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Several codes of practice for photon dosimetry are currently used around the world,
supported by different organizations. A comparison of IPSM 1990 with both IAEA
TRS-398 and AAPM TG-51 has been performed. All three protocols are based on
the calibration of ionization chambers in terms of standards of absorbed dose to
water, as it is the case with other modern codes of practice. This comparison has
been carried out for photon beams of nominal energies: 4 MV, 6 MV, 8 MV, 10
MV and 18 MV.

An NE 2571 graphite ionization chamber was used in this study, cross-calibrated
against an NE 2611A Secondary Standard, calibrated in the National Physical
Laboratory (NPL). Absolute dose in reference conditions was obtained using each
of these three protocols including: beam quality indices, beam quality conversion
factors both theoretical and NPL experimental ones, correction factors for influence
quantities and absolute dose measurements. Each protocol recommendations have
been strictly followed. Uncertainties have been obtained according to the 1SO
Guide to the Expression of Uncertainty in Measurement. Absorbed dose obtained
according to all three protocols agree within experimental uncertainty. The largest
difference between absolute dose results for two protocols is obtained for the highest
energy: 0.7% between IPSM 1990 and IAEA TRS-398 using theoretical beam
quality conversion factors.
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. INTRODUCTION

IPSM (Institute of Physical Sciences in Medicine) 1990, AAPM (American Association of
Physicist in Medicine) Task Group 51, and the IAEA (International Atomic Energy Agency)
Technical Reports Series 398 codes of practice are based on the calibration of ionization chambers
in terms of absorbed dose to water. This approach is not limited to these codes of practice but is
a worldwide trend which includes: German DIN 1997,™ Japanese Association of Radiological
Physics,® and the Swiss Society of Radiobiology and Medical Physics.(® DIN in Germany”)
and IPSM in the United Kingdom®8) were pioneers in the use of standards of absorbed dose to
water in their dosimetry protocols. The new standards of calibration of ionization chambers in
terms of absorbed dose to water offer the possibility of reducing the uncertainty in the dosimetry
of radiotherapy beams, provide a more robust system of primary standards than previous air-
kerma based standards,® and allow the use of a more straightforward formalism.

a Corresponding author: Silvia Vargas Castrillon, NW Medical Physics, Christie Hospital NHS Foundation Trust,
Wilmslow Road, Withington, M20 4BX, Manchester, UK; phone: 01614463531, fax: 01614463545; email:
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There are similarities and differences among these protocols concerning the choice of quality
index, calibration setup, standards of ionization chamber calibration and nomenclature. AAPM
TG-51 and IAEA TRS-398 have already been discussed in great detail in the literature,®-139)
particularly concerning the advantages and disadvantages of the recommended photon beam
quality indices.(14-17)

1A. Calibration

There are different methods of establishing primary standards of absorbed dose to water: ionization
chamber (Bureau International des Poids et Mesures in France), water calorimetry (National
Research Council in Canada, National Institute of Standards and Technology in the USA), graphite
calorimetry (National Physical Laboratory in the UK, Ente per le Nuove Tecnologie, I’Energia e
I’Ambiente in Italy, Australian Radiation Protection and Nuclear Safety Agency in Australia,
Bundesamt fiir Eich- und Vermessungswesen in Austria, Laboratoire Primaire de Métrologie des
Rayonnements lonisants in France).

The three codes of practice under study here are based on standards of absorbed dose to water;
nevertheless, there are some peculiarities regarding the way calibrations are dealt with. The
IPSM 1990 protocol is based on the UK National Physical Laboratory ion chamber calibration
service, which provides calibration coefficients for a range of beam quality indices.(®18-2) Their
primary standard is a graphite calorimeter, and three ion chambers (NE 2561/2611, NE Technology
Ltd, Reading, UK) are used as reference standards in graphite. TG-51 is based on ion chambers
with absorbed dose to water calibration coefficients for 8°Co quality Q, and sets of beam quality
conversion factors. IAEA TRS-398 provides the most general and flexible framework for
calibration, allowing four very detailed possibilities that include the use of experimental or
theoretical beam quality conversion factors (see Section 4.1, IAEATRS-398).

