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Abstract
The cephalosporin-β-lactamase-inhibitor-combinations, ceftolozane/tazobactam and ceftazidime/avibactam, have revolu-
tionized treatment of carbapenem-resistant Pseudomonas aeruginosa (CR-PA). A contemporary assessment of their in vitro 
potency against a global CR-PA collection and an assessment of carbapenemase diversity are warranted. Isolates determined 
as CR-PA by the submitting site were collected from 2019–2021 (17 centers in 12 countries) during the ERACE-PA Global 
Surveillance Program. Broth microdilution MICs were assessed per CLSI standards for ceftolozane/tazobactam, ceftazidime/
avibactam, ceftazidime, and cefepime. Phenotypic carbapenemase testing was conducted (modified carbapenem inactivation 
method (mCIM)). mCIM positive isolates underwent genotypic carbapenemase testing using the CarbaR, the CarbaR NxG, 
or whole genome sequencing. The  MIC50/90 was reported as well as percent susceptible (CLSI and EUCAST interpretation). 
Of the 807 isolates, 265 (33%) tested carbapenemase-positive phenotypically. Of these, 228 (86%) were genotypically posi-
tive for a carbapenemase with the most common being VIM followed by GES. In the entire cohort of CR-PA, ceftolozane/
tazobactam and ceftazidime/avibactam had  MIC50/90 values of 2/ > 64 and 4/64 mg/L, respectively. Ceftazidime/avibactam 
was the most active agent with 72% susceptibility per CLSI compared with 63% for ceftolozane/tazobactam. For compari-
son, 46% of CR-PA were susceptible to ceftazidime and cefepime. Against carbapenemase-negative isolates, 88 and 91% of 
isolates were susceptible to ceftolozane/tazobactam and ceftazidime/avibactam, respectively. Ceftolozane/tazobactam and 
ceftazidime/avibactam remained highly active against carbapenem-resistant P. aeruginosa, particularly in the absence of 
carbapenemases. The contemporary ERACE-PA Global Program cohort with 33% carbapenemase positivity including diverse 
enzymology will be useful to assess therapeutic options in these clinically challenging organisms with limited therapies.

Keywords Carbapenem-resistant P. aeruginosa · Ceftazidime/avibactam · Ceftolozane/tazobactam · Carbapenemase

Introduction

Multi-drug resistant Pseudomonas aeruginosa burdens clini-
cians across the globe due to the limited treatment options 
[1]. P. aeruginosa represents such a challenging pathogen 
due to the numerous mechanisms that drive antimicrobial 
resistance including drug efflux/porin loss, endogenous/
exogenous β-lactamases, and target site mutations [2]. 

Although resistance mechanisms and epidemiology may 
differ based on geographic region, resistance to carbapen-
ems is noted around the globe leaving clinicians agents that 
may be less effective and/or more toxic than β-lactams (i.e., 
polymyxins, aminoglycosides) [1]. Between 2014 and 2015, 
novel cephalosporin-β-lactamase-inhibitor combinations, 
ceftolozane/tazobactam and ceftazidime/avibactam, were 
introduced and revolutionized the treatment of carbapenem-
resistant P. aeruginosa [3, 4].

Since introduction, both ceftolozane/tazobactam and 
ceftazidime/avibactam have shown potent activity against 
clinical P. aeruginosa isolates including carbapenem-
resistant isolates [5]. The potent in vitro activity translated 
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to improved patient outcomes compared to best available 
therapies by improving efficacy and safety [6–8]. How-
ever, now years into both agents representing important 
therapies for susceptible carbapenem-resistant P. aerugi-
nosa where other β-lactams are ineffective, resistance has 
been described. Plasmid-mediated resistance due to car-
bapenemase production, including metallo-β-lactamases, 
has been a noted clinical challenge since introduction 
of both therapies due to β-lactam cross-resistance and 
global spread of such organisms increases concerns [9]. 
Similarly, mutations to chromosomally encoded P. aer-
uginosa derived cephalosporinases (PDCs) and transmis-
sible extended-spectrum β-lactamases have been described 
also resulting in ceftolozane/tazobactam and ceftazidime/
avibactam resistance [10, 11]. Indeed, a regional assess-
ment from a global program of the in vitro activity of 
these agents 5 years later against the targeted pathogen of 
carbapenem-resistant P. aeruginosa will help clinicians 
assess the activity of these agents in their region.

