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Abstract Chronic kidney disease (CKD) is an indepen-
dent risk factor for the development of cerebrovascular
disease, particularly small vessel disease which can man-
ifest in a variety of phenotypes ranging from lacunes to
microbleeds. Small vessel disease likely contributes to
cognitive dysfunction in the CKD population. Non-
traditional risk factors for vascular injury in uremia in-
clude loss of calcification inhibitors, hyperphosphatemia,
increased blood pressure variability, elastinolysis, platelet
dysfunction, and chronic inflammation. In this review,
we discuss the putative pathways by which these mech-
anisms may promote cerebrovascular disease and thus
increase risk of future stroke in CKD patients.
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Introduction

Cerebrovascular disease often involves small vessel disease
(SVD), where complete or incomplete small subcortical le-
sions are associated with cognitive impairment, mood distur-
bances, and dementia. SVD is also the most common form of
cerebrovascular pathology found in asymptomatic patients by
brain imaging. There is significant heterogeneity in the clini-
cal SVD syndromes due to both the diversity and topograph-
ical location of SVD lesions in the brain and their impact on
the neuronal integrity. Cerebral changes with SVD include
white matter (WM) rarefaction, cerebral microbleeds,
microinfarcts, lacunar ischemic lesions, WM or global atro-
phy, increased perivascular spaces, and arteriolosclerosis.
Most of these changes are detectable by current brain magnet-
ic resonance imaging (MRI) techniques.

In the last decade, the kidney-brain interaction has garnered
great interest resulting in numerous epidemiologic and mech-
anistic investigations. The kidney and brain share anatomical
and functional characteristics making them vulnerable to sim-
ilar vascular risk factors (Table 1 and Fig. 1). For example,
these organs require continuous and stable high blood flow in
a low vascular resistance system. They are both dependent on
short, small perforating arterioles which autoregulate perfu-
sion pressure. Both the renovascular and cerebrovascular beds
are susceptible to traditional arteriosclerotic risk factors, such
as aging, diabetes, hypertension, and smoking. Indeed, one
could argue that declining kidney function and cognition in
the elderly stem from common vascular pathogenesis. For
example, hypertension is a major perpetrator of arteriosclero-
sis, while diabetes mellitus promotes both athero- and
arteriolosclerosis. However, patients with chronic kidney dis-
ease (CKD) have a greater risk for cerebrovascular disease [1,
2] which is not explained by traditional vascular risk factors
alone.
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Non-traditional CKD-related risk factors can promote ce-
rebrovascular injury via effects on the endothelium and arte-
rial medial wall. These factors include chronic inflammation,
endothelial dysfunction, uremic toxins, anemia, and mineral-
bone disorder [3, 4]. Several studies have linked CKD with

different SVD phenotypes. For example, white matter
hyperintensities (WMH) correlate strongly with albuminuria
and decreased estimated glomerular filtration rate (eGFR) [5,
6]. WMH are areas of high signal on T2-weighted MRI that
represent (at least in part) ischemia and are characterized by

Fig. 1 Arterial and capillary anatomy of the brain and kidney. The
relatively short arterioles of the kidney and brain branch out from much
larger arteries and are termed Bstrain arterioles^; these vessels are
especially susceptible to blood pressure changes. The blood-brain-
barrier (BBB) consists of the endothelial cells, the basal lamina,
astrocyte foot processes, and pericytes. The human kidney contains

approximately one million nephrons, each consisting of a glomerulus
and renal tubule. The glomerulus is a tuft of capillary loops supported
within the Bowman’s capsule by the mesangium, and consists of four cell
types: the mesangial cell, glomerular endothelial cell, the podocyte
(visceral epithelial cell), and the parietal epithelial cell

Table 1 Characteristics of the
kidney and brain vasculature Kidney Brain

Arterioles/anatomy High pressure load per unit length High pressure load per unit length

