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Abstract
8- Prenylnaringenin (8- PN), a hop flavonoid, is a promising food substance with health 
benefits. Compared with nonprenylated naringenin, 8- PN exhibits stronger estro-
genic activity and prevents muscle atrophy. Moreover, 8- PN prevents hot flushes and 
bone loss. Considering that prenylation reportedly improves the bioavailability of fla-
vonoids, we compared the parameters related to the bioavailability [pharmacokinet-
ics and tissue distribution in C57/BL6 mice, binding affinity to human serum albumin 
(HSA), and cellular uptake in HEK293 cells] of 8- PN and its mother (non- prenylated) 
compound naringenin. C57/BL6 mice were fed an 8- PN or naringenin mixed diet 
for 22 days. The amount of 8- PN (nmol/g tissue) in the kidneys (16.8 ± 9.20), liver 
(14.8 ± 2.58), muscles (3.33 ± 0.60), lungs (2.07 ± 0.68), pancreas (1.80 ± 0.38), heart 
(1.71 ± 0.27), spleen (1.36 ± 0.29), and brain (0.31 ± 0.09) was higher than that of nar-
ingenin. A pharmacokinetic study in mice demonstrated that the Cmax of 8- PN (50 mg/
kg body weight) was lower than that of naringenin; however, the plasma concentra-
tion of 8- PN 8 h after ingestion was higher than that of naringenin. The binding af-
finity of 8- PN to HSA and cellular uptake in HEK293 cells were higher than those of 
naringenin. 8- PN bioavailability features assessed in mouse or human model experi-
ments were obviously different from those of naringenin.
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1  |  INTRODUC TION

Humulus lupulus L. (hop) contains prenylflavonoids, including 
8- prenylnaringenin (8- PN), 6- prenylnaringenin, isoxanthohumol (IX), 
and xanthohumol (XN) (Stevens et al., 1999). These flavonoids are be-
lieved to be the active ingredients of hops, which is used in hormone 
replacement therapy for menopausal women (Erkkola et al., 2010). 
Specifically, 8- PN has been found to exhibit the strongest estrogenic 
activity among the hop flavonoids contributing to its therapeutic ef-
fect (Milligan et al., 2000). It has also been demonstrated to suppress 
bone loss and uterine atrophy (Hümpel et al., 2005) and contribute 
to the maintenance of uterine weight, endothelia, and 17β- estradiol 
in ovariectomized female rats (Diel et al., 2004). In addition to es-
trogenic activity, 8- PN also reportedly promotes protein synthesis 
in the skeletal muscles of male and female mice (Mukai et al., 2012, 
2016) and prevents diabetes in male mice by regulating vascular 
endothelial growth factor signaling in the kidneys and left ventricle 
(Costa et al., 2017) or by suppressing oxidative stress in the liver 
and kidneys (Luís et al., 2019). These reports imply that 8- PN can 
improve health conditions, regardless of sex, by affecting the physi-
ology of target organs.

Diet, beverages, and supplements containing hop extract are 
the major sources of 8- PN and its precursor IX (Stevens et al., 1999). 
IX is converted to 8- PN via demethylation by either human liver 
CYP1A2 (Guo et al., 2006) or gut microflora in the human intestine 
(Bolca et al., 2007; Possemiers et al., 2006). As 8- PN undergoes 
phase II metabolism during epithelial absorption in the small intes-
tine, both glucuronide and sulfate conjugates of 8- PN have been 
detected in Caco- 2 cells (Nikolic et al., 2006). Twelve phase I me-
tabolites of 8- PN have also been detected in human microsomes 
(Nikolic et al., 2004).

The bioavailability of 8- PN has become a key research topic for 
evaluating its influence on health. Rad et al. (2006) demonstrated 
that 8- PN was rapidly absorbed into the bloodstream of post-
menopausal women 1– 1.5 h after oral administration, mostly as 
conjugated metabolites with small amounts of aglycone. The phar-
macokinetic properties of 8- PN reveal that this compound also un-
dergoes enterohepatic recirculation, prolonging its mean residence 
time (Rad et al., 2006). Additionally, the conjugated metabolites and 
aglycone derived from 8- PN are primarily excreted in the feces and 
bile (Rad et al., 2006). In fact, tissue accumulation of 8- PN, XN, and 
IX has been reported in the adipose and glandular tissues of breast 
tissue following hop supplementation in women (Bolca et al., 2010). 
Furthermore, XN and 8- PN were detected in the liver and mam-
mary tissues of rats after daily injections of XN for 4 days (Dietz 
et al., 2013). However, the distribution of 8- PN in other organs and 
tissues has not been fully investigated.

