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Invasive macroalgae shape chemical and
microbial waterscapes on coral reefs

Check for updates

Chloé Pozas-Schacre 1 , Hugo Bischoff2, Delphine Raviglione 1,3, Slimane Chaib1,
Camille Clerissi 1,4, Isabelle Bonnard1,3,4 & M. Nugues Maggy 1,4

Over the past decades, human impacts have changed the structure of tropical benthic reef
communities towards coral depletion andmacroalgal proliferation. However, how these changeshave
modified chemical and microbial waterscapes is poorly known. Here, we assessed how the
experimental removal of macroalgal assemblages influences the chemical andmicrobial composition
of two reef boundary layers, the benthic and the momentum. Chemical and microbial waterscapes
were spatially structured, both horizontally and vertically, according to macroalgal dominance and
boundary layers. Microbes associated with reef degradation were enriched in the boundary layers
surrounding macroalgal-dominated substrata. Dominant macroalgae were surrounded by a distinct
chemical pool of diverse lipid classes (e.g., diterpenoids and glycerolipids) and labile organic matter
(e.g., organooxygen compounds), which diffused from algal tissues to boundary layers according to
their polarity. Finally, our results highlighted strong co-variations between specific algal-derived
metabolites and planktonic microbes, giving insight into their roles in coral reef functioning and
resilience.

Coral reefs are among the most productive and diverse ecosystems on the
planet. Their high productivity in oligotrophic tropical seas depends on a
tight benthic-pelagic coupling and key microbial processes1–3. Benthic
organisms, like stony corals, macroalgae, or turf, release an extensive
amount of dissolved and particulate organic matter underpinning reef
community metabolism. For example, photosynthates and coral mucus
constitute labile organic matter consumed by microbial assemblages tun-
neling essential nutrients through the coral reef food web1,4,5. Part of this
chemical diversity can act as powerful cues involved in communication or
defense structuring reef communities6,7. As such, the chemical pool inwhich
sessile organisms bathe mediates both positive (e.g., settlement cues,
metabolites exchange) and negative (e.g., allelopathy, competition) biotic
interactions between reef members6,8. The combination of molecular
exchanges and microbial processes within reef waters results in complex
chemical and microbial waterscapes which are just starting to be
deciphered9–11.

Water masses of variable thickness emerge from drag forces as water
flows over the reef geomorphology, resulting in a physical stratification of
reef waterscapes12. Three boundary layers have been described: the benthic
boundary layer (BBL—m to cm scale) influenced by the overall shape of the
reef and main currents; the momentum boundary layer (MBL—cm to mm
scale) receiving organicmatter from the benthos through advection; and the

diffusive boundary layer (DBL—mm to μm scale) essentially formed by the
diffusion and accumulation of benthic products12. These water masses are
dynamic, influenced by flow velocity and benthos complexity, causing
variation in the transfer of organic matter within and between boundary
layers13. Therefore, each boundary layer may have distinct biological and
chemical characteristics, reflecting both benthic member identities and
physical processes.

Accumulating anthropogenic pressures, such as ocean warming, pol-
lution and overuse, have drastically altered the sessile community structure
of the reef benthos, inducing phase shifts from coral to macroalgal dom-
inance with cascading effects down to microbial scale14,15. Large-scale stu-
dies, across reefs and ocean basins, have demonstrated that the pelagic
microbiome reflects the underlying benthos of shifted reefs. Specifically,
reefs that have transitioned towards macroalgal dominance tend to harbor
higher microbial density and abundance of copiotrophic, potentially
pathogenic, microbial taxa than coral-dominated reefs14,16,17. Reef taxa
actually exert a strong organismal influence on microbial assemblages,
although limited to their immediate vicinity. Benthic primary producers,
such as corals, macroalgae or turf algae, exhibit highly distinct microbial
assemblages in their MBLs, which also differ from those of the upper water
layer10,18. These microbial shifts are likely driven by concurrent changes in
benthic-derived organic matter, yet its composition and small-scale spatial
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variation across boundary layers and benthic organisms remain inade-
quately understood.

In the last two decades, several studies have provided essential
groundwork for unveiling the differential influence of benthic communities
on chemical diversity and the link with microbial processes4,19–22. Coral and
macroalgal exudates have specific chemical signatures and select for tax-
onomically and functionally distinct microbial communities. Specifically,
carbon-rich algal exudates select for copiotrophic bacteria with more
potential virulence factors compared to coral exudates4. Yet, it is only
recently, with the advancement in marine untargeted metabolomics and
chemoinformatics23–26, that thesemetabolite pools have been shown todiffer
in their elemental stoichiometry andmacronutrient content21. However, in-
situ investigations of the chemical composition of reefwaters, aswell as their
sources, remain scarce9,11,27. For example, molecular gradients from coral
surface to overlying boundary layers have been described, comprising
infochemicals, such as quorum sensing and antibacterial compounds, that
may structure microbial communities surrounding the coral holobiont27.
Conversely, in two recent studies, untargeted chemical composition of reef
exometabolomes did not vary across depths9 and did not reflect benthic
composition across habitats11.

Linking changes in metabolite pools and microbiome structure
induced bymacroalgal dominance is paramount to understand the ecology
of transitioning reefs. Dominance of macroalgae may alter reef biogeo-
chemical cycles through changes in microbe-metabolite interactions1,14.
Additionally, water-mediated effects involving waterborne allelochemicals
and microbially-mediated processes are thought to be involved in coral-
algal competition6,28,29. If algal-associated microbial and chemical water-
scapes drive the demise of coral reefs, they could create a feedback loop that
reinforces macroalgal dominance28. In the light of accelerating coral reef
degradation, a better comprehension of the effects of macroalgal assem-
blages on chemical andmicrobial signatures across reef boundary layers, as
well as the origin and diffusion of algal-derived metabolites, is needed.

Here we describe an in-situ manipulative experiment in the lagoon of
Mo’orea, French Polynesia, designed to assess howmacroalgal assemblages
influence the chemical and microbial composition of two reef boundary
layers: the MBL and BBL. We sampled reef waters surrounding algal-
dominated and algal-removed coral bommies and investigated algal-
derived metabolites and microbes using untargeted metabolomics tandem
mass spectrometry (LC-MS/MS) and 16S rDNA metabarcoding. Our

integrative analysis reveals a spatial structuring of the chemical and
microbial waterscapes according to macroalgal dominance and boundary
layers, with an enrichment of opportunist copiotrophic bacteria in algal-
associatedwaters. By investigating compoundclass identities in two invasive
macroalgae and their associated boundary layers, we also show diffusion
gradients of distinct compound classes and highlight co-variations between
algal-derived metabolites and planktonic microbes.

Results
Experimental design overview and benthic community
composition
This in-situ experiment took place in the lagoon of Mo’orea, French Poly-
nesia, between June 2020 and June 2021 (Supplementary Fig. 1a). Six coral
bommies were randomly selected and assigned to one of two algal treat-
ments: (i) algal-removed or (ii) algal-dominated (Fig. 1a, b; Supplementary
Fig. 1b).Algal-removedbommieswere createdby removal of allmacroalgae.
Macroalgal-dominated bommieswere left untouched. Before algal removal,
benthic communities did not differ between treatments (PERMANOVA,
Algal removal treatment: R2 = 0.08, F = 0.35, p > 0.05). After algal removal,
communities varied significantly between treatments and remained distinct
throughout the experiment (PERMANOVA, Algal removal treatment:
R2 = 0.61, F = 31.76, p < 0.001; Month: R2 = 0.03, F = 0.57, p > 0.05; Treat-
ment x Month: R2 = 0.05, F = 0.93, P > 0.05; Supplementary Fig. 2a). Algal-
removed bommies were dominated by bare substrate (arithmetic mean =
43.8% cover) and turf (28.4% cover), while algal-dominated bommies were
dominated by macroalgae (67.8% cover), with the brown macroalgae
Turbinaria ornata (35.3% cover) &Dictyota bartayresiana (13.8% cover) as
the twomost abundant species (Supplementary Fig. 2b, c). Hard coral cover
was low on both algal-removed (6.3% cover) and algal-dominated (2.4%
cover) bommies. Six months after algal removal, we sampled the BBL
(~50 cm above the substrate) of each bommie, the MBL (~5 cm above the
substrate) of the substrate on each algal-removed bommie, and theMBL of
substrates dominated by T. ornata or D. bartayresiana on each algal-
dominated bommie (n = 12 samples per reef water type; Fig. 1c–e; Sup-
plementary Fig. 3).Measurements by Shashar and colleagues12 were used to
define sampling heights above the substratum for each boundary layer. To
explore the origin and diffusion of algal-derived metabolites, we extracted
surface- (n = 12 samples per species) and endo-metabolomes (n = 3 samples
per species) from each of the two macroalgal species.