IAEATRS-398 recommends the use of generic experimental beam quality conversion factors
only if they have been determined in a standards laboratory, such as NPL. Values must be obtained
from a large sample of ionization chambers and the standard deviation of chamber to chamber
variations should be small.®®

Beam quality conversion factors are not included in the IPSM 1990 protocol, however NPL
prowdes experimental values together with N, | in their most recent calibration certificates (2007).

« factors are based on determinations at three or more beam qualities. Based on NPL s vast
experlence with ion chamber types NE 2561/NE 2611, a generic fit of k, versus TPR,, , (tissue
phantom ratio at 20 cm deep, normalized to 10 cm) is generally used and the ion chamber to be
calibrated is checked at several beam qualities. No generic fit is used for other chamber types,
and measurements for a full range of beam qualities are carried out instead.

Despite the use of different protocols, all reference dose measurements in this work are traceable
to NPL standards. Thus, this comparison is free from any influence related to differences among
primary standards and methodologies used in standards laboratories. In a more general situation,
when comparing results obtained following different protocols, each institution could be using
ionization chambers traceable to different standards and, therefore, dose results for each institution
would also include primary standard differences. These differences among standards could lead
to differences in calibration factors up to 0.66% according to a BIPM report.(321-22)

1B. Quality Indices and Reference Conditions

The IAEATRS-398 and IPSM 1990 recommend TPR,, ,, as the quality index in order to choose

appropriate calibration coefficients (N ) or beam quality conversion factors, while AAPM

TG-51 uses %dd(10), (photon component of the percentage depth dose at 10 cm depth).
According to the IPSM 1990 protocol, dose should be measured at 5 cm deep for TPR,,

0.58-0.75 and ®°Co; at 7 cm deep for TPR,, 0.10: 0-75-0.81. The AAPM TG-51 and IAEATRS 398

recommend a depth of 10 cm, although IAEA TRS-398 allows 5 cm if TPR,, , is less than 0.7.
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In all the protocols, the energy determination is done with a 10 x 10 cm? field at 100 cm SSD.
The calibration can be done at the nominal SSD/isocenter location of the accelerator (80 or 100
cm) according to IAEA TRS-398 and AAPM TG-51.

1C. Beam Quality Conversion Factors
Beam quality conversion factors play an important role in IAEA TRS-398 (k, o, When Q, is
60Co: Ko = Ko.q0) @1d AAPM TG-51 (k) protocols. Both AAPM TG-51 and%gtEA TRS-398
prowde sets of theoretically derived k ? ctors for a number of ionization chambers, although
IAEA TRS-398 tables provide factors for a larger number of ionization chambers. IAEA has
made an effort to include a wide range of ionization chambers used worldwide in TRS-398;
details on the calculation procedures that lead to these kQ values are given in Appendix B of the
IAEA TRS-398 code of practice, along with uncertainty estimates for each component. The k
values are based on Bragg-Gray theory with suitable corrections. The combined standarg
uncertainty in the values for k. is 1.0%.32324 TG-51 concentrates on those chambers used
commonly in North America at the time of its publication and includes recommendations on
how to use chambers not listed in the protocol.

For TRS-398 beam quality conversion factors can also be determined experimentally from
experimental calibration coefficients for the beam qualities Q and Q, using the definition given
by Hohlfeld,

Q
ND,W

Koo =—20
Q.Q Q
’ ND,DW

@

With this method, variations among individual ionization chambers of the same model can be
taken into account.

Standards laboratories can take advantage of the cancellation of factors in both calibration
coefficients in this equation to reduce the uncertainty in k, o, (IAEA TRS-398 notation).
Comparison between experimental and theoretical data from IAEA TRS-398 along with their
uncertainties can be found in the comprehensive review by Andreo. @4

A user provided with a set of calibration coefficients NSYW for different beam qualities Q can
compute Ky, o, from them, dividing every N Q, by ND . Infact IAEA TRS-398 recommends this
practice. I? k factors are computed followmg this procedure, their uncertainty has to be
derived from the one given for N5 Q and NQO in the calibration certificate. This uncertainty
value could be larger than the one |n standards Iaboratory measurements, because the user has to
assume that Ng@, and N Qo have independent uncertainty. 2527

1D. The IPSM 1990 code of practice
There are additional similarities and differences between IPSM 1990 and AAPM TG-51/IAEA
TRS-398 that are interesting to highlight:

1. IPSM 1990 does not include detailed recommendations about several issues: desired
characteristics of field ion chambers, design characteristics of the waterproof sleeve to be
used with non-waterproof field ion chambers, water phantoms, wall thickness when horizontal
beams are used, and practical considerations such as limits on leakage current and influence
quantities (only generic recommendations are provided).

