiersin.org 9
cohort was 0.703 at one year, 0.709 at three years, and 0.665 at
five years and 0.668 at one year, 0.644 at three years, and 0.628 at
five years for the GSE70768 cohort (Figures 7E, F).

Identification of Risk Model Biomarkers
Biological Functions and Construction of
Nomogram
GSEA analysis was performed to explore the biological functions
of the risk model genes. The results indicated the genes had a
significant relationship with cell cycle, DNA replication,
homologous recombination, RNA degradation, and spliceosome
pathways in the high-risk group and with beta alanine metabolism,
dilated cardiomyopathy, drug metabolism cytochrome P450,
metabolism of xenobiotics by cytochrome_P450, and vascular
TABLE 2 | Grouping of PCa patients for survival analysis.

Clinical parameter Variable TCGA GSE 54460 GSE 70768

Recurrence or no Recurrence 91 (18.61%) 51 (48.11%) 19 (17.11%)
No recurrence 398 (81.39%) 55 (51.89%) 92 (82.88%)
November 2020 | Volume 10 | A
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FIGURE 6 | Identification of metabolism-associated module genes of PRAD in the WGCNA and the functional enrichment analysis of these genes. (A) Heatmap of
the correlation between module Eigengenes and metabolism-associated subtypes (C1, C2, and C3). (B) Heatmap of 84 metabolism-associated module genes in
three subtypes. (C) The GO analysis of metabolism-associated module genes. (D) The KEGG analysis of metabolism-associated module genes.
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smooth muscle contraction pathways in the low-risk group
(Figures S5C, D; Table S6). This suggested our risk model genes
influenced these pathways and that these pathways may impact
PRAD DFS.
Frontiers in Oncology | www.frontiersin.org 10
We then explored the relationship between clinical/
metabolism-associated subtypes and risk scores and found
there was a close relationship between risk score and age/
Gleason score/T stage/N stage/metabolism-associated subtypes
A

B

D

E

F

G

I

H

C

FIGURE 7 | Development and validation of the metabolism-associated risk model. Kaplan–Meier curve analysis of high-risk the low-risk groups in the TCGA cohort
(A), in the GSE54460 cohort (B), and in the GSE70768 cohort (C). Time-dependent ROC curve analysis of the prognostic model in the TCGA cohort (D), in the
GSE54460 cohort (E), and in the GSE70768 cohort (F). (G) The differential analysis of risk score between three subtypes in PRAD. The P values are labeled above
each boxplot with asterisks (ns represents no significance, *P < 0.05, **P < 0.01, ***P < 0.001). (H) ROC curve analysis of risk score to predict sample types (tumor
and normal tissue) and metabolism-associated subtypes (C1 and C2) in TCGA. (I) ROC curve analysis of risk score to predict sample types (tumor and normal
tissue) in GTEx and ICGC cohorts.
TABLE 3 | Risk genes in the prognostic risk model.

GENE Coef HR HR.95L HR.95H P value

CACNG4 −0.00837 0.991664 0.96811 1.015792 0.49494
SLC2A4 −0.09798 0.906668 0.768444 1.069754 0.245648
EPHX2 −0.01612 0.984005 0.960761 1.007812 0.18618
CA14 −0.21817 0.803992 0.352487 1.833836 0.604063
NUDT7 −0.20554 0.814211 0.501774 1.321193 0.405298
ADH5 −0.02131 0.978912 0.95889 0.999352 0.043232
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(Figures S5E–H and Figure 7G). This suggested that our risk
model had predictive value, not only in PRAD DFS, but also in
tumor size, lymphatic node metastasis, and metabolism-
associated subtype. Meanwhile, when we used ROC to
determine whether our risk model could predict sample type
(tumor vs. normal tissue) and metabolism-associated subtypes
(C1 vs. C2), we observed that the AUC values of the risk model
were 0.886 and 0.894, respectively, in TCGA cohort (Figure 7H).
To determine the diagnostic value of our model, we used ROC to
evaluate samples from the external group (GTEx and ICGC) and
found that there was an outstanding predictor value for PCa
diagnosis with our model (AUC = 0.963) (Figure 7I and
Table 4).