Fig. 1 | Experimental design. Bommies were assigned randomly to two algal
treatments: (a, c) (i) algal-removed and (b, c) (ii) algal-dominated. Drawings show
the location of the different samples: 5 water types represented by the oval shapes on
both algal-removed and algal-dominated bommies and, for algal-dominated bom-
mies only, 2 algal surface samples and 2 algal whole tissue samples, i.e., one from each
of the twomacroalgal species: (d) Turbinaria ornata and (e)Dictyota bartayresiana.

Both the microbiome and metabolome of water samples were analyzed, while only
the metabolome of algal surface and whole tissue samples was considered. BBL
Benthic Boundary Layer, MBL Momentum Boundary Layer. n = 12 samples per
water type. n = 12 surface samples per algal species. n = 3 whole tissue samples per
algal species.
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Microbial and chemical diversity of reef waters
A total of 5,517 ASVs (Supplementary Data 1) and 975 MS1 features (i.e.,
dataset 1; Supplementary Data 2) were obtained after data filtration (Sup-
plementary Table 1). Microbiome alpha-diversity (Shannon index) varied
significantly between reef water types (ANOVA, F = 4.01, p < 0.01; Fig. 2a).
Specifically, the Dictyota MBL showed a higher diversity than the algal-
removed MBL (Tukey HSD test, p < 0.05). Chemical alpha-diversity varied
significantly between reef waters (ANOVA, F = 4.58, p < 0.01; Fig. 2b), with
algal-dominated MBLs being more diverse than the algal-removed BBL
(Tukey HSD test, p < 0.05).

Compositional differences among reef water microbiomes and
metabolomes
We used unconstrained and constrained approaches to explore the
microbial (i.e., microbial genera) and chemical (i.e., dataset 2 with MS1
features with MS/MS data; Supplementary Data 3) variations across water
types. Unconstrained ordinations (principal component analysis – PCA) of
water samples revealed that water types differ in their microbial (PER-
MANOVA, R2 = 0.13, F = 1.99, p < 0.001) and chemical compositions
(PERMANOVA, R2 = 0.15, F = 2.46, p < 0.001; Supplementary Fig. 4;
Supplementary Table 2). However, pairwise analysis revealed no significant
differences in either microbial or chemical composition between MBL
Dictyota and MBL Turbinaria (pairwise PERMANOVA, p > 0.05), nor in
chemical composition between BBL algal-removed and BBL algal-
dominated samples (pairwise PERMANOVA, p > 0.05). We further
explored the extent of these compositional differences using partial least
squares discriminant analysis (PLS-DA), a supervised method, to evaluate
the potential of the microbiome and metabolome to discriminate samples
based on theirwater types. Constrained ordinations confirmed the potential
of the microbiome (Supplementary Fig. 5a–d) and metabolome (Supple-
mentary Fig. 5e–h) to differentiate between water types. Notably, the dis-
crepancies between unconstrained and constrained ordinations for the two
algal-dominated MBLs and the two BBLs suggest that their compositional
differences were subtle, with only key variables distinguishing these water
types. We, then, used multi-block PLS-DA analysis, DIABLO30 to investi-
gate whether the multi-omic signatures of water samples were correlated
and could discriminate water types. The first two components of the two
ordinations were highly correlated (correlation coefficient > 0.8), showing a
strong covariation between both datasets. BBLs significantly clustered apart
from each other with only 14% of misclassified samples between algal
treatments (Fig. 3a; CER = 0.14, p < 0.01). Similarly, the multi-omic com-
position of all three MBLs significantly differed from each other (Fig. 3b;
CER = 0.20, p < 0.001). Additionally, boundary layers were vertically
structured regardless of the algal treatment (Fig. 3c, d).TheBBL significantly
differed from the MBL on both algal-removed (Fig. 3c; CER = 0.05,
p < 0.001) and algal-dominated (Fig. 3d; CER = 0.19, p < 0.001) bommies.

Dominant microbial taxa across boundary layers and algal
treatments
Planktonic microbial communities were dominated by the family Cyano-
biaceae (e.g., Prochlorococcus), followed by the Actinomarinaceae (e.g.,
Candidatus Actinomarina), Alteromonadaceae (e.g., Alteromonas), Flavo-
bacteriacae (NS4 and NS5 marine groups), AEGEAN-169 marine group
and the SAR86 clades (Supplementary Fig. 6). To identify which genera best
discriminated the microbial composition of the five reef water types, we
summed the VIP scores of the 409 discriminant genera across the former
four PLS-DA models (Supplementary Fig. 5a–d) and focused on the 50
ASVs with the highest summed scores (Fig. 4). Genera belonging to the
Gammaproteobacteria and Bacteriodia were particularly abundant in algal
waters. Specifically, the algal-dominated BBL and MBLs were enriched in
the Gammaproteobacteria Legionella, two Bacteroidia Leeuwenhoekiella
(family Flavobacteriaceae) andOwenweeksia (Cryomorphaceae), and some
Alphaproteobacteria, such asEpibacterium (Rhodobacteraceae). Both algal-
dominated MBLs also harbored a high abundance of the Gammaproteo-
bacteria Alcanivorax, Halomonas, Idiomarina, and Marinobacter. Numer-
ous Alphaproteobacteria were enriched in these MBLs including
Croceicoccus (Sphingomonadaceae), Henriciella, Maricaulis (Hyphomo-
nadaceae), and Pelagibaca (Rhodobacteraceae). A few ASVs differentiated
the two algal-dominated MBLs. For the Dictyota MBL, these included the
Gammaproteobacteria Oceanococcus and Candidatus Uhrbacteria (ABY1)
and, for the Turbinaria MBL, several Alphaproteobacteria (e.g., Aestuar-
iicoccus, Nautella and Sagitulla from the Rhodobacteraceae) and the
Gammaproteobacteria XY-R5 (Alteromonadaceae). In contrast, algal-
removed waters were characterized by an enrichment of Alphaproteo-
bacteria, including Nitratireductor and Oricola (Rhizobiaceae) in the BBL,
and Aestuariicoccus,Mameliella, Roseitalea, and Sagittula in the MBL.

Diffusion pattern of macroalgal metabolites across
boundary layers
To explore the diffusion of algal-derivedmetabolites into the algal boundary
layers, we processed algal whole tissue, algal surface, and algal-dominated
water samples together to built a quantitative table comprising 3943 MS1
features after datafiltration (SupplementaryData 3). PLS-DA indicated that
metabolomic signatures strongly discriminated sample types for both algal
species (Fig. 5a; Dictyota: CER = 0.11, p < 0.001; Turbinaria: CER = 0.13,
p < 0.001). Chemical compositional differences between sample types were
confirmed by unconstrained PCA and PERMANOVA (Supplementary
Fig. 7; Supplementary Table 3). On the 1st component, metabolite features
from algal surfaces and whole tissues clearly clustered apart from the water
samples, while the 2nd component separated the algal surface and water
samples from the whole tissue samples. Interestingly, the level of differ-
entiation was lower between adjacent sample types (e.g., Surface vs. MBL)
compared to distant ones (e.g., Tissue vs. BBL; pairwise PERMANOVA;

Fig. 2 | Microbial & chemical alpha-diversity across the five reef waters. Shannon diversity index by sample of (a) ASVs and (b) chemical features. Reef water types are
abbreviated and colored as in the experiment design figure (Fig. 1).
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Supplementary Table 3). The distinct chemical signatures of whole tissue
and surface were confirmed by a substantial number of metabolites speci-
ficallydetected in each sample type (Fig. 5b). Interestingly, ahighproportion
(~30%) of metabolites were shared across all sample types for both algal
species. We hypothesized that algal compounds would diffuse across
boundary layers according to their polarity, with hydrophobic compounds
more likely to be retained close to producing organisms and polar com-
pounds more likely to move across boundary layers. By using

chromatographic retention time as a proxy for polarity (i.e., in reverse phase
column, polar compounds tend to be eluted first), we found a stepwise
decrease in retention time,with each featureweighted equally, from the algal
whole tissue to the algal-dominatedBBL, supporting ourhypothesis (Fig. 5c;
Kruskal-Wallis, chi-squared = 1200.4, p < 0.001). Interestingly, a similar
pattern was observed in abundance-weighted retention times (Supple-
mentary Fig. 8)., suggesting that polarity influenced both the diversity and
relative abundance of features across sample types