2. IPSM 1990 and IAEA TRS-398 use TPR, ,, as quality index, while AAPM TG-51 uses
%dd(10),. Itshould be noted that TRS-398 includes an empirical relationship between TPRy 10

and PDDZO’10
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3. IPSM 1990 is based on the calibration of ionization chambers at NPL. Since this code of
practice does not include beam quality conversion factors, it would not be possible to use
IPSM 1990 for ionization chambers calibrated in standards laboratories which do not provide
a calibration at several beam qualities, except for the calibration of a °Co unit.

4. Neither IPSM 1990 nor AAPM TG-51 offers any explicit guidelines to estimate measurement
uncertainty in a user’s beam. IAEA TRS-398 provides detailed guidelines.

5. IPSM 1990 does not give recommendations about the chamber type to be used when measuring
central axis depth dose distributions; specifically, no information is provided about the effective
point of measurement of an ionization chamber. TRS-398 and TG-51 recommend shifting
cylindrical chambers by 0.6 times the inner radius of a cylindrical ion chamber for photon
beams.

6. Recombination factors are treated in two different ways in IPSM 1990: the experimental
formula by Burns and Rosser@® (valid only for the NE2561/2611 Secondary Standard [-200
V polarizing voltage]), and Boag’s theory.® There is no mention of fits like that by Weinhous
and Meli®9, or any approximate relationship such as the ones reported in the other two
protocols.

The aims of this paper are to obtain absolute dose results for a set of five photon beam qualities
according to the three different codes of practices, and discuss the differences between IPSM
1990 and IAEA TRS-398/AAPM TG-51. Attention has been paid to the different methods
mentioned in IAEA TRS-398 and the ones by Rogers®®D) and by Kalach and Rogers®? to obtain
TPR,, ,, and their effect on the value of the beam quality conversion factor and, therefore, in
absorbed dose to water. Uncertainty has been evaluated according to 1SO Guide to the Expression
of Uncertainty in Measurement (GUM) and is discussed below.

II. MATERIALS AND METHODS

Measurements were performed on two Elekta Synergy (Fleming Way, Crawley, UK) and two Elekta
Precise linear accelerators. Photon energies used were 4 MV, 6 MV, 8 MV, 10 MV and 18 MV.

Measurements were carried out with a computer controlled scanner in a large water tank
(MP3 beam analyzer, PTW Freiburg, Germany). For central axis depth dose, measurements
were performed with a PTW 34001 (Roos type) plane parallel chamber and a 0.125 cm® PTW
31002 cylindrical chamber; both chambers were connected to a PTW Tandem electrometer. The
reference setup corresponds to a 10 x 10 cm? field size and SSD = 100 cm.

IAEA TRS-398 recommends the use of plane parallel chambers for depth-ionization
measurements. Both chamber types were used in order to compare their measurements since no
chamber type is explicitly recommended by IPSM 1990 or by AAPM TG-51. Cylindrical chambers
were shifted 0.6 times their cavity radius in order to place their effective point of measurement at
the measuring point, and plane parallel chambers were placed with the centre of the front surface
of the chamber air cavity at the measuring point.(23)

An NE 2571 graphite chamber connected to a Keithley 35040 Therapy Dosimeter electrometer
(Keithley Instruments Inc., Cleveland, OH) was used for absolute dosimetry and TPR,,
measurements. This ionization chamber is not waterproof; therefore it was used with a
waterproofing sleeve, meeting the requirements of both IAEA TRS-398 and AAPM TG-51 (a
PMMA sleeve with a wall not thicker than 1 mm and an air gap of less than 0.2 mm between the
chamber and the sleeve).(29)

A 0.125 cm® PTW 31002 waterproof thimble chamber was placed inside the phantom at the
same depth of the NE 2571 but 4 cm away, and the ratio of both readings was recorded to account
for beam output instabilities, following IAEA TRS-398 recommendations.
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2A. Quality indices