Investigating the interaction between phytochemicals and pro-
tein is one of the interesting avenues that helps to understand their 
pharmacokinetics and/or pharmacodynamics. The plasma proteins 
[e.g., human serum albumin (HSA)] and DNA are reported to inter-
act with drugs, hormones, and phytochemicals (Danesh et al., 2018; 
Dareini et al., 2020; Mokaberi et al., 2021; Sharifi- Rad et al., 2021; 

Zare- Feizabadi et al., 2021). It has been also reported that several 
flavonoids, including naringenin, bind to has (Bolli et al., 2010; Cao 
et al., 2019; Tu et al., 2015; Zinellu et al., 2015). It is widely accepted 
in pharmaceutical research that the tissue distribution, metabolism, 
and efficacy of phytochemicals or drugs can be altered based on 
their affinity with HSA. Although much information on the biological 
activity of 8- PN exists, its interaction with HSA has not yet been 
investigated.

Previously, we reported that prenylation is a structural mod-
ification that affects the pharmacokinetics and tissue accumu-
lation of flavonoids using several experimental models [mice 
(Mukai et al., 2012, 2013), rats (Mukai et al., 2013) and human 
(Mukai et al., 2013) and mouse cell lines (Mukai et al., 2016)]. 
The chemical structures of 8- PN and naringenin are shown in 
Figure 1. Higher levels of 8- PN were detected in the gastrocne-
mius muscles of mice than those of naringenin after 22 days of 
hop supplementation (Mukai et al., 2012). Furthermore, the Cmax 
of 8- PN in plasma was much lower than that of naringenin (Mukai 
et al., 2012). It was speculated that the transport of 8- PN from 
blood to tissue or from tissue to blood was affected by narin-
genin prenylation. We also reported that prenylation of quercetin 
enhances its cellular uptake and reduces its excretion from both 
Caco- 2 and C2C12 cells (Mukai, 2018; Mukai et al., 2013), sug-
gesting that other prenylflavonoids may be absorbed to a greater 
degree in tissues and organs than that seen with nonprenylated 
flavonoids. This study aimed to elucidate the pharmacokinetics 
and tissue distribution of 8- PN in comparison with those of na-
ringenin. Hence, this study investigates the tissues or organs in 
which the health- promoting effect of 8- PN is seen. In addition, 
comparison with 8- PN and naringenin may explain the importance 
of prenylation to flavonoid aglycone on tissue distribution, and 
when combined with the knowledge of the effect of prenylation 
on pharmacokinetics of flavonoid, our findings can contribute to 
the development of prenylflavonoids as a nutritional supplement 
that promotes health.

F I G U R E  1  Structures of 8- PN (a) and naringenin (b)

(a)

(b)
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2  |  E XPERIMENTAL PROCEDURE

2.1  |  Materials

Naringenin, eriodictyol, and phenylbutazone were obtained from 
Tokyo Chemical Industry Co., Ltd. (TCI). Ibuprofen was purchased 
from FUJIFILM Wako Pure Chemical Corp. Pentamethyl quercetin 
and kaempferol were obtained from Extrasynthase. Additionally, 
8- PN and 8- prenylhesperetin were synthesized by our research 
team (Kawamura et al., 2012). Naringenin 4′- glucuronide (N4′G) 
was obtained from Cayman Chemical Company. The glucuronides, 
namely, naringenin 7- glucuronide (N7G), 8- PN 7- glucuronide (8- 
PN- 7G), and 8- PN 4′- glucuronide (8- PN- 4′G) were enzymatically 
prepared by incubating the parent compounds with resting yeast 
cells co- expressing uridine diphosphate- glucose dehydrogenase and 
suitable mammalian UDP- glucuronosyltransferase isoforms (mouse 
Ugt2b1 for N7G, monkey UGT1A1 for 8- PN- 7G, and rat UGT2B1 for 
8- PN- 4′G) as previously described with slight modifications (Ikushiro 
et al., 2016; Nakamura et al., 2018; Tanaka et al., 2018).

2.2  |  Dosage information

We planned the nutritional composition and feeding period accord-
ing to previous similar research (Andres- Lacueva et al., 2012; Bieger 
et al., 2008; Boer et al., 2005; Mukai et al., 2013; Takumi et al., 2011). 
Briefly, in the evaluation of tissue distribution (Section 2.3), we pre-
pared 8- PN or naringenin mixed diet. 8- PN and naringenin were con-
tained in the diet at 0.2% (w/w) and 0.17% (w/w), respectively. Since 
the molecular weight (8- PN: 340.4; naringenin: 272.3) and the pu-
rity (8- PN: 95%; naringenin: 90%) of these nutrients were different, 
we applied different concentrations (w/w) for each diet. Finally, the 
same concentration of both nutrients was adjusted to 5.6 mmol com-
pound/kg diet. Though this dose concentration may not be achieved 
through regular diet or supplementation, this concentration was 
used in accordance with previous studies that evaluated the tissue 
distribution of flavonoids (0.2% [w/w]) (Mukai et al., 2013; Takumi 
et al., 2011). The mice were fed each diet via normal oral feeding for 
22 days. In the pharmacokinetic study (Section 2.5), we administered 
each nutrient to mice at a dose of 50 mg/kg body weight (BW) via 
oral gavage after 18 h of starvation. Although this dose concentra-
tion may not reflect regular diet or supplementation, this or higher 
concentrations have been applied for pharmacokinetic study of fla-
vonoids (Bai et al., 2020; Hung et al., 2018; Mukai et al., 2013).