Fig. 3 | Multi-omic composition of reef boundary layers. Score plots of the multi-
block PLS-DA (DIABLO) performed on metabarcoding and metabolomic data
between (a) benthic boundary layers (BBL), (b)momentum boundary layers (MBL),
(c) algal-removed waters, and (d) algal-dominated waters. Analyses were validated
by a permutation test based on cross-model validation. The CER (classification error

rate) represents the proportion of misclassification and a p < 0.05 indicates that the
clustering was not obtained by chance alone. Ellipses represent the spread of data
points at a 95% confidence level. Reef water types are abbreviated and colored as in
the experimental design figure (Fig. 1). Individual PLS-DAs are shown in Supple-
mentary Fig. 5.
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Broad molecular classification of diffusing algal-derived
metabolites
To further investigate the chemical diversity of diffusing algal-derived
metabolites, we retrieved the consensus MS2 spectra of each ion feature
obtained from the concurrent processing of algal tissue, surface and water
spectral data for molecular networking (see “Methods”). The Feature-Based
Molecular Network analysis on GNPS24,31 grouped the 4585 initial MS1
features with consensus MS2 fragmentation spectra into 436 subnetworks
based on their spectral similarity (i.e., molecular networks of alike features;
Fig. 6a), of which 2214 clustered into 256 subnetworks after filtration (i.e.,
dataset 2; Supplementary Data 3; Supplementary Data 4). To highlight
relevant subnetworks of diffusing algal-derived metabolites, we hypothe-
sized that molecules are produced in algal whole tissue and/or surface and
gradually diffuse in the upper water layers (i.e., presence in the MBL and,
possibly, the BBL). Therefore, we selected, for each algal species,

subnetworks that had at least 3 discriminant features (VIP score > 1), or at
least 1 feature with a VIP score superior to the median that were at least
detected in either or both whole tissue or surface and in theMBL. A total of
316 features comprised the 58 subnetworks obtained, of which 20 and 13
were exclusively associated with Dictyota and Turbinaria, respectively
(Fig. 6a; Supplementary Table 4; Supplementary Data 4). Finally, each
subnetwork was broadly annotated using the ClassyFire ontology32 via
MolNetEnhancer on GNPS23, CANOPUS on SIRIUS25,33, and manual
verifications of spectral matches and library search.

Subnetwork classification illustrated patterns of differential diffu-
sivities according to chemical classes among the four sample types for
both algal species (Fig. 6c). In general, subnetworks affiliated to prenol
lipids, fatty acyls, and glycerolipids showed a diffusion-like profile with
decreasing mean relative abundances from algal whole tissue to algal-
dominated BBL (Supplementary Fig. 9a–c; Supplementary Table 4).

Fig. 4 | Reef waters-associated discriminant
microbial taxa.Benthic boundary layers (BBL) were
collected above algal-dominated and algal-removed
bommies. Momentum boundary layers (MBL) were
associated to algal-removed substrate or above
macro-algal species: Dictyota bartayresiana and
Turbinaria ornata. Microbial amplicon sequence
variants (ASVs) are at the genus-level and labeled at
the family and genus level. ASVs are colored
according to their microbial class and clustered
according their mean CLR transformed abundances
across the five water types using Euclidian distances
and Ward’s minimum variance method. Data was
scaled by mean-centering and dividing by the stan-
dard deviation.
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Fig. 5 | Analysis of algal metabolites diffusion into the water column for (i)
Dictyota bartayresiana and (ii) Turbinaria ornata. a PLS-DA score plots of MS1
features with MS/MS fragmentation spectra (n = 2214 features) showing metabo-
lomic profiles clustered according to algal whole tissues, surfaces, MBLs, and BBL.
Metabolites relative peak areas wereCLR-transformed andmean-centered. CER and
associated p values were obtained by cross-model validation and permutation tests.

Ellipses represent the spread of data points at a 95% confidence level. (b) Venn
diagrams ofMS1 features in whole tissues, surfaces andMBLs ofDictyota (n = 3444)
and Turbinaria (n = 3224) and algal-dominated BBL (n = 1661). c Unweighted
retention time of each feature in minutes using UHPLC reverse phase column.
Lettering indicates significant differences using Dunn test’s posthoc p < 0.05). BBL
Benthic Boundary Layer, MBL Momentum Boundary Layer.
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Fig. 6 | Molecular classification of subnetworks with discriminant features found
in the algal metabolomes and associated waters. a Molecular network of all MS1
features (nodes) with MS/MS fragmentation spectra linked by a cosine score >0.7
(edges). Nodes are colored by the sample type in which their relative abundance was
the highest. Examples of subnetworks of interest with discriminant features found in
whole tissue & surface samples and boundary layers (BBL—benthic & MBL—

momentum) of the two algal species Dictyota bartayresiana and Turbinaria ornata
are boxed 1–8. b Boxed subnetworks details in which nodes are colored by their
mean relative intensities (i.e., peak areas) in each sample type. cMean of summed
features relative intensities of subnetworks of interest across sample types according
to their consensus ClassyFire chemical ontology derived from MolNetEnhancer
(GNPS) and CANOPUS (SIRIUS) outputs.
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Diterpenoids were the most prominent metabolites in Dictyota-asso-
ciated samples (Fig. 6a–c; Supplementary Fig. 9a) and, collectively, they
summed to 16.7%, 7.5%, 4.3% of the total peak areas in Dictyota whole
tissue, surface and MBL, respectively. They were rare in Turbinaria
whole tissue and surface (<0.02% of the total peak areas), but present in
Turbinaria MBL (1%). Several diterpenoids may be related to spatane
and secospatane derivatives, including subnetwork 115 (Fig. 6b1; Sup-
plementary Table 5a), subnetwork 103 (Fig. 6b2; Supplementary
Table 5a) and subnetwork 170 (Fig. 6b3; Supplementary Table 5a).
Despite not being flagged as discriminant features, we detected two
features with masses and putative formulas very closely matching known
allelopathic diterpenoids isolated from Dictyota34,35, including Crenula-
cetal C (C24H38O5, subnetwork 115; Fig. 6b1) and Pachydictyol A
(C20H32O, subnetwork 103, Fig. 6b2; Supplementary Table 5a). However,
we cannot rule out that these features are isomers with different chemical
and biological properties. Sesquiterpenoids constituted another subclass
of prenol lipids characteristic of Dictyota whole tissue and surface
(subnetwork 493; Supplementary Fig. 9b; Supplementary Table 4). For
Turbinaria, discriminant prenol lipids were rather related to carotenoids
(e.g., subnetwork 214; Supplementary Table 5a), summing to 0.3% of the
total peak areas. The relative abundances of fatty acyls and glycerolipids
in whole tissue and surface samples were three-fold higher in Turbinaria
compared to Dictyota, summing up to 4.6% and 1.5% of the total peak
areas, respectively (Fig. 6c; Supplementary Fig. 9c; Supplementary
Table 4). Some noteworthy examples are subnetwork 187 composed of
monoacylgycerols and diacylglycerols (e.g., DAG (16:0/14:0); Fig. 6b;
Supplementary Table 5a) and subnetwork 89 composed of mono-
galactosyl diacylglycerol (e.g., MGDG (18:1/16:0); Fig. 6b5; Supplemen-
tary Table 5a). In addition, two features from subnetwork 89 were
annotated as sulfoquinovosyl diacylglycerol (e.g., SQDG (34:2); Supple-
mentary Table 5a). Discriminant features of glycerophospholipids were
detected in four subnetworks and were less prominent in algal whole
tissue and surface than the previously discussed lipid classes, making up
to 0.1% and 0.04% of total peak areas for Turbinaria and Dictyota,
respectively (Fig. 6c; Supplementary Fig. 9d; Supplementary Table 2).
Algal-dominated MBLs and BBLs were characterized by an enrichment
of some subnetworks of these lipid classes compared to whole tissue and
surface samples (Supplementary Fig. 9c, d; Supplementary Table 4). They
were constituted of lipids in their lyso forms, such as subnetwork 137
associated to lyso-betaine lipids (e.g., Lyso DGCC (22:6); Fig. 6b6; Sup-
plementary Table 3a) and subnetwork 350 associated to lyso-
phosphatidylcholines (e.g., Lyso-PC (20:5); Supplementary Table 5a).
In addition, features annotated as benzene derivatives (e.g., subnetwork
13) were prominent in algal-dominated MBLs and BBL comprising
about half of the total peak area (Fig. 6c; Supplementary Fig. 9e; Sup-
plementary Table 4). Other molecular classes characteristic of algal-
dominated MBLs and BBL included organooxygen compounds (e.g.,
subnetwork 33), organonitrogen compounds, carboxylic acids (e.g.,
subnetwork 717; Fig. 6b8; Supplementary Table 5a), piperidines and
indoles (Fig. 6c; Supplementary Fig. 9f–j; Supplementary Table 4).