Several procedures were used for quality index calculation. For 4 MV, 6 MV and 8 MV, %dd(10),
was obtained as a measured %dd(10). For higher energy beams the %dd(10) needs to be corrected
for signals resulting from electron contamination at Dmax. This can be done either by using a
generic formula for a typical linac, or by using a 1 mm lead filter to remove the contaminating
electrons and replace them with the better known contamination from the lead itself. For 10 MV
and 18 MV %dd(10),, was measured, placing a lead filter at 52.5 cm distance from water surface
and using the equations in the protocols to remove the signal from electrons generated in the
lead from the PDD measurements. For the highest energy, the alternative equation for the electron
contamination from a typical linac (eg. 15 in TG-51) was also used to compute %dd(10), from
open beam %dd(10) (18 MV is the only beam for which it was applicable).

TPRy,,, was directly measured, keeping the chamber in the same position during the
measurements and changing the water level instead. TPR,,,, was also computed with the
relationship given in TRS-398 (Section 6.3.1) from PDD(10) values, the fit in the publication by
Followill®® which uses the ratio PDD,, ,, and the ones proposed by Rogers©V and Kalach and
Rogers®?) using %dd(10),. '

2B. Absolute dosimetry

A graphite chamber NE 2571 (cavity length 24.0 mm, cavity radius 3.2 mm, wall thickness
0.065 gcm and aluminum central electrode) was chosen for these measurements in order to
fulfill all three protocol recommendations. The reference instrument in our institution is a NE
2611A Secondary Standard cylindrical chamber (cavity length 9.2 mm, cavity radius 3.7 mm,
graphite wall, wall thickness 0.090 gcm-2 and aluminum central electrode), the one recommended
by the National Physical Laboratory (Teddington, Middlesex, UK), along with a PTW UNIDOS
electrometer. Cross-calibrations of field chambers take place on a regular basis to ensure traceability
to the secondary standard. A regular schedule of constancy checks with Sr-90 check sources is
carried out for both NE 2571 and NE 2611A. All ionization chambers were X-rayed before and
after this study, and were found in proper condition.

The side-by-side method was used to cross-calibrate the NE 2571 ion chamber against the
Secondary Standard.® Both ion chambers were placed in a perspex phantom meeting the
requirements described in IPSM 1990, with two built-in holes and appropriate perspex inserts to
allow chambers to fit in. The inserts can be exchanged along with the chambers. Three sets of
measurements were performed; after each, the inserts were exchanged. Cross-calibrations were
carried out at three different depths, corresponding to the reference conditions in the three
protocols: 5 cm for 4 MV, 6 MV, 8 MV and 10 MV; 7 cm for 18 MV; 10 cm for all energies. The
independence of N, with depth has been evaluated in several publications.4%) In our
measurements, variations in Ny, between different depths were approximately 0.1% for all
energies, well within experimental uncertainty.

Reference conditions for absolute dose measurements were 100 cm SSD, 10 x 10 cm? field
size, 10 cm depth in water for IAEA TRS-398 and AAPM TG-51. For IPSM 1990, the
measurement depths were 5 cm for 4 MV, 6 MV, 8 MV and 10 MV and 7 cm for 18 MV.
Corrections for environmental conditions (pressure, temperature) were applied as recommended.
Humidity was always within 20% to 70% and temperature within 15° C and 25° C and no
humidity correction was necessary. Correction factors (polarity, ion recombination) were measured
at the corresponding depth for each beam quality and protocol. No shift was applied, so that in
every case the center of the ion chamber was placed at the reference depth according to the
different protocols.

lon recombination correction factors were measured with the two voltage technique according
to each protocol. Polarity correction factors were computed as
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ML+

pol 2|M | (2)
(default polarity is negative). After every change of polarity or absolute voltage, the electrometer
and ion chamber were allowed to stabilize for 20 minutes. Four non-trending readings were
taken for each polarity and voltage. The recombination factors were computed according to the
quadratic fit by Weinhous and Meli using the approximation given in IAEA TRS-398 and AAPM
TG-51. A factor of 1+X% for a X% decrease in the reading when halving the voltage is the
recombination factor recommended by IPSM 1990 and it has been used for the NE 2571 ion
chamber.®

For the secondary standard chamber NE 2611A with -200 V polarizing voltage, NPL and
IPSM 1990 protocol provide a formula to obtain the ion recombination factor from the value of
the dose per pulse: x = 1.0014 + 0.23p (where p is the dose per pulse in the chamber in cGy.(?8))
The dose per pulse can be obtained using the PRF (Pulse Repetition Frequency) setting for each
beam and the dose rate. This relationship was used for the Secondary Standard chamber as it is
the one used at the time of calibration at NPL.