Herein, we describe the establishment of the Enhanc-
ing Rational Antimicrobials against Carbapenem-resistant 
P. aeruginosa (ERACE-PA) Global Surveillance Program. 
This is a multi-center, multi-national surveillance program 
comprised of carbapenem-resistant P. aeruginosa submitted 
from around the globe. The program represents a contem-
porary assessment of the in vitro potency of ceftolozane/
tazobactam and ceftazidime/avibactam 5 years into use. 
Additionally, the carbapenemase diversity of included iso-
lates was assessed to categorize the cohort.

Methods

Bacterial isolates

Isolates were compiled as part of the ERACE-PA Global 
Surveillance Program. A total of 17 sites from 12 countries 
were included in the program. Global sites were located in 
Köln, Germany; Sao Paulo, Brazil; Istanbul, Turkey; Tel 
Aviv, Israel; Madrid, Spain; Jabriya, Kuwait; Cape Town, 
South Africa; Bogotá, Colombia; Athens, Greece; Jeddah, 
Saudi Arabia; Pisa, Italy; and Genoa, Italy. In the USA, 
centers from New York, NY; Miami, FL; St. Louis, MO; 
Seattle, WA; and Louisville, KY, submitted isolates. Isolates 
were sent to the central laboratory (Center for Anti-Infective 
Research and Development, Hartford, CT) for storage frozen 
at − 80 o C in skim milk until assessment.

Isolates could be included if they were non-duplicate 
isolates identified as P. aeruginosa by local standards of 
practice and determined to be carbapenem-resistant by the 
submitting site. Isolates were collected from 2019 to 2021. 

Isolates could be cultured from any anatomical site and there 
was no patient age limit for inclusion.

In vitro susceptibility testing

Isolates were transferred from frozen stock and then 
subsequently subcultured once more prior to all testing. 
Reference broth microdilution MICs were conducted at 
the central laboratory per CLSI standards to ceftolozane/
tazobactam, ceftazidime/avibactam, ceftazidime, and 
cefepime [12, 13]. Routine quality control was conducted 
after tray preparation and during each MIC run using 
either ATCC P. aeruginosa ATCC 27853 or ATCC K. 
pneumoniae 700603. MICs were read after 16–20 h incu-
bation and colony counts were conducted for each inocu-
lum to confirm the target bacterial burden was transferred 
to the MIC trays by transferring one µL from a control 
well onto a trypticase soy agar with 5% sheep’s blood 
plate which was subsequently counted after overnight 
incubation.

Phenotypic carbapenemase screening

All isolates underwent phenotypic carbapenemase testing 
at the central laboratory using the modified carbapenem 
inactivation method (mCIM) per CLSI standards and inter-
preted by CLSI standards [12]. Routine quality control 
was conducted with each mCIM run with two negative 
controls (P. aeruginosa ATCC 27,853 and ATCC BAA K. 
pneumoniae 1706) and two positive controls (ATCC BAA 
K. pneumoniae 1705 (KPC-positive) and K. pneumoniae 
CDC #766 (NDM-positive).

Genotypic carbapenemase detection

Any isolates that tested mCIM positive were then assessed 
on the CarbaR assay (Cepheid, Sunnyvale, CA, USA) per 
the manufacturer’s package insert. Results were deter-
mined as positive for KPC, NDM, VIM, IMP, OXA-48-
like, or negative for all targets.