Arterioles/regulation Maintenance of vascular tone Maintenance of vascular tone

Blood flow Constant, 360 ml/min/100 gm Constant, 50 ml/min/100 gm

Blood barrier Fenestrated/permeable Tight/limited passage

Small vessels damaged by risk factors Yes Yes

Hypertensive pathology Hyalinosis Lipohyalinosis
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neuronal loss, demyelination, and gliosis—a radiological
appearance often referred to as leukoaraiosis. Leukoaraiosis
is significantly associated with higher risk of stroke, dementia,
and death [7]. In the most advanced form of CKD, i.e., end-
stage kidney disease, there is high prevalence ofWMH aswell
as global reduction in gray matter [8, 9]. These pathologies
provide a mechanistic basis for the large-scale meta-analyses
that have confirmed CKD as a significant independent risk
factor for stroke [10, 11].

There is also a strong relationship between CKD and
cognitive decline, and many have suggested that subclin-
ical SVD underlies this association. In fact, patients with
CKD have a typical SVD neuropsychological profile,
i.e., loss of executive function and decreased processing
speed [12–14]. Here, we will review unique, non-
traditional factors in the uremic milieu that promote vas-
cular injury. Further, we discuss how these factors may
drive common pathways of endothelial and vascular wall
damage and result in SVD phenotypes (Fig. 2). Many of
these associations are currently correlative and will re-
quire confirmation in mechanistic bench and clinical
studies.

Accelerated Arteriolosclerosis with Impaired
Autoregulation

The brain and kidney are similar in that both organs have high
blood flow rates and have local autoregulation. On a weight
per weight comparison, the kidney has twice the oxygen con-
sumption of the brain and receives ∼20 % of cardiac output
(sevenfold of brain blood flow, 360 vs. 50 ml/min × 100 g),
which facilitates a high glomerular filtration rate of 100–
125 ml/min [15]. The arterioles of the kidney, retina, and brain
are termed Bstrain arterioles^ as they are relatively short,
branch out frommuch larger arteries, and are exposed to blood
pressure (BP) changes (Fig. 1) [16, 17].

Autoregulation allows constant blood flow despite fluctu-
ations in BP, to maintain cerebral perfusion pressure in the
brain and GFR in the kidney. Myogenic reflexes of the smooth
muscle arter ioles mediate this response. Hyaline
arteriolosclerosis is a common vascular lesion with aging,
hypertension, and diabetes, whereby various serum proteins
accumulate in the arteriolar subendothelial space (hyalinosis),
often extending into the media [18]. Replacement of the arte-
riolar smooth muscle by hyalinoid material impairs

Fig. 2 Proposed CKD-specific pathways that lead to cerebral small
vessel disease (CSVD). The spectrum of CSVD ranges from white
matter hyperintensities (WMHs) seen on MRI to microhemorrhages,
lacunes, and microinfarcts. Hyperphosphatemia and deficiency of
calcification inhibitors in the uremic milieu promote vascular
calcification, hypertension (HTN), and loss of cerebral blood flow
(CBF) autoregulation. Increased levels of matrix metalloproteinases
(MMPs) lead to elastin degradation with subsequent increased vascular
calcification. The increased blood pressure (BP) variability may be

detrimental at both extremes, with high BP increasing risk of
microhemorrhages and low BP predisposing to lacunes. Circulating
gut-derived uremic toxins impair platelet function and drive chronic
systemic inflammation, resulting in BBB endothelial dysfunction.
Circulating pro-inflammatory RAGE (receptor for advanced glycation
end products) ligands such as S100A12 may further promote
inflammation-induced BBB disruption. CKD is a salt-avid state, and the
salt overload aggravates both HTN and systemic inflammation
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autoregulation with subsequent transmittal of increased sys-
temic pressure into the glomerulus and cerebral capillary beds.
Loss of autoregulation also predisposes to ischemic events
related to decrease of regional cerebral blood flow (CBF)
[19, 20]. Hypertension worsens arteriolosclerosis, creating a
vicious cycle that perpetuates end organ damage.