Cross-calibrations were carried out for the NE 2571 field chamber against the Secondary
Standard chamber leading to the corresponding N, ,, field for each beam quality. Corrections for
influence quantities were taken into account: pressure, temperature, ion recombination, polarity
effect, and electrometer calibration. Recombination factors were obtained for the field instrument
using the two voltage technique for the field chamber, and using the NPL equation (based on
dose per pulse) for the Secondary Standard. Since the NE 2571 ionization chamber was cross-
calibrated with the Secondary Standard for each beam, only kQ factors for the Secondary Standard
NE 2611A are needed.

2C. Uncertainty

Uncertainties were computed according to the guidelines given in IAEA TRS-398 Appendix B
and D, in accordance with ISO GUM.#® Uncertainties are reported as standard uncertainty (k =
1) within this study. In general, a Type A evaluation was performed for each series of raw
measurements. Whenever required, uncertainties were composed using the law of propagation
of uncertainty where independent uncertainties are added in quadrature.(®®

[ll. RESULTS & DISCUSSION

Standard uncertainty propagation was used for direct measurements of TPR,, ,,. The fit givenin
IAEATRS-398 (section 6.3.1) for TPR,, , , derived from PDD,, ,, measurement has a maximum
difference with regard to measured data of 0.6% for beam qualities below 50 MV. That means
that the Type B standard uncertainty due to the fit in this case is 0.35%, assuming a rectangular
probability distribution, and this uncertainty was composed with the Type B uncertainty from
the PDD measurements. The same approach was used for the fit by Kalach and Rogers,32 who
report a maximum uncertainty for their fit of measured data on clinical beams of 0.011. On the
other hand, we could not find any figure for uncertainty in the quality index relationship given
by Followill,®3 although the uncertainty interval (k = 2) in the measured values used to design
the fit (from nearly 700 machines) is shown in a graph. Thus, only Type B uncertainty from PDD
measurements is reported in our results. Finally, no uncertainty estimate was found for the fit by
Rogers.®D Therefore, only Type B uncertainty from PDD measurements is reported in our results
for these two fits.
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The uncertainty for the AAPM TG-51 quality index %dd(10), is the Type A one derived from
the law of propagation of uncertainty for energies where the use of a lead filter is not recommended.
When the quality index is obtained from measurements with a lead filter, an additional Type B
uncertainty from the equation is used. Rogers®® found that by using the fit, the worst case
scenario would be that the measured value of %dd(10), is wrong by 0.50%, leading to a standard
uncertainty of 0.29%.

Quality indices are used to determine beam quality correction factors, k.. The variation of k
over the whole range of quality indices in Table I in AAPM TG-51 is 0.047 (%dd(10), from 50%
t0 93%),@ and in Table 6.111in IAEATRS-398 it is 0.057 (TPR,,, ., from 0.50 to 0.84).(3§Therefore,
quality index uncertainty yields a smaller uncertainty in kQ.

Concerning beam quality conversion factors k in a previous publication, Andreo®” reports
uncertainty estimates of 1.2% to 1.5% for theoretical k, These values were reduced in TRS-398
to 1% and reported by Andreo.?¥) For k factors provided by NPL, we have considered an
uncertainty value of 0.7%, based on the report by Sharpe.(8)

AAPM quality indices %dd(10), are shown in Table 1. Agreement between depth dose
percentage values measured with a plane parallel and a cylindrical ion chamber was found to be
within = 0.1% for all beam qualities; PDDs measured with plane parallel chamber were used. As
mentioned previously, an additional estimate for %dd(10), for 18 MV has been obtained using
equation 15 in TG-51. The result, 79.74%, is close to the one obtained from %dd(10),,, 80.04%,
and agreement is within experimental uncertainty. The k, factors computed with each of these
values are 0.975 for %dd(10),, = 79.74%, and 0.976 for %dd(10),,, = 80.04%.