Finally, we selected clinical variates with independent
prognostic value to obtain a nomogram through univariate and
multivariate Cox analyses (Figure S5I and Table S7). ROC
analysis and C-index calculation assessed the clinical meaning
of the nomogram and suggested that the clinical nomogram had
a better net benefit than clinical variate or risk score only models
(Figures S5J, K).

To determine the diagnostic and prognostic value of a single
risk model gene, we performed differential analyses of six risk
Frontiers in Oncology | www.frontiersin.org 11
model genes between different types, Gleason score, T- and N
stage of samples, and K–M analyses of each risk model gene in
the TCGA cohort. The findings indicated that six risk model
genes have differing expression levels between normal and tumor
tissue, and different Gleason score samples. Simultaneously,
there was a significant difference in prognosis between PARD
patients with high-risk and low-risk model gene expression
(Figures 8A–D and Figures S6A–F).

To confirm whether there was a differential abundance of
proteins associated with the selected genes between normal
prostate tissues and tumor tissues of patients with PRAD, we
downloaded IHC micrographs from the HPA database. Three of
the six risk model genes were found to exhibit differential
staining between normal prostate tissue and PRAD tissue,
those being EPHX2, NUDT7, and ADH5 (Figures S7A–C).
The results suggested that the expression of these proteins was
decreased in PRAD tissues. This was in accordance with the
differential analysis of expression for the six risk model genes of
the TCGA cohort and further indicated these genes might play
crucial roles in the occurrence and development of PRAD.

Drug Sensibility Analysis With Metabolism-
Associated Subtypes and Risk Model
Anti-androgen treatment is the first non-surgical treatment for
PRAD (34). It has been shown that the level of the androgen
receptor (AR) gene expression in tumor tissue is closely related
to anti-androgen treatment sensitivity (35). Therefore, we also
compared the expression levels of AR in the three subtypes and
TABLE 4 | Grouping of PCa patients for diagnostic analysis.

Clinical parameter Variable TCGA GTEx + ICGC

Normal or tumor tissue Normal 52 (10.60%) 100 (40.98%)
Tumor 499 (89.40%) 144 (59.02%)
A B

DC

FIGURE 8 | The differential analysis of six risk model genes between PRAD tissue and normal prostate tissue (A), different Gleason score PRAD samples (B),
different Primary Tumor (T) stage samples (C), and different Lymph Nodes (N) stage samples (D) in TCGA cohort. The P values are labeled above each boxplot with
asterisks (ns represents no significance, *P < 0.05, **P < 0.01, ***P < 0.001).
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found that tumors from C1 and C3 had higher AR expression
levels than those from C2 (Figure 9A). This indicates that
patients from C1 and C3 may be more sensitive to anti-
androgen treatment that those from C2, and that there existed
considerable tumor heterogeneity among the subtypes.

For castration-resistant prostate cancer, immunotherapy and
chemotherapy are the preferred treatments. To explore the
sensitivity of each cluster subtype to immunotherapies, we
collected data for 14 immune checkpoints and compared the
gene expression levels of these proteins. Significant differences in
gene expression of the checkpoint proteins among the three
Frontiers in Oncology | www.frontiersin.org 12
subtypes were observed, except for CTLA4 and IL1A. Cluster C1
exhibited lower expression of most the checkpoint genes relative
to that cluster C2 and C3 (Figure 9B), which is in accordance
with the immune infiltration status described above. Therefore,
we were able to determine that tumors of the C1 subtype
demonstrated lower immune infiltration and may, therefore,
garner fewer benefits from treatment with immunotherapies.

Then, to evaluate the association between drug sensitivity and
the metabolism-associated risk model, correlation analysis was
performed using half-inhibitory concentration (IC50) of
chemotherapeutic drugs, risk score, and gene expression data
A B