In the brain, a hallmark of SVD is lipohyalinosis of sub-
cortical penetrating arteries, which is also a characteristic find-
ing in lacunar stroke. Studies have suggested that
lipohyalinosis is associated with impaired autoregulation in
the brain [21]. Primary hypertensive injury in the kidney pri-
marily affects the afferent arteriole and interlobular artery,
with replacement of medial vascular smooth muscle cells
(VSMC) by connective tissue [22]. Subintimal hyalinosis is
often present, with signs of ischemia including glomerular and
tubular atrophy and interstitial fibrosis [22]. Arteriolosclerosis
with impaired autoregulation are shared injury mechanisms in
the brain and kidney that may be shaped by other CKD-
specific factors, as discussed below.

Blood Pressure Variability

Long-term BP variability may be an independent risk factor
for cerebral microbleeds [23]. CKD is associated with
increased BP variability partly due to arterial stiffness [24].
Greater BP variability is associated with increased risk of
hemorrhagic stroke in stage 3–4 CKD patients [25] and is a
strong predictor of mortality in hemodialysis patients [26].
Factors that incur risk of greater variability in visit-to-visit
pre-dialysis systolic BP include inadequate ultrafiltration
(both excessive or inadequate volume removal can incur large
BP fluctuations), activation of the renin-angiotensin-
aldosterone axis, anemia, and comorbid cardiovascular dis-
ease [27].

Hemodialysis patients have impaired autonomic function
as indicated by lower baroreflex sensitivity values compared
with the non-dialysis population [28] and thus are less able to
buffer against hemodynamic reductions during fluid removal
on dialysis [29]. Myocardial stunning is also common during
hemodialysis and aggravates the inability to maintain cerebral
perfusion, with resultant brain ischemia [30]. Longitudinal
studies have shown that reduced blood flow in normal WM
predicts development of leukoaraiosis [19], and analysis of
almost 3000 participants in the Rotterdam Study demonstrated
that lower eGFR is independently associated with lower CBF
after adjustment for cardiovascular risk factors [31]. In a UK
study, brain MRI and BP variability were analyzed in hemo-
dialysis patients [32]. Although sample size was small (∼20
patients per group), the study demonstrated development of
ischemic WM changes on dialysis which were more pro-
nounced in patients with increased intradialytic hemodynamic
instability. Patients who were dialyzed at 0.5 °C below core

body temperature showed improved hemodynamic stability
and were protected against WM changes at 1 year [32].
Cooling of dialysate is widely used among hemodialysis
clinics to promote hemodynamic stability and prevent
intradialytic hypotension, and was first described in 1985
[33]. The added advantages of protective brain effects and
low cost add to the appeal of this intervention in the chronic
dialysis population. However, larger studies with longer
follow-up periods are needed before cooled dialysate can
become standard [34].

Hyperphosphatemia and Arterial Medial
Calcification

Phosphate overload occurs in late CKD due to a combination
of decreased urinary phosphate excretion and continued intes-
tinal phosphate absorption. Parathyroid disorders are common
in CKD and further contribute to phosphate excess. Both hy-
perparathyroidism and overly suppressed parathyroid lead to
decreased bone formation, preventing the skeleton from acting
as a reservoir for excess calcium and phosphorus. Calcium
subsequently becomes deposited at ectopic soft tissue sites
including the vasculature [35, 36]. Arterial calcification and
stiffness drive left ventricular hypertrophy and increase the
risk for cardiovascular events and death [36].