Finally, we investigated the subnetworks in negative ionization
mode. The dataset was less than half the size of the dataset in positive
mode with 1,029 features and 83 subnetworks after filtration (Sup-
plementary Data 5). Fewer molecular classes could be resolved across
the 24 selected subnetworks, and only 13 subnetworks were anno-
tated (Supplementary Fig. 10; Supplementary Data 6). An additional
molecular class was identified, the organic sulfuric acids, which were
abundant in algal surfaces and waters. Features identified as orga-
nooxygen compounds were the most prominent across all samples in
adequation with their better ionization and fragmentation in negative
mode. Summed together, they comprised 51.4% and 46.6% of the
total peak areas for Dictyota and Turbinaria, respectively. Sugar
alcohols (subnetworks 55 and 126; e.g., Mannitol library match;
Supplementary Table 5a) were particularly abundant in algal whole
tissue and surface, while carbohydrates (subnetwork 2) were rather

abundant in algal-dominated MBLs and BBL (Supplementary
Fig. 10b).

Co-variation of algal-associated metabolites and
microorganisms
To investigate the associations between previously identified discriminant
metabolites (n = 316 features) and microorganisms (n = 207 microbial
genera), we integrated themetabolomic andmetabarcoding data from both
algalMBLs using themulti-blockPLS-DAanalysisDIABLO30.We excluded
the algal-dominated BBL to address species-specific differences within the
same boundary layer and avoid confounding factors. DIABLO revealed a
strong association between the metabolome and microbiome of the algal
MBLs with a distinct cluster for each algal species (correlation coeffi-
cient > 0.95; Supplementary Fig. 11). The analysis selected 26 metabolites
and 27 ASVs with a strong correlation coefficient (<−0.7 or >0.7) and
resulted in a bipartite network comprising three clusters (Fig. 7). In the first
cluster (Fig. 7a), two diterpenoids (Supplementary Table 5b), an organo-
nitrogen compound, an organooxygen compound, a piperidine
(C14H18N2O2), a carboxylic acid and the Lyso-PC (20:5) were negatively
correlated with diverse ASVs belonging to Alistipes, Eilatimonas, Rikenella,
andRoseibacterium, and twounclassified taxa fromtheDesulfovibrionaceae
and Victivallaceae families. These ASVs were also involved in positive
relationships with a cyclopeptide (C18H33N3O3, subnetwork 717), possibly
related to a halolitoralin and a glycerophospholipid. An unknown third
diterpenoid was negatively correlated to Ketobacter, Mycobacterium and
Pseudooceanicola which were also positively correlated to the organoni-
trogen and organooxygen compounds and the carboxylic acid. These
compounds interacted also positively with the genera Acanthopleuribacter
and Hyphomonas. Tropicibacter was negatively correlated to an orga-
nooxygen compound and an unknownmetabolite connecting a secondpart
of the cluster comprisingPonticaulis, Roseovarius and a Patescibacteria (JGI
0000069-P22). The second cluster (Fig. 7b) comprised lipids, such as the
SQDG (14:0/18:4) and the MGDG (16:3/20:5), and an amino acid
(C6H16N4O2), which interacted negatively with Citreicella and Oleibacter.
The third cluster (Fig. 7c) included only negative correlations between
diterpenoids and XY-R5. Two of these diterpenoids belonged to the sub-
network 115 (C24H34O6 and C26H36O7; Fig. 6b1; Supplementary
Table 5a, b). These metabolites were detected in higher abundances in the
Dictyota MBL, while XY-R5 was relatively more abundant in Turbinaria
MBL. In contrast, Calorithrix was positively correlated with two of these
metabolites and was enriched in DictyotaMBL.

In addition, we investigated associations between microbes and the
discriminant metabolites (n = 216 features) from the dataset in negative
ionization mode (Supplementary Fig. 12; Supplementary Table 5c). Briefly,
two organic sulfuric acids and a diterpenoid were negatively correlated to
Alistipes and Eilatimonas, which interacted positively with a phenol and an
organooxygen compound. In contrast, this phenolwas negatively correlated
with Ketobacter and Mycobacterium (Supplementary Fig. 12a). Sulfolipids
were negatively correlated with XY-R5 and positively correlated with
Calothrix, Pseudoruegeria and Roseibacterium, (Supplementary Fig. 12b).
Finally, this analysis revealed positive associations between various carbo-
hydrates (e.g., pentose, aminoglycoside), a carboxylic acid, and severalASVs
belonging to Oleibacter, Ponticaulis and Tropicibacter (Supplementary
Fig. 12c).

Discussion
On coral reefs, the tight coupling between microorganisms and meta-
bolites drives reef biogeochemical processes and mediates ecological
interactions1,3. In the wake of the widespread shift from coral to mac-
roalgal dominance, deciphering the unseen diversity of microbes and
chemicals and their spatial distribution is paramount to understand the
consequences of benthic community changes on coral reef ecosystem
function and resilience. Here, we demonstrate that macroalgal assem-
blages modify chemical and microbial waterscapes surrounding coral
bommies. Our analyses identified specific classes of algal-derived
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metabolites, including diverse lipids classes (e.g., prenol lipids and gly-
cerolipids) and labile organic matter (e.g., organooxygen compounds and
carboxylic acids). Several of these classes featured a diffusion profile with
decreasing relative abundance from the whole tissue to the BBL, which is
consistent with the hypothesis that hydrophobic compounds remain
close to emitters, while polar compounds move across boundary layers.
In addition, microbiome-metabolome data integration highlighted
strong co-variations between algal-associated metabolites and microbes,
overall suggesting that some of these metabolites could structure
microbial communities in coral reef waters.

Our study shows a remarkable spatial heterogeneity in microbial
and chemical waterscapes according to dominant benthic taxa and
boundary layers under real flow condition. Horizontally, the description
of distinct pools of bacteria and metabolites in each boundary layer
between algal-dominated and algal-removed bommies is congruent with
previous studies at the organismal10,18 and reef 14,16,17 scales. Consistent
with earlier research on microbial communities10,18, we also observed a
vertical separation between the MBL and BBL surrounding both algal-
dominated and algal-removed bommies. This spatial structuring is likely
driven by interacting biological and physical processes. The hydro-
dynamic conditions, such as flow velocity and turbulences, within each
boundary layer regulate the advection of benthic organic matter and
microorganisms12,13. In addition, the rates at which metabolites and
microbes are released into the water column, along with their interac-
tions, further determine the occurrence of chemical and microbial con-
centration gradients27,36. However, some studies did not detect differences
between surface and benthic waters in microbial assemblages37 and
chemistry9. Interestingly, the multi-omic signatures of BBLs surrounding
algal-dominated and algal-removed bommies were clearly distinct.
Although reef currents are expected to homogenize upper water layers,
the presence of canopy-forming macroalgae, such as Turbinaria and
Sargassum, likely reduces flow velocity and increases turbulence, which,
in turn, may increase the retention of molecules and microbes within
the BBL38.

By exploring metabolite pools from the algal tissue to the algal-
dominated BBL, this work provides a fine-scale spatial characterization of
algal-derived metabolites within the reef ecosystem. For both algal species,
the surface metabolome lied between the endo-metabolome and the two
boundary layers (i.e., theMBL and BBL), highlighting holobiont surfaces as
key interaction zones between the host, its epibiont community and its
surrounding environment7,27. In addition, a substantial proportion of sur-
face- and endo-metabolites were detected across the boundary layers,
supporting the existence of chemical gradients in the water column27. By
relating the diversity and relative abundance of metabolites to their chro-
matographic retention times from the algal tissue to the algal-dominated
BBL (Fig. 5c), our results suggest that algal-derived metabolites diffuse into
the water column according to their polarity. This finding supports that
hydrophobic compounds will act on contact or diffuse at a very short dis-
tance, while medium polar or hydrophilic compounds will have a wider
range of detection and potential activities.

Using spectral library matches and in silico annotations, our study
demonstrates that the diffusivity of metabolites across boundary layers
differs according to their molecular classes. In a recent study, metabolites
from diverse lipid classes, including prenol lipids, fatty acyls, glycerolipids,
and glycerophospholipids, were abundantly recovered from tropical green
and red macroalgae which is congruent with our results22. We found that
metabolites associated to sesquiterpenoids, carotenoids, and sulfolipidswere
abundant in the algal tissue and surface but scarce in algal waters. This
limited diffusion is consistent with their surface-bound anti-fouling and
cytotoxic properties39–41. In contrast, diterpenoids, conspicuous in Dictyota
tissue, were also abundant in the Dictyota MBL and the algal-dominated
BBL (Fig. 6c). While diterpenoids display a range of contact-dependent
bioactivities, ranging from herbivore deterrence to allelopathy42–44, this
finding indicates a water-borne action and/or a high release rate by mac-
roalgae. In contrast, benzenoids, organooxygen compounds, carboxylic
acids, and lysolipids were abundantly detected in the algal MBLs and algal-
dominatedBBL (Fig. 6c; SupplementaryFig. 9).Their highabundance in the
boundary layers suggests a non-specific origin of these compounds. For

Fig. 7 | Co-variation of discriminant microbial amplicon sequence variants
(ASVs) and molecular features in algal momentum boundary layers (MBLs).
Bipartite correlation network obtained from DIABLO analysis and visualized on
Cytoscape. A correlation threshold was set to 0.7 resulting in three clusters (a, b, c).