D E

C

FIGURE 9 | Drug sensibility analysis with metabolism-associated subtypes and risk model. (A) The pairwise comparison of the androgen receptor (AR) expression
between three subtypes. (B) The differential analysis of the expression of 14 checkpoints between three subtypes. The P values are labeled above each boxplot with
asterisks (ns represents no significance, *P < 0.05, **P < 0.01, ***P < 0.001). (C) Heatmap for correlation between drug sensitivity and expression levels of six risk
model genes. *p < 0.05. (D) Survival analyses for low-risk and high-risk scores patient groups in the anti-PD1 immunotherapy cohort using Kaplan–Meier curves.
(E) The proportion of patients with response to PD-1 blockade immunotherapy in low-risk or high-risk scores groups.
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from six PCa cell lines obtained from the GDSC database. As a
result, four anti-tumor drugs (selumetinib, NPK76-11-72-1,
BMS-708163, and temsirolimus) were negatively correlated
with risk score (Figure 9C and Table S8). Among the six
genes, CA14, CACNG4, and NUDT7 had associations with
more than four drugs, indicating that these genes and risk
scores may guide chemotherapy in drug choice.

Finally, immunotherapies represented by PD-L1 and PD-1
blockades have undoubtedly emerged as a breakthrough in
cancer therapy (36, 37). We explored whether our risk model
could predict patient responses to immune checkpoint blockade
therapy based on the anti-PD-1 cohort (GSE78220). First, we
performed K-M survival analysis and found that melanoma
patients with high-risk scores had shorter OS than patients
with low-risk scores, although no significant difference was
observed (p = 0.058) (Figure 9D). The proportion of
beneficiaries with anti-PD-1 treatment in the high-risk cohort
(41.17%) was lower than that of the low-risk cohort (70%)
(Figure 9E). These results implied that patients with low-risk
scores would get more benefits from immunotherapy than
patients with high-risk scores.
DISCUSSION

With the development of RNA-seq technology, many classical
analyses based on gene expression data have been reported for
most cancers (6, 38–40). However, few cluster studies have been
performed on PCa to explore the tumor metabolic
characteristics. Thus, we identified in our current work a
metabolism-associated PRAD classification based on ssGSEA
and 41 metabolic pathway gene sets. The PRAD cases included
in the study were divided into three subtypes. The metabolic
features, clinical characteristics, prognosis, TME, stemness index,
DNA mutation, CNV, and MSI were then investigated in the
different subtypes. Subtype C1 exhibited low metabolic levels and
was similar to high-grade PCa with high tumor purity and low
immune infiltration. Furthermore, patients from C1 had worst
prognosis and the shortest DFS among the patients with PCa. In
comparison, patients from C2 displayed high metabolic levels in
most pathways and were similar to low-grade PCa with low
tumor purity, low stemness index, and high immune cell
infiltration. Patients with tumors from C2 had the best
prognosis and longest DFS among the patients with PCa.
Patients from C3 represented a medium state between the
findings for those from C1 and C2 and demonstrated similar
medium-grade PCa. Specifically, C3 had highly metabolic
pathways activity and the highest stemness index. Accordingly,
we believe there may be some connections between starch/
sucrose/porphyrin/chlorophyll metabolism and a high
stemness index.

Cancer stem cells play important roles in therapeutic
responses and the progression of cancer (41). To further
explore the reason C1 subset has the worst prognosis, we
continued investigating the stem index between three subtypes.
C1 and C3 had higher stemness indices, which indicates more
Frontiers in Oncology | www.frontiersin.org
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malignant tumors from these subsets compared to those from
C2. This may partly explain why patients with PCa from subsets
C1 and C3 presented with shorter DFS and worse prognosis
compared to that of patients from subset C2. These results
indicate a remarkable tumor heterogeneity among PRAD
metabolism-associated subtypes. However, the reason for C3
tumors having the highest ssGSEAsi is unclear. In previous
studies, starch and sucrose metabolism is associated with the
progression of colon cancer (42). Therefore, we believe that
specific metabolic pathways, such as those for starch/sucrose/
porphyrin/chlorophyll metabolism, have crucial roles in tumor
progression. This hypothesis needs to be tested using in vitro
experiments and single-cell sequencing.