One major mechanism by which elevated phosphate drives
arterial medial calcification is via induction of osteogenic phe-
notype change of VSMC, whereby the VSMC cease to ex-
press SM22alpha-actin and instead express bone-forming
transcription factors (Runx2, Msx2) and pro-calcification pro-
teins (alkaline phosphatase, osteocalcin) [37, 38]. These oste-
ogenic VSMC secrete hydroxyapatite mineral vesicles into the
extracellular matrix. Evidence for in vivo VSMC phenotype
change has been found in calcified vascular lesions from an-
imals [39] and humans [40]. These phosphate-induced chang-
es are dependent on the type III sodium-phosphate
cotransporters PiT-1 and PiT-2 [41, 42]. Excess phosphate
can further drives arterial medial calcification via induction
of VSMC apoptosis [43].

The importance of VSMC integrity in cerebrovascular
health is evident in the hereditary disorder CADASIL (cere-
bral autosomal dominant arteriopathy with subcortical infarcts
and leukoencephalopathy) that is caused by mutations in the
transmembrane receptor Notch3 [44]. Notch3 is needed for
proper organization of the VSMC actin cytoskeleton [45]
and has been proposed to protect VSMC from apoptosis
[46]. CADASIL is a genetic form of SVD manifested as early
adult onset of recurrent strokes, cognitive impairment, WMH
on MRI, and generalized arteriolopathy. Gradual loss of
VSMC leads to fibrosis of the tunica media in small and
medium-sized penetrating arteries, reduced CBF, and sub-
sequent lacunar infarcts and dementia [44].
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Breakdown of Medial Wall Elastin

Elevated phosphate can also perpetuate matrix mineralization
via elastin degradation once osteogenic-differentiated VSMC
are present [47]. Degraded elastin has increased affinity for
calcium and facilitates epitactic growth of hydroxyapatite
along the elastic fibers [48]. Peptides derived from elastin
degradation can also drive osteogenic transformation of
VSMC via binding to elastin laminin receptors on VSMC
[49]. In CKD patients, increased serum levels of elastin-
derived peptides are associated with higher aortic pulse-
wave velocity and overall mortality risk [50]. Elastolytic en-
zymes are elevated in the uremic milieu and further contribute
to impaired vascular function: the matrix metalloproteinases
MMP-2 and MMP-9 are elevated in the arteries from CKD
patients and correlate with vascular stiffness and impaired
angiogenesis [51]. Elevated human brain levels of MMP-9
have been reported following acute ischemic and hemorrhagic
stroke [52] and in chronic vascular dementia [53]. We postu-
late that chronic elastin breakdown and increased MMP activ-
ity in CKD is another pathway which promotes cerebral SVD
and future stroke; this remains to be confirmed in mechanistic
studies.

Deficiency of Calcification Inhibitors

A number of endogenous factors that inhibit calcification of
the arterial wall under healthy conditions are deficient in
CKD. These include klotho, matrix glutamate protein
(MGP), pyrophosphate, and fetuin-A [36]. MGP is normally
synthesized by VSMC [54] and requires vitamin K-dependent
gamma-carboxylation in order to chelate mineral and inhibit
calcification [55]. Plasma levels of inactive dephosphorylated,
uncarboxylated MGP (dp-ucMGP) increase progressively
with CKD stage and were independently associated with se-
verity of aortic calcification in a cohort of ∼100 CKD patients
[56].

Another potent inhibitor of hydroxyapatite formation, pro-
duced by healthy VSMC, is pyrophosphate. Exogenous pyro-
phosphate inhibits aortic calcification in rats challenged with
vitamin D3 overload [57]. Osteogenic transformation of
VSMC in arterial calcification (as described above) leads to
expression of alkaline phosphatase, which hydrolyzes pyro-
phosphate to produce inorganic phosphorus, thus promoting
vascular calcification [58]. Blood pyrophosphate concentra-
tions are low in dialysis patients [59] and correlate inversely
with superficial femoral artery calcification [60].