Nodes are contoured according to their type (i.e., ASVs in purple andmetabolites in
gray) and colored by their mean relative intensities (i.e., peak areas) in the MBL of
Dictyota bartayresiana and Turbinaria ornata. Putative annotations are shown in
Supplementary Table 5a, b.
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instance, benzenoids are released by diverse organisms, such as
phytoplankton45, turf, and corals21. Organooxygen compounds also con-
stitute important growth and energy substrates for microbial life4,46. While
variations in physiochemical properties (e.g., size, polarity36) might account
for the different abundance profiles observed among the sub-categories of
organooxygen compounds (Supplementary Figs. 9 and 10), these differ-
ences might also imply distinct lability and, therefore, biotransformation
rate bymicrobes. Finally, the structural property of lysolipids, consisting of a
single fatty acyl chain and a polar head,mightmake themmore hydrophilic
than other lipids47. While we highlight polarity as a potential factor influ-
encing metabolite diffusion, future investigations into the other aforemen-
tioned factorswill be paramount to understand the determinants and extent
of these chemical gradients in reef waters.

Our integrative approach reveals a strong co-variation between
microbiome and metabolome datasets, supporting a tight microbe-
metabolite coupling in the coral reef waterscape. The observed enrich-
ment of Gammaproteobacteria and Bacteroidia in algal waters echoes
numerous studies demonstrating the selective influence of energy- and
carbon-rich algal exudates on these microbial classes1,4,20. The algal MBLs
and algal-dominatedBBLharbored several genera from these classes known
for their copiotrophic lifestyle and capacity to degrade complex OM,
including Alcanivorax, Eilatimonas, Idiomarina, Leeuwenhoekiella and
Oleibacter46,48–50. In addition, the Alphaproteobacteria Croceicoccus and
Hoeflea, abundant in the algal waters, can metabolize mannitol as their
carbon source51,52. In fact, organooxygen compounds constituted a sig-
nificant proportion of the algal MBLs, particularly in negative ionization
mode (Fig. 6c; Supplementary Figs. 9 and 10). Besides carbohydrates, car-
boxylic acids can also constitute strong chemo-attractants and foraging cues
for coral reef bacteria53,54, including from the Rhodobacteraceae, which is
consistent with the observed positive correlations in microbe-metabolite
network (Fig. 7; Supplementary Fig. 12). Although the analysis of data in
positive ionizationmode prevails in coral and reef metabolomics and yields
a greater number of putative annotations, our results encourage the
exploration of negative ionization metabolomics to gain a better under-
standing of microbe-metabolite interactions.

The enrichment of copiotrophic lineages has often been described as
indicativeof highmacroalgal coverand signsof reefmicrobialization1,14,17. In
addition, these copiotrophs can constitute virulent microbial populations

capable of shifting towards a pathogenetic lifestyle when labile carbon is
abundant4,14,46. For example, Alcanivorax, enriched in the algal MBLs
(Fig. 4), has previously shown such metabolic versatility46. Copiotrophic
microbes can invade stressed and diseased corals55,56, and several taxa
characteristic of the algal MBLs are suspected to be coral57,58 and algal59,60

pathogens, among them Halomonas, Maricaulis and Nautella (Fig. 4).
However, some taxa (e.g., Halomonas) can also be beneficial bacteria61,
calling for cautious interpretation of their putative roles beyond their
taxonomic affiliations. Comparatively, Roseitalea and Mameliella, two
probiotic bacteria of corals and Symbiodiniaceae62,63, were depleted in algal
waters. Allelopathy could also represent a threat to coral holobionts. In
particular, several studies on hard corals and sponges demonstrated the
cytotoxicity of diterpenoids and SQDGs41,42. In this context, we propose a
conceptual model for the spatial structuring of chemicals and microbes
around algal-dominated bommies (Fig. 8). In this model, algal-derived
metabolites act as structuring elements of planktonic microbial commu-
nities. We posit that boundary layers surrounding algal-dominated bom-
mies harbor metabolites that could foster reef degradation through
allelopathy and the virulence of copiotrophs. However, the extent to which
thesewater-borne elements are effectivelydetrimental tounderlying benthic
corals, as well as their pelagic stages, urgently requires further investigation.
This model is consistent with the DDAM (Disease, Dissolved organic car-
bon, Algae, and Microbe) and reef microbialization hypothesis, which
supports a link between elevatedDOCconcentrations and the emergence of
potential coral pathogens14,28,46.

The algal MBLs harbored DMSP-degrading bacteria (e.g., Idiomarina
andMarinobacter)64.DMSP is a significant substrateand chemicalmediator
for bacterioplankton65. It is produced by coral- and algal-associated
bacteria64, as well as free-living taxa, including Pelagibaca and
Pseudooceanicolla66, twoRhodobacteraceaewhichwere enriched in the algal
MBLs. Nitrogen transformation on coral reefs is complex and largely
mediated by microbial activity2. Some of the detected taxa, such as Acuti-
coccus and Nitratireductor, may be involved in these processes67. Strong
microbial interactions with sulfur- and nitrogen-containing compounds
were revealed in our analysis of bipartite networks (Fig. 7; Supplementary
Fig. 12), further supporting their structuring role in planktonic assemblages.
Conversely, negative microbe-metabolite associations occurred with diter-
penoids, SQDGs, phenols, and Lyso-PC (Fig. 7; Supplementary Fig. 12),

Fig. 8 | Conceptual diagram of chemical and
microbial waterscapes above the algal-dominated
bommies. Algal-derived metabolites vary in their
diffusivities across boundary layers (i.e., BBL and
MBL), with some metabolites displaying diffusion-
like profile (e.g., diterpenoids, glycerolipids). The
emergence of chemical gradients structuremicrobial
assemblages according to the molecular classes and
the ecological roles of these metabolites. Metabolites
can constitute trophic resources (e.g., organooxygen
compounds) or allelopathic agents (e.g., diterpe-
noids, sulfolipids).Within the algal waterscapes, two
mechanisms could contribute to coral demise and
reinforce phase-shifts: water-mediated allelopathy
and the virulence of copiotroph microbes fed by
algal-derived OM. Allelochemicals (e.g., diterpe-
noids) and potential virulent bacteria (e.g., Alcani-
vorax) could negatively impact coral health during
the pelagic larval and sedentary benthic phases,
which urgently require further experimental inves-
tigations. BBL Benthic Boundary Layer. MBL
Momentum Boundary Layer.

https://doi.org/10.1038/s42003-024-07433-6 Article

Communications Biology |            (2025) 8:16 10

www.nature.com/commsbio


which can inhibit bacterial settlement and growth35,68,69. Surprisingly,
diterpenoids were also abundant in Turbinaria MBL, likely due to the
presence of epiphytic Dictyota on Turbinaria thalli, thereby suggesting a
chemically-mediated associational benefit between both algae70. In tropical
macroalgae, lysophosphatidylcholines may be determinant in the estab-
lishment of host-microbe symbiosis, mediated by host immunity
pathways22. Positive associations between these lipids and microbes from
the Saprospiraceae, Flavobacteriaceae, and Rhodobacteraceae families have
been reported in algal tissues22, while our observations revealed negative
associations with two genera from the Rikenellaceae family in algal waters.
Additionally,metabolitesmaybeofbacterial origin, suchas the cyclopeptide
(Fig. 7a; Supplementary Table 5a) related to halolitoralin, an antifungal
cyclopeptide produced bymarine bacteria71. Although our study focused on
algal waters, it contributes to deciphering the microbe-metabolite pairings
associated with macroalgal holobionts. Promising future research should
investigate the consistencyof thesepatterns across algal tissues, surfaces, and
the surrounding environment to further our understanding of ecological
interactions within coral reef systems.