All isolates that tested negative on the commercially 
available CarbaR were sent to Cepheid for assessment 
on the Research Use Only CarbaR NxG as previously 
described [14]. NxG testing assessed for the presence of 
more carbapenemase targets including GES, SPM, IMI, 
OXA-58, and IMP-subtypes.

Isolates negative for both assays underwent whole 
genome sequencing as previously described to evaluate for 
enzymatic resistance mechanisms outside of the CarbaR 
and CarbaR NxG spectrum [14].
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Additional CarbaR NxG testing was conducted on cef-
tolozane/tazobactam-resistant isolates that tested mCIM 
negative to evaluate for GES-harboring isolates as this 
enzymology has previously been described as testing 
falsely negative [15, 16].

Clinical data

The present study was approved by the Hartford Hospital 
institutional review board and determined as exempted as 
all patient care was delivered per standards of care in the 
past, and thus, written informed consent was not obtained. 
De-identified clinical data of sex, age, hospital level of care 
at time of culture (intensive care unit (ICU), ward, or out-
patient), and source of infection (respiratory, blood, urine, 
intra-abdominal, or other) were collected. Pediatric patients 
were defined as patients age < 18 years old.

Analysis

The categorical interpretation of the MIC for each agent 
was determined using CLSI and EUCAST interpretive cri-
teria and described as percent susceptible, intermediate, and 
resistant (as applicable) in the entire cohort and subgroups 
[12, 17]. Demographic data was assessed using descriptive 
statistics including percentages for categorical data. For con-
tinuous data, the mean and standard deviation was reported.

Table 1  Demographic data for the patients corresponding to submit-
ted isolates

Demographic data Mean (SD) or n (%)

Age (years), mean (SD) 56 (± 21)
Sex, Percent male 62%
Location at time of culture, percent of isolates

  Ward 54%
  ICU 37%
  Outpatient 2%
  Unspecified 7%

Source
  Respiratory 41%
  Urine 20%
  Blood 11%
  Intra-abdominal 2%
  Other 26%

Region, n (%)
  Europe 324 (40%)
  Middle East 163 (20%)
  USA 149 (19%)
  South America 106 (13%)
  Africa 65 (8%)

Table 2  Carbapenemase diversity of the entire cohort and by region

a OXA-50-like + PDC, n = 1; OXA-10-like + OXA-50-like + PDC, 
n = 2; not sequenced but from same site and similar phenotype as the 
OXA-10-like + OXA-50-like + PDC isolates, n = 11, WGS unavail-
able, n = 6
b OXA-50-like + PDC, n = 3; OXA-2-like + OXA-50-like + PDC, n = 2
c OXA-50-like + PDC, n = 3; OXA-2 + OXA-50-like + PDC, n = 1; 
not sequenced but from same site and similar phenotype to OXA-50-
like + PDC isolates, n = 2, WGS unavailable, n = 1
d OXA-2 + OXA-50-like + PDC, n = 1; OXA-50-like + PDC, n = 1
e OXA-50-like + PDC, n = 1; OXA-10-like + OXA-50-like + PDC, 
n = 2

Cohort Subgroups, Number (Percent of each 
Subgroup)

Number (% of 
carbapenemase 
positive)

Entire Cohort, n = 280 (35%)
  VIM 136 (49%)
  GES 59 (21%)
  IMP 15 (5%)
  NDM 13 (5%)
  KPC 8 (3%)
  VIM and KPC 8 (3%)
  VIM and IMP 3 (1%)
  VIM and OXA-48 1 (< 1%)
  Other non-carbapenemase β-lactamases 37 (13%)
  Europe, n = 109 (35%)
  VIM 48 (44%)
  GES 40 (37%)
  NDM 1 (1%)
  Other non-carbapenemase β-lactamases 20 (18%)a

Middle East, n = 75 (46%)
  VIM 28 (37%)
  GES 18 (24%)
  IMP 13 (17%)
  NDM 8 (11%)
  VIM and IMP 3 (4%)