TME is a remarkable factor impacting the occurrence and
development of PCa. Many cancer-promoting factors play a role
in the EMT pathway (43). For instance, the expression of PDL1
can affect the prognosis of adrenocortical carcinoma (44).
Regardless of stromal or immune cells, the C2 and C3 subtypes
displayed more characteristics of TME. Stromal scores indicated
that C2 and C3 had greater stromal cell content than C1. ECM
functions as cell scaffoldings and can induce EMT in stromal
cells, with the TGF-b pathway having a strong connection with
this process (45). To further explore the features of stromal cells
in PCa, ECM, EMT, and TGF-b, ssGSEA scores were calculated
for each gene set. Differential analysis suggests that C2 had the
most significant activity in this process. EMT often has a close
relationship with cell cancer and poor prognosis (46–48);
however, C2 had the best prognosis among the three subtypes.
Therefore, we believe that EMT does not have an obvious cancer-
promoting function in PCa. As for the increase of EMT in C2, we
believe this phenomenon was the result of increased stromal cell
content in C2. The immune system is the most important anti-
cancer system in the body (49). In a previous study, immune cells
were found to be strongly lethal in fighting tumor cells. Natural
killer cells can kill lung cancer tumor cells and are regulated by
TME (50). Additional support that the immune system is
important is demonstrated by T cells being able to be used in
clinical settings for the treatment of cancer (51). Herein, our
study shows that the levels of all immune cells (B cells, dendritic
cells, macrophages, neutrophils, CD4+ T cells, and CD8+ T cells)
were increased in C2, indicating that tumors from C2 were in a
state of immune activation. We believe this is the reason C2 had
the best prognosis among the three subtypes.

TMB is presumed to have a close relationship with tumor
heterogeneity (52). TP53 is the most prominent gene in pan-
cancer investigations. For instance, TP53mutations lead to high-
grade cancer and tumor heterogeneity of ovarian granulosa (53).
At the same time, mutations in TP53 were shown to be strongly
associated with the occurrence and progression of PCa (54).
SPOP mutations have also been considered for their impact on
castration sensitivity in PCa (55). Gene mutation spectra were
significantly different among the three metabolism-associated
subtypes in our current study. For instance, in C1, the TP53
mutation rate was higher than that of others, whereas C2 had a
high mutation rate of SPOP. This indicates that the tumor
features of C1 and C2 partly result from TP53 and SPOP
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mutations, respectively. C3 had high mutation rates of both TP53
and SPOP, which further supported that C3 exhibited an
intermediate state between C1 and C2. Meanwhile, many
studies have investigated CNV in PCa, with the results
indicating that CNV can affect tumor features and
heterogeneity (56). MSI also has been regarded as a vital factor
in DNA mismatches and can improve tumor heterogeneity in
many types of cancer. Herein, we show that there is a significant
difference in CNV of metabolic genes and MSI levels among the
three subtypes. Our current work revealed that there was a
significant difference in CNV of metabolic genes among the
three subtypes. C1 had the highest number of amplifications and
deletions. This indicates that the TP53mutation, SPOPmutation,
and increased CNV and MSI were key factors contributing to the
tumor heterogeneity observed among the subtypes.

A general opinion regarding tumor cells with high activity
levels of one or more specific metabolic pathways is that they
have a stronger capacity for invasion, proliferation, and self-
renewal compared to cells with low metabolic activity. For
instance, higher sulfur amino acid metabolic levels in liver
cancer can accelerate the EMT process and cancer cell
migration (57). Aldehyde oxidase 1 decreases the metabolic
level and displays tumor inhibition activity in bladder cancer
(58), whereas long intergenic non-coding RNA-nucleotide
metabolism regulator upregulates nucleotide metabolism and
increase the proliferation of tumor cells (59). Our results partly
contradict these views in that we found tumors from C1 with the
lowest metabolic activity level had the worst prognosis in
patients with PCa. The samples from patients with PCa were
mixed tissues, including tumor cells, normal prostate cells,
stromal cells, and immune cells. Tumor malignancy was
determined based on several factors, including tumor purity,
tumor proliferation ability, and the TME in vivo. Thus, our
results differed in part from those concluded in vitro, where
tumor malignancy was determined by the tumor cells only.
Normal prostate cells are smooth muscle cells that exhibit high
metabolic levels, whereas tumor cells may show lower levels of
metabolic activity compared to normal prostate cells. Meanwhile,
ssGSEA scores based on mRNA-seq data from second-
generation sequencing reflects the metabolic level of the whole
sample, rather than only tumor cells. Therefore, in this study, we
determined a lower metabolic level, and that greater tumor
heterogeneity of the PCa samples was associated with a worse
prognosis for the patient. This was in accordance with that
reported for liver cancer (60). These specifications may partly
explain why tumors from the C1 subset had the worst prognosis
in PCa.