Fetuin-A is a calcium-binding glycoprotein secreted by he-
patocytes that inhibits spontaneous mineral precipitation from
serum [61]. It forms stable circulating complexes containing
calcium, phosphorus, and acidic proteins (calciprotein parti-
cles), which can be cleared by the liver [62]. Low serum

fetuin-A correlates with cardiovascular death in dialysis pa-
tients [63, 64] and may be due to acquired deficiency of the
hepatic ABCC6 transporter in CKD [65].

Klotho is a co-receptor for fibroblast growth factor-23 that
mediates renal phosphate excretion via downregulation of the
sodium-phosphate transporters NaPi-2a and NaPi-2c [66].
Additionally, klotho may have direct protective effects on
the vascular wall via prevention of VSMC osteogenic differ-
entiation [67]. The kidney is the major source of circulating
klotho, and serum and urinary klotho levels progressively de-
cline with CKD stages [68].

We note that while deficiency of multiple endogenous cal-
cification inhibitors is well-documented in CKD, the impact
on SVD risk is unclear at this time. For example, fetuin-A
therapy in rats subjected to middle cerebral artery occlusion
reduced brain infarct volume in a dose-dependent manner
[69]; however, there were conflicting data from a European
case-cohort study in which higher plasma fetuin-A levels were
associated with increased risk of future ischemic stroke [70].
Further, the klotho gene allele KL-VS has been studied in
Ashkenazi Jews and Indian cohorts and found to be associated
with early onset stroke [71, 72], but mechanistic data are lack-
ing. Further studies are needed to determine pathophysiologic
pathways.

Gut-Derived Bacterial Toxins

Breakdown of the intestinal epithelial barrier due to loss of
tight junction proteins has been described in CKD animals
[73, 74] and is likely responsible for the translocation of gut
bacterial toxins into the systemic circulation [75, 76], thus
propagating systemic inflammation and cardiovascular dis-
ease [74]. Proposed pathways for intestinal tight junction
breakdown include pro-inflammatory effects of elevated urea
and deficiency of the transcription factor Nrf2 [74, 77, 78].
Endotoxin (lipopolysaccharide), derived from the cell wall of
Gram-negative bacteria, is measurable in the blood of dialysis
patients and correlates with severity of systemic inflammation
in the absence of clinically detectable infection [76]. Further,
the gut microbiome is altered in CKD, leading to overgrowth
of bacteria that produce uremic toxins such as indoxyl sulfate,
p-cresyl sulfate, and trimethylamine-N-oxide (TMAO) [74].
These toxins correlate with systemic inflammatory markers,
vascular stiffness, and increased mortality risk in CKD pa-
tients [79, 80].

Data regarding gut-brain associations and SVD are now
emerging. Systemic endotoxin is used in murine experiments
to study brain vascular inflammation and microbleed forma-
tion [81, 82]. A recent report in a Chinese patient cohort found
that ischemic stroke and transient ischemic attack correlated
with altered gut microbiome [83]. In contrast to the adverse
associations reported with high levels of uremic toxins in the
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CKD population, Yin et al. reported that blood TMAO levels
were lower in stroke and transient ischemic attack patients
compared to control subjects with asymptomatic atheroscle-
rosis [83]. Further studies are needed to determine the modu-
lation by uremia on the cerebrovascular effects of gut-derived
bacterial toxins.

Salt Retention

Inflammation in CKD is further aggravated by CKD being a
sodium-avid state. When the diseased kidney is unable to
excrete excess sodium, BP rises to effect a pressure natriuresis
[84], and this hypertension is injurious to the vasculature.
Stroke-prone hypertensive rats fed a high-salt diet were noted
to develop malignant hypertension, and blood brain barrier
(BBB) breakdown preceded intracerebral hemorrhage by up
to 2 weeks [85]. There is a potential direct effect of salt on the
cerebral small vessel endothelium in addition to any hyperten-
sive injury. Salt itself is toxic and stimulates production of
reactive oxygen species and inflammatory cytokines from
the kidney cortex [86, 87].