Despite a broad classification system, ourworkdemonstrates that coral
reef macroalgae release a variety of compounds potentially involved in
defensive and competitive interactions, as well as in microbial
energetics21,35,42. However, minor modifications in the structure of com-
pounds can change their bioactivity, making the prediction of their effects
solely basedon their class identities ambitious72.Wealso cannot rule out that
the mentioned microbe-metabolite co-variations are not causal. Moreover,
it is important to note that the relative abundance of metabolites does not
necessarily reflect their absolute amounts. Quantification using appropriate
standards is essential to confirm the actual concentrations of these meta-
bolites in the samples. Without an accurate quantification of metabolite
concentrations, a better annotation of unknownmetabolites, and improved
knowledge of the ecology of reef microbes, determining the nature of
microbe-metabolite interactions will remain highly challenging. Future
research should isolate specific metabolites and conduct bioassays to elu-
cidate their role in microbial processes and interspecific interactions.
Importantly, only a fraction of the chemical pool can be successfully
retrieved as the successive steps of extraction, ionization, fragmentation, and
annotation narrow down the pool of studied compounds, leaving a vast
unknown “dark” fraction26. While the recent advent of in silico tools have
revolutionized compound dereplication, achieving confident annotations,
even at a broad level, remains highly challenging, especially for the marine
environment with limited spectral libraries26. Overcoming these limitations
will be crucial for advancing marine metabolomics and multi-omics.

This study provides key insights into the influence of macroalgal
assemblages on chemical and microbial waterscapes. The taxonomic
composition of the microbial communities revealed an enrichment of
copiotrophic bacteria, characteristic of altered reef states and compromised
coral holobionts, in two boundary layers overlying macroalgal-dominated
bommies. By characterizing the broad molecular classification of algal-
derived metabolites, this work participates in the description of the che-
modiversity on coral reefs and improves our understanding of water-
mediated transport of chemical compounds and their roles as structuring
and functioning elements. The data presented herein contribute to further
unveil the identity, distribution and co-variations of metabolites and
microbes within reef waterscapes and constitute a starting point to further
investigate their complex roles in coral reef functioning and resilience. It also
provides leads for more targeted research to explore the water-mediated
mechanisms by which coral reef macroalgae reinforce the persistence of
coral-algal phase-shifts.

Methods
Study site and experimental design
This study took place in a shallow fringing reef lagoon (2–2.5 m deep) of
Mo’orea, French Polynesia (17°29’14.86”S 149°53’0.76”O) between June
2020 and June 2021. In late June 2020, six coral bommies (1–2m diameter)
densely covered by macroalgal assemblages were randomly selected within

an area of ~1000m2 (Supplementary Fig. 1). Bommies were randomly
assigned to one of the two treatments: (i) algal-dominated (i.e., macroalgae
left untouched) and (ii) algal-removed (i.e., macroalgae removed including
canopy-forming holdfasts and understory species). Macroalgae were
removed from their substratummanually andwithwire brushes, taking care
not to damage other benthic organisms or to alter the substrate micro-
topography. Their absence on algal-removed bommieswasmaintained on a
monthly basis. Benthic communities were monitored by photographing 5
randomly placed 20 × 20 cm quadrats on each bommie. A first monitoring
was conducted before algal removal in June 2020. Subsequent monitoring
was performed in August 2020, November 2020, February 2021, and May
2021. Benthic categories included: bare substrate (i.e., absence of macro-
organisms but presumably colonized by microalgae), crustose coralline
algae (CCA), cyanobacteria, living hard coral, algal turf (i.e., mixed species
assemblages of filamentous algae <1 cm in height) andmacroalgae (upright
and anatomically complex algae with canopy height >1 cm). Within the
macroalgae category, 8 genera or species were recorded: Amansia rho-
dantha, Chnoospora spp., Dictyota bartayresiana, Halimeda spp., Lobo-
phora spp., Padina boryana, Sargassum pacificum and Turbinaria ornata.
The percent cover of each category was calculated for each quadrat from 25
random points using the software PhotoQuad73. For each category, the
percent cover corresponded to the number of points of that categorydivided
by the total number of identifiable points in the quadrat. Data were then
averaged per bommie across the 5 photographs.

Sample collection
After a 6-month acclimatation period, we sampled the BBL (~50 cm above
the substrate) of each bommie, as well as the MBL (~5 cm above the sub-
strate) of the substrate on each algal-removed bommie, and of substrates
dominated by T. ornata or D. bartayresiana on each algal-dominated
bommie (Fig. 1).Water samples were collected in duplicate to concurrently
analyze both their microbiome and metabolome composition. Algal sur-
faces and whole tissues were collected for each algal species on each algal-
dominated bommie for characterization of their metabolome and com-
parison with algal boundary layers. Sampling spanned over 9 days and was
repeated four times: December 2020, March 2021, May 2021 & June 2021;
except for whole tissues which were sampled once in February 2021.

BBL samples were collected using 10 L plastic pouches which were
emptied of air and opened underwater generating a water inflow. MBL
samples were collected using a modified version of the in-situ benthic
chamber used by Kubanek et al. 74. A 5 L bottom-less plastic bottle was
placedover apatchofmacroalgae (SupplementaryFig. 3).The topendof the
bottlewas connected to ahose leading to amanual bilge pumpresting on the
boat pouring the pumpedwater into a 10 L pouch. The inlet of the hose was
at ~5 cm distance from the macroalgal thallus in the chamber. Water was
then pumped during 10min to obtain 7 L of seawater. To collect algal-
removed MBL seawater, the same procedure was applied placing the
chamber over a protruding substrate composed of a mix of bare substrate,
CCA, thin (<5mm) turf on algal-removed bommies (Supplementary
Fig. 3b). Pouches were kept in a cool box with ice during transport (~15-
20min) back to the laboratory. For the collection of microbes, 5 L of sea-
waterwere pre-filteredwith 47mmglassfilters (2.7 µmpore size,GradeGF/
D, Whatman) and filtered on 47mm polyethersulfone filters (0.2 µm pore
size, Sigma). Filters were cut in small pieces with sterile tools and stored into
2mL cryotubes tubes with 1mL of DNA/RNA Shield (Zymo Research,
USA). Samples were left overnight at room temperature and stored at
−20 °C until DNA extraction. For metabolomics, 5 L of collected seawater
were directly loaded onto Strata-XL solid-phase extraction (SPE) cartridges
(2 g/20mL, Phenomenex, USA), previously conditioned with 20mL dis-
tilled water. Seawater samples were not acidified to extract a wide range of
metabolites and avoid the preferential extraction of acidic metabolites. We
used the Strata-XL sorbent, a large particle polymeric-based sorbent with a
modified N-vinylpyrrolidone functional group, for its capacity to retain
both polar and non-polar neutral analytes. Cartridges were fitted onto a
vacuummanifold (Supelco) connected to a vacuumpump (LaboportN820,
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KNF). After sample loading, cartridges were rinsed with 20mL distilled
water, dried on the vacuum manifold, lyophilized, and stored at −20 °C
until elution. Cartridges of 2 g with loaded BBL and MBL samples were
eluted with 13mL 100%MeOH (HPLC-MS grade). MeOH were removed
by evaporation with a Genevac centrifugal evaporator EZ-2 series (SP
Industrie, Royaume-Uni), andextractswere stored at−20 °Cuntil injection.

Algal thalli were collected in the vicinity of the algal-dominated
bommies to avoid impacting the experimental treatment. Ten thalli of
Turbinaria ornata and a single large patch of Dictyota bartayresiana (~
20–25 cm side length) were collected during each of the four sampling
periods. Immediately after collection, algae were placed into large zip bags
filled with surrounding water and transported into a cool box back to the
laboratory. Surface metabolites from each macroalga were extracted within
2 h following collection using a dipping method with MeOH as the
extraction solvent39. Only healthy algal pieces with no biofouling or lesions
were selected to avoid the extraction of non-algal and intracellular com-
pounds. Extraction consisted in dipping algal pieces in a watch glass with
10mL MeOH during 15 s for Turbinaria and 10 s for Dictyota39. Three
successive extractions were performed with new algal material and the
solvent was pooled into a 50mL flask.

To sample algal whole tissue, we collected two 1 L zip bags per species
in the vicinity of each algal-dominated bommie. On the boat, algae were
rinsed several times (3–4 baths) with ambient seawater to remove sand,
microfauna and epiphytes before being flash frozen into carbonic ice.
Samples were lyophilized and stored at −20 °C until chemical extraction.
Endometabolites were extracted from250mg of algal powderwith a solvent
mixture ofmethanol/dichloromethane (10mL, v/v, 1:1). Themethanol and
dichloromethane were removed by evaporation with a Genevac centrifugal
evaporator EZ-2 series (SP Industrie, Royaume-Uni). Samples were stored
at−20 °C until injection. The sampling and extraction details are provided
in the Supplementary Methods.

Extractionblanks (n = 7)wereprepared for eachsample type inparallel
with samples to detect potential contaminants, from the pumping, tubing,
plastic pouches, SPE resin, washing, elution, solvents, and remove these
features from the data prior to analysis. For BBLs andMBLs, distilled water
was used with the same protocols as for the biological samples. For algal
surfaces andwhole tissues, the preparation of blank samples was conducted
without algal material.