Values for the quality index TPR,, ,, can be found in Table 2. The largest discrepancy (1.7%)
between quality indices obtained with different procedures corresponds to 18 MV for the TPR,, ;,
values obtained using Rogers’ and the IAEA relationships from PDD data — which are 0.8%
higher and 1.0% lower than measured TPR,, , , respectively. Uncertainty for TPR,, ,, associated
with the fits by Followill®® and Rogers® is not available. Their Type B uncertainty due to the
PDD measurement is shown in the table, along with values of uncertainty for the IAEA, Kalach
and Rogers(®? fits, and the experimental values.

Results for beam quality conversion factors (NE 2611) for the five beam qualities, according
to theoretical tables in IAEA TRS-398 and AAPM TG-51 and experimental results from NPL,
are plotted in Figure 1. Differences in the quality index TPR,, ,, obtained by different procedures

20,10

TasLE 1. Values for the quality index %dd(10),.

Energy %dd(10),

4MV 63.90+0.32
6 MV 67.01+0.33
8sMV 70.02 +0.33
10MV 72.65+0.33
18 MV 80.04 +0.39

TasLEe 2. Values for the quality index TPR,, ,,: directly measured (obtained with Followill’s equation from PDD,, ,,, with the
equation in TRS-398 from PDD, , and with the fits given by Rogers and Kalach).

Energy TPRZO,IOMeasured TPRZO,lOFOHDWi” TPRZO,IOIAEA TPRZO,lORogerS TPRZO,IOKaIaCh

4 MV 0.6381 +0.0019 0.6355 +0.0068 0.6347 +0.0042 0.6443 +0.0032 0.6394 +0.0073
6 MV 0.6690 +0.0018 0.6710 = 0.0065 0.6694 + 0.0040 0.6765 + 0.0030 0.6745 +0.0072
8 MV 0.7082 +0.0018 0.7102 +0.0078 0.7000 + 0.0046 0.7050 + 0.0036 0.7048 +0.0074
10 MV 0.7303 £0.0019 0.7314 £0.0077 0.7221 +0.0044 0.7278 £ 0.0033 0.7280 +0.0072
18 MV 0.7782 +0.0017 0.7812 +0.0075 0.7714 +0.0038 0.7845 +0.0025 0.7798 +0.0068
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would lead to a k, difference of 0.4% for the case of TRS-398 theoretical kQ factors and of 0.6%
for experimental(i( (Tables 3 and 4). Differences between experimental and theoretical k, are
found to be larger for the highest energies as reported by Andreo®* but the differences are well
within the error bars for all energies.

Polarity factors and ion recombination factors were obtained at the corresponding depths (10
cm for IAEA TRS-398 and AAPM TG-51, 7 cm and 5 cm for IPSM 1990). The maximum
difference for ion recombination factors, 0.2%, has been found between IPSM 1990 and AAPM
TG-51 for the 18 MV beam (1.008 for TG-51 and 1.010 for IPSM 1990). Despite the difference
in depth, recombination factors for IPSM are within 0.1% of the values for the other two protocols
and the remaining beam qualities. The differences in recombination factors between IAEATRS-
398 and AAPM TG-51, measured at the same depth, are 0.1% or less for all beam qualities.
Uncertainty in recombination factor determination is below 0.2% when care is taken to ensure
the measuring system is given adequate time to settle after changes in polarizing voltage. The
polarity factor is identical for TRS-398 and TG-51 and is less than 0.1% different for IPSM
1990, and its uncertainty is below 0.3%.

Absolute absorbed dose to water in reference conditions has been finally computed in four
different ways, using the common formalism given by:

D(2rer) = NS -M” @3)

where M* is the reading corrected for all influence quantities. It has been divided by the appropriate
PDD value to obtain the absorbed dose at maximum. The four methods are:

1. 1AEA TRS-398, with NS“,W and experimental beam quality conversion factors for the
secondary standard provided by NPL.

2. |AEA TRS-398, with N§W factors computed applying theoretical kQ factors (from IAEA
TRS-398 tables) to the NSe , provided by NPL.

3. AAPM TG-51, with N[?’W factors computed applying theoretical kQ factors (from AAPM
TG-51 tables) to the N§° provided by NPL.