In postmortem gene expression microarray of the brains
from patients with SVD, Ritz and colleagues identified upreg-
ulation of inflammation via the adipocytokine and cytokine-
cytokine receptor interaction pathways [88]. In a subgroup
analysis of the Framingham Heart Study correlating circulat-
ing biomarkers of inflammation with brain MRI, elevated in-
tercellular adhesion molecule-1 was associated with greater
burden of WMH [89]. Intercellular adhesion molecule-1 re-
flects endothelial dysfunction and has also been strongly as-
sociated with progression of urinary protein loss in diabetic
nephropathy [90]. Prospective studies are needed to confirm
the association of endothelial and inflammatory markers with
progression of CKD and SVD.

Blood-Brain Barrier Disruption

Tight junction complexes are critical for the microstructural
integrity of both the BBB and the kidney glomerulus (Fig. 1).
Neuronal-capillary interactions at the BBB involve the endo-
thelial cells, basal lamina, astrocyte foot processes, and
pericytes. Tight junctions between the endothelial cells serve
to restrict the passage of solutes. The BBB is susceptible to
changes in blood-flow, ischemia, and inflammatory stimuli.
Disruption of neurovascular coupling in turn modulates local
CBF [91, 92]. In the kidney, the glomerular capillary tuft in
Bowman’s capsule consists of four cell types: the mesangial
cell, glomerular endothelial cell, the podocyte (visceral epithe-
lial cell), and the parietal epithelial cell. The highly specialized
interdigitating foot processes of the podocytes form a 40 nm
wide slit diaphragm that is highly permeable to water and

small solutes [93]. The glomerular filtration barrier has three
layers: the endothelial cell, glomerular basement membrane,
and the podocyte; it produces an ultra-filtrate from plasma that
is destined to be excreted as urine. The endothelium of the
BBB and glomerulus share similar transmembrane and cyto-
plasmic anchoring proteins. The podocyte slit diaphragm con-
tains additional specialized structural molecules such as
nephrin and podocin [93].

There is increased permeability of the BBB in patients with
SVD [94]. BBB disruption may play an important role in
SVD, possibly through toxic effects of leaked fluid and
blood-derived proteins within the WM [95]. Little is known
about BBB integrity in CKD. A few animal models of acute
and chronic renal failure have shown BBB disruption in the
setting of uremia [96, 97] but underlying mechanisms remain
unclear. The study of BBB permeability via brain MRI with
contrast is relatively contraindicated in patients with CKD due
to concerns of nephrogenic systemic fibrosis [98].
Nevertheless, there are a few reports showing leakage of gad-
olinium into the CSF in patients with CKD after contrast brain
MRI [99, 100]. Extravasation of contrast from the capillary
bed suggests disruption of BBB integrity in these patients.

A recent study demonstrated deleterious effects of two ure-
mic toxins, phosphate and indoxyl sulfate, on cultured mouse
brain endothelial cells [101]. Both toxins induced production
of reactive oxygen species and decreased cell viability; phos-
phate additionally caused eNOS uncoupling [101]. Indoxyl
sulfate can induce reactive oxygen species production in var-
ious cell types other than vascular endothelial cells, including
VSMC, renal tubular cells, monocytes, and macrophages
[102–105]. These findings remain to be validated using
in vivo studies of BBB integrity. Potential BBB injury via
the soluble receptor for advanced glycation end products
(sRAGE) pathway is discussed in the BCerebral
Microbleeds^ section below. Both p-cresyl sulfate and indox-
yl sulfate inhibit endothelial cell proliferation and induce the
release of endothelial microparticles, a marker of endothelial
cell damage [106, 107]; indoxyl sulfate also induces junction-
al breakdown via MEK-ERK-mediated phosphorylation of
the myosin light chain kinase and myosin light chain [108].