According to the above subtype analyses, we consider that C2
is the subtype that characterizes early PCa. In fact, during the
early stage, the tumor metabolic status often resembles that of
normal tissue. Besides, during the initial stage, the immune
system exerts a strong anti-tumor response, and the tumor has
low heterogeneity and stemness index. On the contrary, due to
immune escape and the decrease of blood supply in the later
stage of tumor progression, immune cells are not able to infiltrate
the tumor. Thus, C1 has milder immune characteristics than C2.
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Nevertheless, because C1 is an advanced tumor, it had the
highest tumor heterogeneity and the lowest metabolic status
among the three subtypes. As for C3, which is regarded as an
intermediate between C1 and C2, we consider it to be the crucial
status of PCa from early to advanced tumor stage. The unique
metabolic pathways of C3 reportedly affect the malignant
transformation of healthy tissue.

To predict prognosis, previous studies have developed
prognostic risk models for PCa based on gene expression data
(61–63). This indicates that risk models based on high-
throughput data may accurately predict the prognosis of PCa.
Therefore, we used WGCNA to identify the characteristic genes
of C1 and C2. Using multiple algorithms, a six-gene risk model,
including CACNG4, SLC2A4, EPHX2, CA14, NUDT7, and
ADH5, was established using the TCGA cohort. Through the
testing of four external datasets, our metabolism-associated risk
model was demonstrated to have strong robustness. GSEA
analysis provided further evidence that our risk genes are
related to PCa metabolism. Finally, we combined risk score
and clinical variates to obtain a nomogram to help clinicians
predict the DFS for PCa patients.

Many studies have demonstrated that gene expression data
can be used to predict drug treatment sensitivity. For instance,
molecular profiling can be used to identify treatment-refractory
metastatic castration-resistant prostate cancer (64). C1 had the
highest AR expression. This indicates that C1 may exhibit high
sensitivity to anti-androgenic therapy. With a high expression of
immune checkpoints and significant features of immune cell
infiltration, C2 tumors may benefit more from immune-targeted
therapy, whereas C3, with an active status of specific drug
metabolism pathways, may facilitate the development of
tolerance to traditional chemotherapy (65). In the drug
sensitivity analysis of the risk model, our study suggests that
patients with low-risk scores may benefit more from anti-PD-1
treatment, and this is consistent with C2 being more suitable for
immune target therapy. All of these conclusions need to be
validated in vitro.

In contrast to previous research that focused on the metabolic
level of single tumor cell types, we explored the metabolic
features of mixed cancer samples. We first investigated the
characteristics of metabolic pathways using cluster analysis and
explored tumor heterogeneity in multiple dimensions employing
multi-omics. Finally, our risk model of PCa was constructed and
verified using a large number of samples and multiple datasets.
However, our research also had limitations. First, the data we
studied were from public databases rather than our database.
Second, we did not perform in vitro or in vivo experiments to
further investigate the mechanism of metabolism-associated
genes in PCa. These are what we plan to do next.
CONCLUSIONS

Three metabolism-associated subtypes were first identified by
unsupervised cluster and ssGSEA analyses in PCa. Differential
analyses indicated these subtypes could reflect tumor
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heterogeneity in the stemness index, tumor microenvironment,
TMB, CNV, MSI, and clinical features. So our metabolism-
associated subtypes can better represent the metabolic
characteristics of PCa and can be beneficial in exploring the
metabolic mechanism of occurrence and development of PCa.
Meanwhile, a six-gene metabolism-associated risk score model
by using four separate datasets and demonstrated strong
robustness in the prediction of sample types (tumor and
normal tissue), DFS, metabolism-associated subtypes, and anti-
tumor therapeutic effect. Therefore our model can powerfully
help clinicians evaluate the prognosis and develop personalized
treatment for PCa patients. Although the six prognostic markers
still require experimental verification, they may provide insight
and a prospect for further investigation and clinical work
regarding PCa.
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SUPPLEMENTARY FIGURE 1 | The PAM analysis of ssGSEA score based on
metabolism-associated pathways. (A) Consensus among clusters for each
category number K. Color-coded heatmap corresponding to the consensus matrix
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for k = 2 (B), K = 3 (C), K = 4 (D), K = 5 (E), and K = 6 (F) obtained by applying
consensus clustering.