Other non-carbapenemase β-lactamases 5 (7%)b

  USA, n = 17 (11%)
  VIM 10 (59%)
  Other non-carbapenemase β-lactamase 7 (41%)c

South America, n = 35 (33%)
  VIM 15 (42%)
  IMP 2 (6%)
  KPC 8 (23%)
  VIM and KPC 8 (23%)
  Other non-carbapenemase β-lactamases 2 (6%)d

Africa, n = 44 (68%)
  VIM 35 (80%)
  GES 1 (2%)
  NDM 4 (9%)
  VIM and OXA-48 1 (2%)
  Other non-carbapenemase β-lactamases 3 (7%)e
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Results

Demographics

A total of 807 isolates were collected. The mean age of 
patients was 56 (± 21) years-old and 62% of patients were 
male. A total of 46 isolates (7%) were obtained from patients 
less than 18 years old. The majority of patients were on 
inpatient wards (54%) at the time of culture, 37% were ICU 
patients. The respiratory tract represented the most common 
identified source (41%) followed by urine (20%) and blood 
(11%). Full demographic data are presented in Table 1.

Carbapenemase assessment

Phenotypic detection of a carbapenemase was noted for 265 
of the 807 (33%) isolates. A total of 228 of the 265 (86%) 
phenotypically positive isolates had a carbapenemase gene 
detected by molecular testing (Table 2). Carbapenemase 
prevalence varied by region with the highest prevalence rates 
in Africa and Middle East with 68 and 46% of isolates from 
each region, respectively.

The most common carbapenemase genotypically identi-
fied was VIM (49%) followed by GES (21%). A total of 
15 genotypically GES-categorized isolates tested mCIM-
negative. The diversity of carbapenemase enzymology is 

presented in Table 2. Twelve isolates co-harbored two car-
bapenemase genes including nine harboring both metallo- 
and serine-carbapenemases.

Ceftolozane/tazobactam and ceftazidime/
avibactam in vitro activity

Against this global collection of carbapenem-resistant-P. aer-
uginosa, ceftolozane/tazobactam and ceftazidime/avibactam 
had  MIC50/MIC90 values of 2/ > 64 mg/L and 4/64 mg/L, 
respectively. Ceftazidime/avibactam was the most active 
agent with 72% susceptibility per CLSI and EUCAST criteria 
followed by ceftolozane/tazobactam with 63% in all isolates. 
Both ceftazidime and cefepime remained susceptible against 
46% of the carbapenem-resistant P. aeruginosa. Assessing 
isolates that tested phenotypically negative for carbapen-
emase production, more isolates tested susceptible to cef-
tolozane/tazobactam and ceftazidime/avibactam with 88 and 
91% susceptibility, respectively. The phenotypic profiling of 
all isolates is presented in Fig. 1a, and the MIC distribution 
specific to phenotypically carbapenemase negative isolates 
is presented in Fig. 1b. Of note, a high proportion of serine-
carbapenemase harboring isolates (KPC, n = 8; GES, n = 59) 
tested ceftazidime/avibactam susceptible with  MIC50/MIC90 
values of 4/8 and 2/8 mg/L, respectively. Table 3 displays the 
susceptibility testing results by each carbapenemase class.

Fig. 1  a MIC distribution of tested agents in the entire cohort. Cef-
tolozane/tazobactam:  MIC50/90 2/ > 64  mg/L, 63% susceptible; Cef-
tazidime/avibactam:  MIC50/90 4/64  mg/L, 72% susceptible. Ceftazi-
dime:  MIC50/90 16/ > 64  mg/L, 46% susceptible; cefepime  MIC50/90 
16/ > 64, 46% susceptible. b. MIC distribution of tested agents in 