2.3  |  Evaluation of tissue distribution

All experimental protocols were approved by the Committee on 
Animal Experiments of Tokushima University (approval number: 
11013). All efforts were made to minimize animal suffering. Seven- 
week- old male C57/BL6 mice (Japan SLC) were housed in a room 
maintained at 23 ± 1°C under a 12- h/12- h light/dark cycle. Diets 

consisted of 8- PN or naringenin (0.56 mmol/kg diet) mixed with 
AIN- 93M (AIN- 93M; Oriental Yeast Company), with the cellulose 
contents reduced to adjust the composition of other nutrients. The 
mice (n = 7 or 8) were fed these diets via normal oral feeding for 
22 days and allowed free access to water. The liver, kidneys, quadri-
cep muscles, pancreas, lungs, brain, spleen, and heart were collected 
from the mice under anesthesia and weighed. Before freezing, the 
liver tissues were flushed with ice- cold phosphate- buffered saline 
(PBS, pH 7.4) to avoid blood contamination. All samples were stored 
at −80°C under N2 gas until extraction of flavonoid.

2.4  |  Sample preparation for the determination of 
tissue accumulation

Sample preparation was performed according to a previous report 
(Mukai et al., 2013). Each tissue was homogenized in PBS on ice (nine 
times the volume of the tissue wet weight) using a Teflon homog-
enizer (As One). To determine total 8- PN and naringenin (conjugated 
metabolites plus aglycone) amount in the tissues, homogenates were 
incubated with 50 mM ascorbic acid (0.2 times volume of PBS) and 
100 U/100 µl β- glucuronidase type H- 1 (Sigma- Aldrich), which pos-
sessed β- glucuronidase and sulfatase activity, in acetic acid- sodium 
acetate buffer (pH 5.0, same volume as PBS) for 2 h at 37°C. Before 
extraction, 100 pmol of 8- prenylhesperetin or eriodictyol was added 
to the hydrolysates as the internal standard for 8- PN or naringenin, 
respectively. The hydrolysates were then subjected to extraction 
three times with equal volumes of ethyl acetate and evaporated 
using a centrifugal evaporator (CVE- 100; Tokyo Rikakikai). The ex-
tracts were dissolved in 50 µl of methanol containing 0.5% phos-
phoric acid. Then, 20 µl from each sample was injected into the 
HPLC– UV system.

2.5  |  Pharmacokinetics of 8- PN and naringenin

Seven- week- old male C57/BL6 mice (Japan SLC) were housed in a 
room maintained at 23 ± 1°C under a 12- h/12- h light/dark cycle with 
free access to a commercial diet (AIN- 93M) and water for 1 week. 
They were deprived of food 18 h before administration, but had 
free access to water. Solutions of 8- PN or naringenin dissolved in 
propylene glycol were administered (50 mg/kg BW) to the mice via 
oral gavage. Blood samples (approximately 50 μl) were then col-
lected from tail veins 0.5, 1, 2, 4, 8, 24, and 48 h after administration. 
Plasma was isolated by centrifugation at 9000 g for 10 min at 4°C 
and stored at −80°C under N2 gas until use.

2.6  |  Sample preparation for the determination of 
plasma concentration

The concentrations of the conjugated metabolites and aglycones 
of each flavonoid were quantified as described previously (Mukai 
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et al., 2012). Briefly, the plasma (10 µl) was incubated with 100 U of β- 
glucuronidase type H- 1 (Sigma- Aldrich) prepared in 0.1 M sodium ac-
etate buffer (pH 5.0; 90 µl) and 50 mM ascorbic acid (20 µl) for 45 min. 
Next, 100 pmol of pentamethyl quercetin or kaempferol was added 
to the samples as the internal standard for 8- PN or naringenin, re-
spectively. Liberated aglycone was extracted using ethyl acetate and 
evaporated with a centrifugal evaporator. The pellets were dissolved 
in 75 µl methanol containing 0.5% phosphoric acid. A total of 25 µl of 
each sample was injected into the HPLC– UV detection system.

2.7  |  Binding properties of 8- PN and its conjugated 
metabolites with site- selective HSA- binding 
fluorescent probes

The binding properties of flavonoids to HSA were assessed using a 
fluorescence competitive binding assay with the fluorescent dyes 
dansylamide (DNSA; specifically binds to site I of HSA; TCI) and 
BD140 (specifically binds to site II of HSA; TCI) for multiplex drug- 
site mapping on HSA (Er et al., 2013). A fluorescent dye cocktail con-
taining 0.33 mM BD140 and 1 mM DNSA was prepared in DMSO. 
Defatted HSA (A3782- 1G; Sigma- Aldrich) was dissolved in phosphate 
buffer (pH 7.4) at a concentration of 0.67 mg/ml. Each flavonoid was 
dissolved in DMSO (stock solution) at 100 times the test concentra-
tion. Subsequently, 637 µl HSA solution, 6.5 µl fluorescent dye cock-
tail, and 6.5 µl flavonoid were mixed and divided into three wells on 
a 96- well multi- black plate. The final concentration of flavonoids was 
1– 100 μM. The fluorescence intensities of DNSA (Ex: 360 nm, Em: 
465 nm) and BD140 (Ex: 535 nm, Em: 590 nm) were measured using a 
TECAN infinite M200 (Tecan Group Ltd.). The HSA- binding affinities 
of the flavonoids were evaluated by measuring the competitive inhibi-
tion rate of the probes binding to flavonoids according to Equation (1):

where F1 is the fluorescence intensity of DMSO and F2 represents the 
fluorescence intensity of each flavonoid.