SUPPLEMENTARY FIGURE 2 | Association between clinical characteristics
and the metabolism-associated subtypes. Age (A) and Lymph Nodes (N) stage (B)
for each metabolism-associated subtype in the TCGA cohort. (C) The pairwise
comparison of the PSA between three subtypes. The P values are labeled above
each boxplot with asterisks (ns represents no significance, *P <0.05, **P <0.01,
***P <0.001).

SUPPLEMENTARY FIGURE 3 | Association between the stemness index and
the metabolism-associated subtypes. The pairwise comparison of the ssGSEAsi
(A) and COssGSEAsi (B) between three subtypes. The P values are labeled above
each boxplot with asterisks (ns represents no significance, *P <0.05, **P <0.01,
***P <0.001). (C) The correlation analysis between specific metabolic pathways of
C3 and ssGSEAsi in the TCGA cohort.

SUPPLEMENTARY FIGURE 4 | The WCGNA analysis of metabolism-
associated genes among three subtypes. (A) Analysis of the scale-free fit index
and the mean connectivity for various soft-thresholding powers, and checking the
scale-free topology when b = 3. K represents the logarithm of whole network
connectivity, p(k) represents the logarithm of the corresponding frequency
distribution. K is negatively correlated with p(k) (correlation coefficient = 0.88),
which represents scale-free topology. (B) Identification of a co-expression
module in PCa. The branches of the cluster dendrogram correspond to the five
different gene modules. Each piece of the leaves on the cluster dendrogram
corresponds to a gene. (C) Scatter plot of module eigengenes in the blue and
green modules.

SUPPLEMENTARY FIGURE 5 | Identification of risk model functions and
development of the nomogram. (A, B) prognostic genes selected through Lasso
regression. (C, D) Enrichment plots of the top five KEGG pathways in the high-risk
score and low-risk score groups in PRAD. The relationship between the age (E)/
Gleason score (F)/N stage (G)/T stage (H) and risk score in the TCGA cohort.
(I) Nomogram for predicting the probability of 1, 3, and 5 disease-free survival times
for PCa patients. (J) ROC analysis for nomogram in 1, 3, and 5 years. (K) The C-
index analysis for clinical variates, risk model, and nomogram.

SUPPLEMENTARY FIGURE 6 | The K-M survival analysis of six risk model
genes. (A) ADH5. (B) CA14. (C) CACNG4. (D) EPHX2. (E) NUDT7. (F) SLC2A4.

SUPPLEMENTARY FIGURE 7 | The protein expression of three risk model
genes in normal prostate tissues and PRAD tissues from the Human Protein Atlas
(HPA) database. (A) ADAH5. (B) EPHX2T. (C) NUDT7N.

SUPPLEMENTARY TABLE 1 | The 41 metabolism pathway gene sets collected
to evaluate the metabolic status of PRAD samples.

SUPPLEMENTARY TABLE 2 | The ssGSEA score of each sample of PRAD in
TCGA based on metabolic pathways, stem cell, EMT, ECM, and TGF-b gene sets.

SUPPLEMENTARY TABLE 3 | The WGCNA analysis between the expression of
metabolism-associated genes and metabolism-associated subtypes in PRAD.

SUPPLEMENTARY TABLE 4 | The GO and KEGG functional enrichment
analysis of metabolism-associated module genes.

SUPPLEMENTARY TABLE 5 | The Univariable Cox analysis of metabolism-
associated prognostic genes.

SUPPLEMENTARY TABLE 6 | The GSEA analysis of risk score in TCGA.

SUPPLEMENTARY TABLE 7 | The Univariable and Multivariable Cox analysis of
clinical variates and risk score.

SUPPLEMENTARY TABLE 8 | Drug sensitivity analysis of risk model genes and
risk score.
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