Mass spectrometry analysis
Before injection, extracts were resolubilized with 100%MeOH (HPLC-MS
grade) at a concentration of 0.5 mg/mL for whole tissue extracts and of
1mg/mL for algal surface and water extracts. Due to distinct sample matrix
composition, Quality Control (QC) samples were prepared for each sample
type (i.e., whole tissue, surface and water) by pooling all respective samples
at equimolar concentrations and equally divided into individualHPLCvials.
Samples were injected over two analytical sequences to avoid analytical drift
and computational limitation: (i) water extracts processed in MS1 full scan
MS switching between positive and negative ionizationmodes, and (ii) algal
whole tissue and surface extracts analyzed in full scan MS and data
dependent MS2 in positive and negative ionization modes, separately. As
water extracts could not be processed in MS2 due to budget constraints, a
pooled sample of algal MBLs and BBLs was added to the 2nd sequence to
retrieve fragmentation spectra from algal water samples during data pro-
cessing. All samples were injected randomly to avoid systematic bias.
Experimental blanks (i.e., n = 4MeOH only for system suitability and n = 7
extraction blanks for contaminant detection) andQC sampleswere injected
at the beginning and at the end of each analytical sequence to condition the
column, assess carry-over effect, anddetect contaminants. Additionally,QC
of each sample type were injected every 8 samples to track analytical
repeatability (Supplementary Fig. 13). Metabolomic profiles were acquired
from 2 µL injection with a UHPLC system (Vanquish Thermo Scientific,
MA, USA) coupled to a Q-Exactive Plus Orbitrap mass spectrometer
(Thermo Scientific, MA, USA) with a HESI source. The chromatographic
separation was carried out on a Luna Omega 1.6 μm Polar C18 column

100 × 2.1mm (Phenomenex, Torrance, CA, USA) and consisted of
H2O+ 1‰ formic acid (mobile phaseA) and acetonitrile/isopropanol (50/
50)+ 1‰ formic acid (mobile phase B). A linear gradient was used with a
flow rate of 0.250mL/min: 0 to 2min, at 2%B; 2 to8min, from2 to 65%B; 8
to 25min, from 65 to 100%B; 25 to 27min, from100 to 2%B, 27 to 31min,
at 2% B. Mass spectrometer settings were as follows: sheath, auxiliary and
sweep gas 35, 10 and 0 AU, respectively; capillary voltage, 3500 V in positive
mode and 2500 V in negative mode; capillary temperature, 320 °C; ESI
probe heater temperature, 200 °C and S-lens RF level, 50. For the 1st
sequence, full scan mass spectra (MS1) were acquired in both positive and
negative ionizationmode with a full scanMSwindow of 100–1500m/z and
a resolution of 35,000. The maximum injection time was set to 100ms and
automatic gain control (AGC) target set at 3.3 × 106. For the 2nd sequence,
full scanMS resolution was set at 70,000 andMS/MS spectra were acquired
in data dependent mode with an isolation window of 1.5m/z; MS2 reso-
lution 17 500; AGC target 3 × 105; maximum injection time 100ms. Up to 5
of most intense selected ions per scan were fragmented with a stepped
normalized collision energy of 25-35-45 eV. Dynamic exclusion was set to
5 s and isotope peaks were excluded.

Mass spectral data processing
Raw files were processed withMZmine 2 (2.53 version)75 for MS extraction
and features alignment. Please see the Supplementary Methods for the
parameters used inMZmine 2. Two datasets were processed separately due
to distinct MS acquisition modes and computational limitations. The 1st
dataset included the samples from the five water types (MS1 data only;
Supplementary Data 2) for characterization of their metabolomic sig-
natures. The 2nd dataset included algal whole tissues, surfaces, and algal
MBLs and BBLs (MS1 features and MS/MS fragmentation spectra; Sup-
plementary Data 3) to further investigate the origin and diffusion of algal-
derived metabolites.

MS1 peak intensities (i.e., peak areas) from each dataset were exported
into a.csv file for statistical analysis. From the 2nd dataset with algal-
associated features, we also exported a table comprising the peak intensities
ofMS1 features withMS2 data only as well as a.mgf file with consensusMS/
MS spectra for network analysis and annotation purposes on theGNPSweb
platform31 and SIRIUS software25.

Quantitative tables of MS1 peak areas were imported and analyzed in
theR environment and cleanedusing an in-houseR script. All analyseswere
performed on positive ionization mode data, except for the molecular
subnetworks which were also investigated in negative ionization mode.
Potential contaminants were removed from the data if their mean intensity
in samples was less than 4 times their mean intensity in the blanks. Addi-
tionally, we filtered out low-quality features (i.e., D-ratio < 0.5 as defined in
ref. 76) and inconsistently detected features (i.e., present in less than
3 samples per sample type). The dataset with water samples (i.e., dataset 1)
decreased from 14,131 MS1 features to 975 features after filtration (Sup-
plementary Data 2). The dataset with the algal samples (i.e., dataset 2 in
positive ionization mode) included 16,532 MS1 features, of which 4585
features with MS2 fragmentation spectra, and was reduced to 3943 MS1
features, ofwhich2214withMS2, afterfiltration (SupplementaryData 3). In
negative ionizationmode, 1640MS1 features hadMS2ofwhich 1029passed
thefiltration steps (SupplementaryData 5).MS1peak intensities fromwater
samples only (i.e., dataset 1; Supplementary Data 2) were log10 (x+ 1)
transformed. In the table with algal-associated MS1 features, each feature
intensitywas divided by the sumof intensities within each sample to control
for the potential bias introduced by different sample injection concentra-
tions. Relative intensities were then transformed by center-log ratio (CLR)
with the addition of a constant equal to half the minimum value. Data were
mean-centered for multivariate analysis.

Molecular networking and annotation strategy
Feature-Based Molecular Networks (FBMN) were built on GNPS24 to
connect molecular features based on their spectral similarity with a pre-
cursor ionmass tolerance of 0.02Da, a cosine score of 0.7 and aminimumof
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6 matched peaks. For each pair of nodes (i.e., molecular features), only the
top 15 edges were kept. In addition, a search for analogs was defined with a
maximum mass difference of 100m/z from the mass of the precursor ion.
We used an extended workflow via MolNetEnhancer23 compiling
Dereplicator77, Network Annotation Propagation78 and
MS2LDA_MotifDB79 in silico tools to retrieve their chemical classification
(ClassyFire chemical ontology)32 and improve annotations. Molecular
networks were all visualized in Cytoscape80.

To complete features dereplication, we used SIRIUS for putative
molecular formulas and CANOPUS for compound class prediction25,33.
MS2m/z deviation was set to 5 ppm and amaximum of 10 potential results
was considered. Molecular formulas were obtained considering all possible
ionizations andwithout database search. The ZODIACmodule was used to
increase the confidence of putative formula81 with parameters kept as
default.Weonly consideredproposed formulaswith aZODIACscore>0.95
and explaining at least 4 peaks and 85%of the spectral intensity. Comparing
MolNetEnhancer andCANOPUS outputs allowed us to find a consensus at
the class level. For most networks, both tools showed congruent results.
When this was not the case, CANOPUS results were preferred when most
compounds in the subnetwork belonged to the same class and if that class
had a probability >0.9. If no consensus at the class level could be achieved,
subnetworks were classified according to their superclass (e.g., lipids-like
molecules) when possible, or categorized as “no consensus”. Fatty acyls &
glycerolipids were commonly found in the same networks, hence a mixed
category was created. We manually verified the library hits of discussed
networks and compared the putative formula given by SIRIUS using the
MarinLit and Lipid maps online databases. Annotation results from GNPS
and SIRIUS workflows are summarized in Supplementary Data 4 and 6 for
the positive and negative ionization modes, respectively.