The inner filter effect is involved in fluorescent spectroscopy 
(Askari et al., 2021). This effect was estimated as described here. 
Since the fluorescent probes exhibit fluorescence when they inter-
act with HSA, we cannot evaluate the quenching effect of flavonoids 
on these probes. On the other hand, the λmax of naringenin or 8- PN 
[naringenin: 213, 225, and 289 nm and 8- PN: 292 nm (referred by 
Cayman Chemical)] were different from the excitation wavelength 
for DNSA and BD140.

2.8  |  Cell culture and sample preparation for 
cellular uptake

Human embryonic kidney 293 (HEK293) cells (CRL- 1573, ATCC, 
DC, NW.) were maintained in Dulbecco's modified Eagle's medium 

(D5796; Sigma- Aldrich) supplemented with 10% fetal bovine serum, 
100 U/ml penicillin, 100 μg/ml streptomycin, and 2 mM l- glutamine 
at 37°C in a humidified atmosphere containing 5% CO2. Cells 
seeded on a 60- mm dish (1.0 × 105 cells/dish) were cultured until 
confluent. Cells were then incubated with 100 μM NaN3 for 15 min 
before flavonoid treatment. Subsequently, cells were treated with 
10 μM 8- PN or naringenin for 1 h. After incubation, cells were 
washed twice with ice- cold Hanks’ balanced salt solution (HBSS, 
pH 7.3) and scraped from the dish. After centrifugation (21,500 g 
for 10 min at 4°C), the supernatant was aspirated and 330 μl of 
HBSS was added to the cell pellet. Cell homogenate was obtained 
using sonication. The homogenate was divided into two portions, 
the first was used to analyze protein concentration, whereas the 
second was used for flavonoid extraction. The protein concentra-
tion of cell homogenate was measured using the Bradford assay. 
Another sample underwent deconjugation with β- glucuronidase 
type H- 1 according to a previous report (Mukai et al., 2013). Before 
extraction, 100 pmol of 8- prenylhesperetin (for 8- PN) or eriodic-
tyol (for naringenin) was added to cell homogenate as the inter-
nal standard. The homogenates were then subjected to extraction 
thrice in ethyl acetate using sonication for 1 min on an Astrason 
XL2020 Ultrasonic Processor (Heat Systems- Ultrasonic) at level 10. 
After centrifugation (9000 g for 10 min at 4°C), the supernatants 
were collected, evaporated, and dissolved in 50 µl methanol con-
taining 0.5% phosphoric acid. A total of 20 µl of each sample was 
injected into the HPLC– UV system.

2.9  |  HPLC analysis

HPLC was performed as previously described (Mukai et al., 2012). 
The 8- PN and naringenin amounts in the tissues, plasma, and cells 
were analyzed via HPLC– UV detection under a λmax value of 292 nm 
(SPD- 10AV; Shimadzu) with a Cadenza CD- C18 HPLC column (3 µm, 
4.6 × 150 mm; Imtact). In the mobile phase, solvent A was 0.5% 
phosphoric acid and solvent B was methanol containing 0.5% phos-
phoric acid. The B values for 8- PN and naringenin detection were set 
at 65% and 43%, respectively. The flow rate was set at 1.0 ml/min.

8- PN and naringenin amounts were determined using an internal 
standard method. They were identified from their retention times 
against those of respective standard compounds. We had confirmed 
that there were no apparent peaks comparable to 8- PN or narin-
genin in chromatograms from tissue from nonfed mice (data not 
shown). The peak limit of detection (LOD) of was defined using the 
chromatogram. Since a clear peak was actually detected for 8- PN 
over 2 pmol (0.1 μM), and for naringenin over 4 pmol (0.2 μM) based 
on visual evaluation, we determined these concentrations were the 
LODs for each flavonoid. We applied two calibration curves at the 
concentration ratio range of 8- PN/8- PH at 0.05– 15 (R2 = .9997) for 
low levels of 8- PN or 1.5– 250 (R2 = .9999) for high levels of 8- PN. 
Calibration curve at the concentration ratio range of naringenin/eri-
odictyol at 0.1– 50 showed linearity (R2 = .9997). The tested recovery 
rate and inter- day and intra- day variability (CV) are listed in Table 1.

(1)Flavonoid inhibitionpercentage (% ) =
F1 − F2

F1

× 100,
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2.10  |  Statistical analyses

Data are shown as the mean ± standard error (SE). Data were ana-
lyzed using the Mann– Whitney U test (p < .05). All statistical analy-
ses were performed using Excel Tokei Ver. 7.0 for Windows (ESUMI 
Co., Ltd.).