4. IPSM 1990, measuring at 5 or 7 cm deep instead of 10 cm deep, and using NSVW calibration
coefficients from the NPL calibration certificate.
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Fic. 1. Beam quality conversion factors k, as a function of nominal energy. Graphs are shown for theoretical kQ from IAEA
TRS-398 (using measured TPR,, ,), AABM TG-51 and experimental kQ from NPL.
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The ratios of absorbed dose obtained with IAEA TRS-398 and AAPM TG-51 to IPSM 1990
were found to be close to 1.005 (Table 5). Hug® reported overall differences between IAEA
TRS-398 and AAPM TG-51 of 0.2% with a single case of 0.3% for 18 MV. Our results are in
agreement with these values for these two codes of practice (AAPM TG-51 results compared
with IAEA TRS-398 computed from theoretical beam quality correction factors). The work by
Huq does not address the case of experimental beam quality correction factors. The reason for
the differences between the first and second column in Table 5 (IAEA absolute dose results using
theoretical and experimental kQ) is related to the differences in the beam quality correction
factors (see Tables 3 and 4).

TasLE 3. Theoretical k, factors from IAEATRS-398 and AAPM TG-51 tables, computed with each of the TPR,, , , obtained
by different methods.

ko (TPRyp 10M%) Ko (TPRyo1o™M) K (TPRyg 0 AEA) ko (TPRy 1oR%) kg (TPRyg 1) K, (%dd(10),)

4 MV 0.996 0.996 0.996 0.995 0.995 0.997
6 MV 0.993 0.993 0.993 0.992 0.992 0.994
8 MV 0.989 0.989 0.990 0.989 0.990 0.990
10 MV 0.986 0.986 0.988 0.987 0.987 0.987
18 MV 0.976 0.975 0.978 0.974 0.975 0.975

TABLE 4. Experimental kQ factors from NPL calibration certificate for the ion chamber NE2611, computed with each of the
TPR,, ,, obtained by different methods.

Energy ko (TPRy 10™%) ko (TPRy1o™) kg (TPRy 10" ko (TPRy 1 R%%) kg (TPRy oK)
4MV 0.997 0.997 0.997 0.996 0.997
6MV 0.994 0.994 0.994 0.993 0.994
8MV 0.990 0.989 0.991 0.990 0.990
10MV 0.985 0.985 0.987 0.986 0.986
18MV 0972 0971 0.975 0.969 0.971

TasLE 5. Absolute dose quotients of IAEATRS-398/IPSM 1990 and AAPM TG-51/IPSM 1990. For IAEATRS-398, results
for experimental and theoretical kQ factorsare included.

DmIAEA(erXp)/ DmIPSM(ND,W) DmIAEA(thheo) / DmIPSM(ND,W) DmAAPM(kQ) / Dm|PSM(ND,W)
4 MV 1.005 £0.022 1.004 £0.026 1.005 +0.022
6 MV 1.004 +0.021 1.003 +£0.026 1.004 +0.023
8 MV 1.004 £0.028 1.003+0.031 1.004 +0.029
10 MV 1.003 +0.027 1.004 +£0.032 1.005+0.028
18 MV 1.003 £0.028 1.007 £0.032 1.006 +0.032

IV. CONCLUSIONS

IPSM 1990 photon dosimetry code of practice has been compared with AAPM TG-51 and IAEA
TRS-398, and the similarities and differences between IPSM 1990 and AAPM TG-51/IAEA
TRS-398 have been discussed.

Uncertainties have been computed for all experimental results according to the ISO Guide for
the Expression of Uncertainty in Measurement recommendations®). Absorbed dose to water
determinations according to the three protocols agree within experimental uncertainty, and this
uncertainty is similar to the one reported in IAEA TRS-398. The maximum difference in absorbed
dose to water determination is obtained for 18 MV: IPSM 1990 result is 0.7% lower than the
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IAEATRS-398 one using its theoretical beam quality conversion factors. This maximum difference
is mainly related to the use of experimental beam quality conversion factors for IPSM 1990 and
theoretical ones for IAEA TRS-398 (Fig. 1). It must be stressed that this comparison has been
performed with a single calibration from NPL and that the use of different protocols and
calibrations traceable to different standards laboratories will add further differences increasing
or lowering results (see Section 2.2 and Table 2.2 in IAEA TRS-398).
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