16S rDNA sequencing and metabarcoding data processing
DNA from water filters was extracted using the ZymoBIOMICS DNA
Miniprep kit (Zymo Research, USA, D4300) according to manufacturer
instructions for samples stored and lysed into DNA/RNA Shield. DNA
extracts were then stored at−20 °C and dried with a centrifugal evaporator
(EZ-2 series, Genevac) for shipping. Additionally, several blank extractions
were performed for contaminant detection and removal (i.e., filters,
extractionkits,Genevac&PCR).Thehypervariable regionV3-V4of the 16S
rDNA gene was amplified using the universal primers 341 F (5′-
CCTACGGGNGGCWGCAG- 3′) and 805 R (3′-GACTACHVGGG-
TATCTAATCC- 5′) suggested for marine bacteria and some archaea82.
Amplicons were sequenced using an Illumina NovaSeq 6000 sequencer.
Paired-end (2 × 250 pb) reads were processed using DADA2 on R83 to infer
ASVs (i.e., amplicon sequence variants). Reads with ambiguous N bases
were discarded and primers were removed with the Cutadapt software84.
Only sequences with a length of 200–250 pb and with a quality score
superior to 2 or less than 3 expected errors were further processed for the
estimation of the error rates. Sequences were denoised based on a modified
error rate estimation function, by altering loess arguments (weights and
span) and enforcing monotonicity, more suitable for NovaSeq data. After
reads merging and ASVs inference, chimeric sequences and those detected
in a single sample were removed. Taxonomy was assigned from phylum to
genus levels using the Silva reference database (v138.1). The sequence table,
taxa table and metadata were then imported in the phyloseq R package85.
Data were filtered again by removing mitochondria and chloroplast ASVs,
inconsistently detected ASVs across water types (i.e., at least 3 samples per
water type) and contaminants with the decontam R package (prevalence
method) using our blank samples. The 91 ASVs flagged as contaminants
accounted for ~45% of the total reads, with some present in very high
relative abundance (Supplementary Fig. 14). In contrast, inconsistently
detectedASVs represented aminor fraction of the data, accounting for ~3%
of the total reads and present in low relative abundance (Supplementary
Fig. 13). To ensure that the removal of these ASVs did not alter data
structure, we performed aMantel test which showed a very high correlation
between the initial and filtered matrices (r2 = 0.93, p < 0.001, nperm = 999).

Processed and cleaned data resulted in 5517 ASVs and 12,693,811 reads
(SupplementaryData 1). The library sizewas consistent across samplewater
types, except for oneMBL sample (i.e., MBL-C5), which was discarded due
to its low readnumber (SupplementaryTable 1; Supplementary Fig. 15). For
alpha-diversity measures (Shannon index), microbial counts were rarefied
(rarefy_even_depth:phyloseq package85) based on the smallest library size
(i.e., 145,538 reads). Beta-diversity analysis was performed on non-rarefied
data andCLR-transformedabundance,withASVagglomerated at the genus
level due to the very high number of ASVs provided by NovaSeq.

Statistics and reproducibility
To investigate the influence of macroalgal assemblages on the chemical and
microbial composition of waterscapes, randomly chosen coral bommies
were used as experimental units (n = 3 algal-removed bommies and n = 3
algal-dominated bommies). On these bommies, we collected 5 water types
(n = 12 samples per water type), and for algal-dominated bommies only, 2
algal surface samples and 2 algalwhole tissue samples, withone fromeachof
the two macroalgal species (i.e., Turbinaria ornata and Dictyota bartayr-
esiana; n = 12 surface samples per algal species and n = 3 whole tissue
samples per algal species). Sampling took place over four periods, beginning
6 months after the removal of macroalgae. Statistical analyses were per-
formed in R version 4.2.3. Differences in benthic assemblages were assessed
on Bray-Curtis dissimilarities of untransformed percent cover data by
Permutational Multivariate Analysis of Variance (PERMANOVA, 999
permutations; adonis2:vegan package86) using (i) algal treatment (algal-
dominated vs. algal-removal bommies) as fixed factor before removal of
macroalgae, and (ii) algal treatment and month as fixed factors after the
removal of macroalgae. Results were visualized using Principal Coordinate
Analysis (PCoA).

Alpha-diversity (Shannon diversity index) of water microbiomes and
metabolomes was calculated using rarefied microbiome count and MS1
feature log-transformed abundances, respectively. For eachdata type, alpha-
diversitymeasureswere compared between the 5water types using one-way
ANOVAs (p < 0.05), followed by post-hoc Tukey HSD tests. Assumptions
of Gaussian distribution and homoscedasticity were verified with the
DHARMa package87. Broad compositional differences in the microbiome
and metabolome of sample types were tested by PERMANOVA and
visualized by Principal Component Analysis (pca;mixOmics R package88).

To discriminate groups of samples and identify the ASVs and meta-
bolites best differentiating these groups, we used partial least squares-
discriminant analysis (PLS-DA; plsda:mixOmics R package88). Data was
mean-centered, and the variability associated to repeated measures on
bommies was accounted for with the argument “withinVariation”. PLS-
DAs were validated by cross-model validation (7-fold outer loop CV2 and
6-fold inner loop CV1), and the significance of the classification error rate
(CER) was tested with a permutation test (999 permutations; RVAideMe-
moireRpackage89). Two PLS-DAswere performed to discriminate between
algal treatments within each boundary layer (i.e., horizontal comparisons):
(i) BBL algal-removed vs. BBL algal-dominated samples and (ii) MBL algal-
removed vs. MBL Dictyota vs. MBL Turbinaria samples. Two others were
performed to discriminate between boundary layers within each algal
treatment (i.e., vertical comparisons): (i) BBL algal-removed vs. MBL algal-
removed samples and (ii) BBL algal-dominated vs. MBL Dictyota vs. MBL
Turbinaria samples.

To explore whether the microbial and chemical (i.e., multi-omic)
signatures were related, we integrated metabarcoding and MS1 metabo-
lomic data usingmultiblock PLS-DA (DIABLO30; block.splsda:mixOmicsR
package88). DIABLO seeks for correlated variables between pair of datasets
that also discriminate sample groups. Prior to run DIABLO, the level of
association between the metabarcoding and metabolomic datasets was
verified with a Mantel test (p < 0.05) on distance matrices and by the cor-
relation of components obtained from PLS regression (correlation coeffi-
cient > 0.8).We set aweight of 1 for the associationbetweendatasets to favor
the covariance between datasets over model’s discriminative ability. The
optimal number of components and variables were estimated by cross
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validation using the function “tune.block.splsda”. DIABLO outputs were
validated by a permutation test based on cross-model validation.

To highlight the microbial genera that contributed most to the dis-
crimination of the five water types, we used the Variable Importance in
Projection (VIP) scores from PLS-DAs (VIP > 1) by summing the VIP
scores of each variable across the four PLS-DAmodels.Heatmapswere used
to represent the enrichment of the 50 top-ranked ASVs with the highest
summed VIP scores in the different water types.

We performed an additional PLS-DA for each algal species to dis-
criminate algal whole tissues, surfaces, MBLs, and algal-dominated BBL
samples according to their metabolomic signatures and highlight features
(MS1 with MS2 data) best discriminating sample types. These features
were then used to identify molecular subnetworks of interest by selecting
subnetworks comprising a minimum of 3 discriminant features (VIP > 1)
and/or at least one feature with a VIP score superior to the median.
Additionally, to highlight subnetworks of diffusing metabolites, only
features detected in either or both whole tissue or surface and in the MBL
were considered.

To investigate whether the diversity of diffusing metabolites across
sample types varied with polarity, we analyzed the retention times of each
feature weighted equally (i.e., unweighted retention times). Retention times
in minutes were obtained from UHPLC reverse phase chromatography,
where more polar features tend to be eluted first. In a second analysis, we
accounted for feature abundance by weighting the retention times by the
mean relative abundance of each feature within each sample type (i.e.,
abundance-weighted retention times). Due to violations of the homo-
scedasticity assumption, differences in abundance-weighted retention times
across sample types were assessed using the non-parametric Kruskal-Wallis
and post-hoc Dunn tests.

To further investigate covariations between ASVs and chemical fea-
tures (MS1 with MS2 data) within the two algal MBLs, we conducted an
additional DIABLO analysis. We focused on the algal MBLs, excluding the
algal-dominated BBL, to reflect species-related changes and to avoid a
confounding source of variation. Only previously identified discriminant
ASVs (n = 292) and ion features (n = 309) were considered to specifically
highlight the already discussed variables. Covariation patterns of highly
positively (>0.7) and negatively (<0.7) correlated variables were represented
as bipartite networks on Cytoscape80.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
Raw data and R scripts are accessible on Zenodo (https://doi.org/10.5281/
zenodo.14366152). Metabarcoding sequence data have been deposited in
the Sequence Read Archive under the accession code PRJNA941779. MS
data are all publicly available in the Mass Spectrometry Interactive Virtual
Environment (MassIVE) repositoryMSV000091424. FBMNworkflows can
be accessed in GNPS with the following links: https://gnps.ucsd.edu/
ProteoSAFe/status.jsp?task=b9813b77629a4d44994e70febc96d82b; https://
gnps.ucsd.edu/ProteoSAFe/status.jsp?task=55e170b22fd84e5ca890c75420
566140; https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task=8772ad1163da
4a5eab30177b41e39722; https://gnps.ucsd.edu/ProteoSAFe/status.jsp?task
=b0086676f483460bbb7f4d7a9b2145fe.

Code availability
R scripts to replicate the results are accessible onZenodo (https://doi.org/10.
5281/zenodo.14517147)90.
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