3  |  RESULTS

3.1  |  8- PN and naringenin tissue accumulation

The average daily food intake of the 8- PN and naringenin diet groups 
during the feeding period was 4.4 and 4.8 g/day/mouse, respectively. 
The daily consumption of 8- PN and naringenin in the 8- PN and narin-
genin diet groups was approximately 24.6 and 27.0 µmol/day/mouse, 
respectively. Moreover, the amount of 8- PN was 10 times more than 
that of naringenin in the kidneys, muscles, heart, and brain tissues 
(Table 2). Compared to that of naringenin, the amount of 8- PN was 
higher in the other tissues as well. For liver tissues, we calculated 
the ratio of aglycone to the subtotal of aglycone and deconjugated 
metabolites (Table 3), yielding an average of 11.7%.

3.2  |  Pharmacokinetics of 8- PN and naringenin 
in the blood

The Cmax of 8- PN (22.8 µM) was lower than that of naringenin 
(Figure 2). The plasma concentrations of 8- PN were lower than 
those of naringenin from 0.5 to 4 h after ingestion. At 8 and 24 h 
post ingestion, the plasma concentrations of 8- PN became higher 

than those of naringenin (Figure 2 inset). The plasma concentrations 
of naringenin decreased over time, beginning at 0.5 h after inges-
tion, whereas those of 8- PN increased 4 h after ingestion and were 
maintained up to 8 h after ingestion. Only 8- PN was detected in the 
plasma 24 h after ingestion. Neither 8- PN nor naringenin was de-
tected in the plasma 48 h after ingestion.

3.3  |  Binding profiles of 8- PN to HSA

The appropriateness of the method involving site- selective HSA- 
binding fluorescent probes was confirmed using ibuprofen and 
phenylbutazone as model drugs. In this study, the inhibition ratio 
of 100 µM phenylbutazone (which preferentially binds to site I) was 
demonstrated to be 71.6 ± 0.9% and 23.9 ± 3.5% for sites I and 
II, respectively. Meanwhile, the inhibition ratio of ibuprofen (which 
preferentially binds to site II) was demonstrated to be 46.6 ± 2.7% 
and 81.3 ± 1.0% for sites I and II, respectively. These results were 
consistent with those of a previous report, indicating that the proce-
dure was appropriate for this study (Er et al., 2013).

The flavonoids tested in this study preferentially bound site I 
rather than site II (Table 4). The binding affinities of 8- PN to sites I 
and II in HSA were stronger than those of naringenin. Furthermore, 
8- PN- 7G had a lower binding affinity for site I than naringenin, 
whereas aglycone had a higher affinity. However, the binding of 
8- PN to both sites was absent following glucuronidation at the 
4′- position. Additionally, 8- PN and 8- PN- 7G at concentrations of 
50 µM exhibited comparable inhibition ratios (36.7% and 37.9%, 
respectively; Figure 3). However, at 20 and 2 µM, as compared to 
8- PN, more 8- PN- 7G was bound to site I of HSA. However, this dif-
ference decreased at concentrations of 1 µM (8- PN: 10.3%; 8- PN- 
7G: 12.8%). The binding constant values of 8- PN and 8- PN- 7G were 
2.38 × 104 M and 2.42 × 104 M, respectively.

3.4  |  HEK293 cellular uptake of 8- PN

We also measured the uptake of 8- PN in HEK293 cells, a model 
kidney cell line, in which 8- PN preferentially accumulates (Table 2). 
We found that, as compared to naringenin, 8- PN was incorporated 
into cells and cellular membranes at higher levels (Figure 4a). We 
then investigated whether 8- PN was excreted by the ATP- binding 
cassette (ABC) transporter, which is reportedly responsible for nar-
ingenin elimination (Surya Sandeep et al., 2014). Sodium azide, an 
inhibitor of this ATPase, did not affect the amount of intracellular 
8- PN (Figure 4b), suggesting that 8- PN is less susceptible to elimina-
tion via this energy- dependent pathway.

4  |  DISCUSSION

The compound 8- PN found in hops and beer is known to be a 
health- promoting compound owing to its phytoestrogenic activity 

TA B L E  1  HPLC validation

Naringenin 8- PN

Recoverya (%)

Kidney 69 ± 11 110 ± 17

Liver 95 ± 19 123 ± 29

Muscle — 118 ± 17

Lung — 80 ± 703

Pancreas — 93 ± 7.8

Heart — 112 ± 0.8

Spleen — 101 ± 17

Brain — 59 ± 54

Intra- day CVb % 2.5 3.6

Inter- day CVb % 6.9 2.4

Note: — , not analyzed.
aValues are presented as the means ± SD (n = 3). 8- PN or naringenin 
(100 pmol) was added to each tissue homogenate and extracted based 
on the sample preparation method.
bThese CV were determined by comparing different injections on the 
same day (n = 3, the intra- day) or different injections on different days 
(n = 3, the inter- day).
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and other biological functions. However, few studies have demon-
strated the pharmacokinetics of 8- PN in humans and rodents. We 
elucidated the parameters related to bioavailability of 8- PN and 
compared them with those of naringenin.