Cerebral Microbleeds

The term Bcerebral microbleeds^ refers to focal areas of signal
loss in brain parenchyma measuring ≤10 mm on T2*-weight-
ed gradient-recalled echo or susceptibility-weighted MRI due
to hemosiderin deposits within microhemorrhages [109, 110].
In the general population, microbleeds are associated with
increasing age, hypertension, cerebral amyloid angiopathy,
and worse cognitive function [111, 113]. Cerebral
microbleeds are prevalent in patients with SVD, and their
presence has been proposed as an imaging diagnostic clue of

72 Transl. Stroke Res. (2017) 8:67–76



this condition [114]. Likewise, cerebral microbleeds are com-
monly found on brain MRI of CKD patients [115].
Diminished eGFR appears to be an independent risk factor
for cerebral microbleeds, raising the possibility that a uremic
milieu may predispose to microbleed formation [115]. In a
cohort of Japanese hemodialysis patients who were stroke-
free at baseline, presence of cerebral microbleeds was an in-
dependent predictor of intracerebral hemorrhage during a 5-
year follow-up period [116].

In a non-CKD cohort with first ever acute lacunar stroke,
higher plasma S100B and lower sRAGE were independently
associated with presence and number of cerebral microbleeds,
especially deep microbleeds [117]. The receptor for advanced
glycation end products is a transmembrane receptor that can
trigger vascular inflammation; its circulating isoform sRAGE
may neutralize some of the inflammatory effects via compet-
ing for binding with circulating ligands such as S100B [118].
It was proposed that the S100B/RAGE axis might play a role
in SVD affecting deep brain regions by inducing inflammato-
ry response, BBB dysfunction, and microbleeds in acute lacu-
nar stroke [117, 118]. While sRAGE association with
microbleeds has not been examined in the CKD population,
sRAGE levels are 2.4-fold higher in patients with advanced
CKD, and the pro-inflammatory RAGE ligand S100A12 is
fourfold higher as compared to non-CKD controls [119]. In
200 incident dialysis patients followed for ∼2 years, higher
S100A12 levels correlated with inflammation and increased
mortality risk [119].

Uremic platelet dysfunction is another entity that predis-
poses to hemorrhagic complications. Platelet dysfunction in
CKD is a result of combined intrinsic platelet abnormalities
and impaired interaction of platelets with the vascular wall
[120]. Cytoskeletal proteins are deficient, leading to reduced
platelet contractility, and there is impaired binding between
the surface glycoprotein complex GPIIb/IIIa with fibrinogen
on the subendothelial surface [120]. Anemia in advanced
CKD can further exacerbate platelet dysfunction.
Erythropoietin improves platelet function not only by improv-
ing blood cell counts, but also has direct effects via increasing
the density of GPIIb/IIIa surface receptors and enhancing
phosphorylation of platelet proteins [121, 122].

Conclusions

The complex interactions between cerebrovascular disease
and CKD transcend common shared vascular risk factors.
Many physiological and metabolic changes that occur with
CKD exacerbate cardiovascular dysfunction and propagate
pathogenesis of cerebrovascular disease (Fig. 2). Arterial stiff-
ness is the result of combined endothelial and medial wall
dysfunction. Circulating uremic toxins impair endothelial (in-
timal wall) viability, while chronic systemic inflammation in

CKD contributes to both endothelial dysfunction and medial
wall calcification. The latter is further magnified by
hyperphosphatemia, increased elastinolysis, and deficiency
of anti-calcification factors in the uremic milieu. The arterial
stiffness, superimposed on sodium-avid hypertension and im-
paired autonomic vasomotor regulation in advanced CKD,
culminates in pronounced BP variability with increased risk
for both microhemorrhages and microinfarcts. Further, at the
BBB level, uremic toxin-induced endothelial injury and ure-
mic platelet dysfunction predispose to hemorrhagic events.
Thus, many factors operate in tandem to accelerate cerebro-
vascular pathology. Further studies are needed to identify stra-
tegic targets to arrest or mitigate progression of cerebrovascu-
lar disease in patients with CKD.
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