A previous report demonstrated that prenylation of quercetin at 
the 8- position (8- prenyl quercetin) increased its accumulation in the 
liver and kidney tissues in mice (Mukai et al., 2013), a phenomenon 
that is shared by 8- PN. Tissue accumulation of 8- PN in the muscles, 
lungs, pancreas, heart, spleen, and brain tissue was also significantly 
higher than that of naringenin in mice. Additionally, the amount of 
8- PN in kidneys, muscles, heart, the brain tissues was higher than 
that of 8- prenylquercetin under similar feeding conditions (Mukai 
et al., 2013). Thus, it has been suggested that prenylation of nar-
ingenin at the 8′- position may promote the tissue accumulation of 

naringenin. This feature may be more pronounced in flavanone type 
flavonoids (e.g., naringenin) than in flavonol type flavonoids (e.g., 
quercetin).

Among the tissues and organs investigated in this study, 8- PN 
was found to be the most abundant in the kidneys, demonstrat-
ing unique characteristics to naringenin, which was found to be 

TA B L E  2  Tissue distribution of 8- PN and naringenin

Tissue source

Naringenin 8- PN

nmol/g wet tissue

Kidney 1.32 ± 0.65 16.8 ± 9.20**

Liver 2.18 ± 2.89 14.8 ± 2.58**

Muscle 0.14 ± 0.03 3.33 ± 0.60**

Lung 0.35 ± 0.17 2.07 ± 0.68**

Pancreas 0.19 ± 0.07 1.80 ± 0.38**

Heart 0.16 ± 0.07 1.71 ± 0.27**

Spleen 0.20 ± 0.06 1.36 ± 0.29**

Brain 0.08 ± 0.02 0.31 ± 0.09

Note: Values are represented as the mean ± SE. Livers, kidneys, 
muscles, pancreases, lungs, and hearts of naringenin- fed mice (n = 8). 
Brains and spleens of naringenin- fed mice (n = 7). Tissues, except for 
the heart, from 8- PN fed mice (n = 7). The hearts of 8- PN fed mice 
(n = 6). Asterisks indicate significant differences between naringenin 
and 8- PN as analyzed by using the Mann– Whitney U test (**p < .01).

TA B L E  3  Levels 8- PN conjugates and aglycone in the livers

Mouse #

8- PN 
totala 8- PN aglyconeb

Percentage of 
aglyconenmol/g wet tissue

1 15.47 3.23 20.9

2 17.05 1.62 9.5

3 23.68 1.50 6.3

4 8.45 0.66 7.8

5 20.82 1.18 5.7

6 14.26 2.24 15.7

7 3.90 0.62 15.9

Ave. 14.80 1.58 11.7

SE 2.58 0.32 2.0

Note: Values are derived from 8- PN detected in the liver with and 
without deconjugation. The percentages of aglycone to the totals were 
calculated based on the values obtained for each mouse.
aTotal of conjugates and aglycone: with deconjugation.
bWithout deconjugation.

F I G U R E  2  Plasma concentrations of 8- PN and naringenin after 
oral administration to mice. Each flavonoid was orally administered 
at 50 mg/kg BW in a single dose via oral gavage. Plasma samples 
were collected at 0.5, 1, 2, 4, 8, 24, and 48 h after administration. 
Inset represents a duplicated enlarged graph of the results from 
4 to 48 h. The plasma concentrations of each flavonoid were 
determined using HPLC– UV after deconjugation treatment. 
Closed triangle: naringenin, closed square: 8- PN. Data are 
presented as the mean ± SE (n = 5). Asterisks indicate significant 
differences between naringenin and 8- PN at the same time points 
as determined by using the Mann– Whitney U test (*p < .05 and 
**p < .01, respectively)
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TA B L E  4  Competition profiles of 8- PN and related compounds 
with site- selective HSA- binding fluorescent probes

Aglycone 8- PN Naringenin

Site I

61.1 ± 0.6* 25.3 ± 0.4

7- glucuronide (8- PN- 7G) (N7G)

37.2 ± 0.6* 10.0 ± 3.0

4′- glucuronide (8- PN- 4′G) (N4′G)

n.d.a 5.2 ± 2.8

Site II

28.3 ± 2.8* 8.3 ± 3.9

7- glucuronide (8- PN- 7G) (N7G)

n.d.a 9.6 ± 4.8

4′- glucuronide (8- PN- 4′G) (N4′G)

n.d.a 2.4 ± 2.4

Note: Data were calculated as the competitive inhibition rate (%) of 
the probe binding to flavonoids (n = 3, mean ± SE). Asterisks indicate 
significant differences between 8- PN and correspondent naringenin as 
determined by using the Mann– Whitney U test (*p < .05).
aThe result without competitive inhibition (≤0) with the fluorescent 
probe is shown as not determined (n.d.).
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abundant in the liver tissues. While several reports have demon-
strated that flavonoids are highly accumulated in the liver, the meth-
ylated flavonoid tangeretin has been observed to accumulate in the 
kidney in rat (Hung et al., 2018). It is generally assumed that flavo-
noids distribute to the tissues in accordance with its drug absorption 
profile and metabolic pathway. These drugs are abundantly taken 
up in tissues with developed capillaries via absorptive epithelium. 
Based on this knowledge, parenchymal cells of the liver (approxi-
mately 70% of the liver) or the renal tubular epithelium would be 
responsible for transporting flavonoids, though there has been no 
report on the types of cells that contribute to the uptake of flavo-
noids. Because the liver and kidneys are responsible for drug me-
tabolism, it is presumed that 8- PN and naringenin would be present 
in these organs for detoxification and elimination. Other than in 
the liver and kidneys, passive diffusion (Brand et al., 2006; Murota 
et al., 2002) is another candidate for flavonoid transport into these 
tissues. In this case, there may be little differences in the types of 
cells in each tissue.

To estimate the absorption and elimination rates of 8- PN in 
humans, we applied it to a kidney cell line derived from humans 
(HEK293 cells). The data indicated that 8- PN in the HEK293 cells 
had high cellular uptake and low elimination via the ABC trans-
porter. These phenomena may lead to gradual increases in the 
amount of 8- PN in the kidneys. Transporters are one of the key 
factors responsible for the uptake and excretion of flavonoids in 
the target cell. Although a consensus has not yet been reached 
regarding the transporters that uptake flavonoids into the cells, it 
has been reported that hydrophobicity (Murota et al., 2000) and 
the association with liposome membrane (a model of cellular mem-
brane, Murota et al., 2002) correlate with the cellular uptake of 
flavonoids. This suggests that passive diffusion is a candidate for 
flavonoid transport into the cells, and the differences in species be-
tween humans and mice are considered to be smaller for the uptake 
of flavonoid via diffusion than via transporters. The prenyl group 
can enhance cellular uptake via cellular membranes because of the 
increase in the hydrophobicity of the mother compound (narin-
genin). In terms of elimination, ABC transporters (e.g., breast can-
cer resistance protein or multidrug resistance- associated protein) 
contribute to the transportation of flavonoids from the cells (Brand 
et al., 2006). 8- PN acts as an ABC transporter inhibitor that reduces 
ATPase activity (Tan et al., 2014), which may explain its low degree 
of elimination from HEK293 cells. Although ABC transporters are 
commonly expressed in the kidneys in both humans and mice, dif-
ferences in the expression levels in mice and humans would affect 
the amount of each flavonoid in the cells. However, it is difficult to 
discuss differences between mice and humans on the elimination 
of 8- PN because ABC transporters did not affect 8- PN transport 
(Figure 4b). To clarify the elimination of 8- PN in humans, we have 
to analyze urine samples, screen for transporters that regulate the 
cellular accumulation, and discover proteins associated with 8- PN 
in the human body.

Another feature of 8- PN is its relatively high accumulation in 
skeletal muscles. Our previous report has demonstrated that 8- PN 
promotes muscle synthesis and suppresses muscle atrophy (Mukai 
et al., 2012, 2016). Taken together, the muscular accumulation of 
8- PN may aid the maintenance of skeletal muscle mass.

F I G U R E  3  Competition profiles of 8- PN and 8- PN- 7G for site 
I in HSA using the site- selective HSA- binding fluorescent probe 
DNSA. Data are calculated as the competitive inhibition rate (%) of 
DNSA with flavonoids (n = 3, mean ± SE)
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using the Mann– Whitney U test (**p < .01)
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Although 8- PN and naringenin were present at lower levels in 
the brain tissue than in other tissues, 8- PN was present at higher lev-
els than naringenin. As the permeability of flavonoids into the brain 
is regulated by the blood– brain barrier (BBB) (Youdim et al., 2004), 
prenylation of naringenin may have improved its penetration into 
the BBB. It has also been reported that 8- PN undergoes phase I and 
II metabolism of its prenyl group or naringenin skeleton in cells de-
rived from humans (Nikolic et al., 2004, 2006). The observed agly-
cone ratios in the liver tissues (Table 3) indicate that the conjugated 
metabolites of 8- PN are the dominant structures present in mice. To 
clarify the distribution of the organ- specific metabolites, it is neces-
sary to determine the composition ratios of phase I and II enzyme 
metabolites in future studies.

The Cmax of 8- PN and naringenin in the plasma after single doses 
was not consistent with the observed tissue distribution (Figure 2). 
However, 8 h after administration of single doses, the plasma concen-
trations of 8- PN were higher than that of naringenin (Figure 2 inset). 
In addition, a previous report suggested that the long- term feeding 
of 8- PN resulted in higher plasma concentrations than naringenin 
(Mukai et al., 2012). Furthermore, it has been suggested that prenyl-
flavonoids (e.g., 8- prenylquercetin and XN) accumulate in the gastro-
intestinal mucosa (Mukai et al., 2013; Pang et al., 2007), which may 
result from the gradual transport of 8- PN (from the intestinal mucosa 
to the basolateral side) to maintain its circulation. However, further in-
vestigation is needed to evaluate the accumulation of 8- PN in the gas-
trointestinal tract. As shown in Figure 2, more 8- PN than naringenin 
enters the intestinal– hepatic circulation and is reabsorbed, indicating 
that a longer feeding period may result in increased 8- PN levels in the 
body. Co- administration of prenylflavonoids with proteins (O'Connor 
et al., 2018) or suspension in propylene glycol liposomes (Yang 
et al., 2012) has been reported to improve their intestinal absorption. 
Therefore, technological development to improve the absorption of 
8- PN is needed to apply it in clinical nutrition.

Among the serum proteins, serum albumin plays important 
role in protein binding for phytochemicals, which is of key impor-
tance to tissue distribution of flavonoids in the body. It has been 
demonstrated that HSA acts as a carrier of flavonoids for blood 
distribution (Tu et al., 2015) and improves their structural stability 
(Zinellu et al., 2015). Though we can obtain HSA and mouse serum 
albumin, we utilized HSA to apply the result to health promotion 
effects in humans. The affinities of 8- PN for sites I and II in albu-
min were stronger than those of naringenin. Although glucuronides 
weaken their affinity at 100 µM, 8- PN- 7G retained its affinity for 
HSA at 37.2%. Furthermore, 8- PN- 7G retained its affinity up to 1 µM 
(Figure 3). Meanwhile, N7G did not bind HSA. 8- PN- 7G has been 
reported as the predominant metabolite of 8- PN in human hepato-
cytes (Nikolic et al., 2006). Several studies have demonstrated that 
not only naringenin but also other flavonoids interact with HSA in 
clinical studies and vitro assays (Cao et al., 2019; Murota et al., 2007; 
Quah et al., 2020). In the clinical study, the binding of quercetin (a 
major flavonoid found in food), when the volunteers consume a 
quercetin- containing food item, onion, has been demonstrated 
(Murota et al., 2007). The binding constant value of quercetin to 

HSA was comparable to that of naringenin (Bolli et al., 2010). The 
binding constant values of 8- PN and 8- PN- 7G obtained here were 
2.38 × 104 and 2.42 × 104, respectively (Figure 4). Although the de-
termination method is different, these values are similar to those of 
naringenin (Tu et al., 2015). These data indicate that 8- PN binds to 
HSA in vivo.

The folding or conformation of proteins regulates their bi-
ological functions (Ishima et al., 2008). The effect of chemicals 
(Chamani et al., 2003; Chamani & Heshmati, 2008; Chamani & 
Moosavi- Movahedi, 2006) or biological components such as pro-
teins (Sadeghzadeh et al., 2020) on protein conformation has been 
reported. It has been shown that the binding of flavonoids to HSA 
modifies its conformation and stability (Barreca et al., 2017). Binding 
of certain ligands such as amino acids (Beigoli et al., 2019) and fatty 
acids (Ishima et al., 2008) to HSA affects the binding property or 
biological properties of drugs. This information suggests that 8- PN 
and 8- PN- 7G may impact the folding, conformation, and biological 
function of HSA.

Though bioavailability properties indeed differ from species to 
species, and data from mice cannot be applied directly to humans, 
it may be assumed that a higher affinity of 8- PN to HSA contributes 
to increasing the blood concentration of 8- PN and, consequently, its 
tissue distribution. It has been reported that albumin demonstrates 
70%– 80% primary amino acid sequence homology between species 
(Kosa et al., 1998; Theodore Peters, 1996), and they show a wide va-
riety of binding properties to ligands in different species (Pistolozzi 
& Bertucci, 2008; Yanagisawa et al., 1997). It is the limitation of our 
research that the binding property of each flavonoid to HSA cannot 
directly reflect their pharmacokinetics in mice. To cover the gap in 
species, it is necessary to use novel experimental models (e.g., HSA 
transgenic mouse model) (Sheng et al., 2016).

8- PN tissue distribution and pharmacokinetics in mice and its 
association to HSA and cellular uptake in a human- derived cell line 
were demonstrated in this study. Our results demonstrated that 
8- PN bioavailability was obviously different from that of naringenin. 
Since 8- PN showed a higher accumulation in mouse tissues and 
higher cellular uptake in HEK293, 8- PN is suspected to have higher 
bioavailability than naringenin, irrespective of the model organism. 
Our data suggest the necessity to investigate its excretion in the fu-
ture. To use 8- PN as a health- promoting nutrient, it is important to 
obtain data about not only the health promotion effect but also its 
potential toxicity if its elimination is slow. A limitation of this study 
is that the obtained data cannot be compared between humans and 
mice; thus, it is necessary to consider the differences in absorption 
and metabolism of flavonoids between rodents and humans (Bai 
et al., 2020; Brand et al., 2010; Ning et al., 2015). Despite these lim-
itations, this study provided useful information for determining tar-
get tissues in which 8- PN exerts a health- promoting effect.
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