the phenotypically carbapenemase negative isolates. Ceftolozane/
tazobactam:  MIC50/90 1/8  mg/L, 88% susceptible; Ceftazidime/avi-
bactam:  MIC50/90 2/8 mg/L, 91% susceptible. Ceftazidime:  MIC50/90 
4/ > 64 mg/L, 65% susceptible; cefepime  MIC50/90 8/64, 63% suscep-
tible
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The MIC results by region are presented in Table 4. 
Regional differences in susceptibility patterns were noted 
with ceftolozane/tazobactam susceptibility ranged from 
32 to 85%. Similarly, ceftazidime/avibactam susceptibility 
ranged from 34 to 87%. For comparison, similar ranges were 
observed with ceftazidime and cefepime with susceptibility 
ranges of 22 to 56% and 14 to 60%, respectively.

Discussion

In a global collection of carbapenem-resistant P. aeruginosa, 
33% of isolates tested phenotypically positive for carbapene-
mase production which varied based on region. Considering 
this high prevalence of carbapenemases, ceftolozane/tazo-
bactam and ceftazidime/avibactam remained highly active 
against this collection of carbapenem-resistant P. aeruginosa 
five years into their use. Ceftazidime/avibactam remained 

highly active against the identified serine-carbapenemase 
producing isolates, further highlighting the importance of 
β-lactamase identification to guide therapy in the clinic.

Similar to previously assessed cohorts, VIM was the 
most commonly encountered carbapenemase in our study 
[18]. Notably detection of GES was the second most com-
monly identified in this cohort and is a growing clinical con-
cern [19]. Detection of GES was most common in Europe; 
however GES harboring isolates were also identified in the 
Middle East and Africa. Although none of the US collected 
isolates in the present study tested positive for GES, recent 
reports have described their occurrence in the USA [20, 21]. 
These data call for introduction of commercially available 
assays that detect GES to better identify and subsequently 
help clinicians ascertain the most likely active antimicrobi-
als against GES-harboring P. aeruginosa. IMP-harboring 
P. aeruginosa have been considered endemic to South East 
Asia [22]. The present study identified IMP harboring iso-
lates from both the Middle East and South America further 

Table 3  Antimicrobial susceptibility testing results of ceftolozane/tazobactam, ceftazidime/avibactam, and comparator anti-pseudomonal cepha-
losporins in carbapenem-resistant P. aeruginosa from the ERACE-PA Global Study Program by carbapenemase class identified

Subgroup Antimicrobial susceptibility testing results

MIC (mg/L) CLSI EUCAST

MIC50 MIC90 %S %I %R %S %R

VIM, n = 136
  Ceftolozane/tazobactam  > 64  > 64 1% 0% 99% 1% 99%
  Ceftazidime/avibactam 32  > 64 4% – 96% 4% 96%
  Ceftazidime 64  > 64 2% 12% 86% 2% 98%
  Cefepime 32  > 64 8% 27% 65% 8% 92%

GES, n = 59
  Ceftolozane/tazobactam 16 64 2% 30% 68% 2% 98%
  Ceftazidime/avibactam 2 8 90% – 10% 90% 10%
  Ceftazidime 32  > 64 2% 25% 73% 2% 98%
  Cefepime 16 64 29% 37% 34% 29% 71%

IMP, n = 15
  Ceftolozane/tazobactam  > 64  > 64 0% 0% 100% 0% 100%
  Ceftazidime/avibactam  > 64  > 64 0% – 100% 0% 100%
  Ceftazidime  > 64  > 64 0% 0% 100% 0% 100%
  Cefepime  > 64  > 64 0% 0% 100% 0% 100%

NDM, n = 13
  Ceftolozane/tazobactam  > 64  > 64 0% 0% 100% 0% 100%
  Ceftazidime/avibactam  > 64  > 64 0% – 100% 0% 100%
  Ceftazidime  > 64  > 64 0% 0% 100% 0% 100%
  Cefepime  > 64  > 64 0% 0% 100% 0% 100%

KPC, n = 8
  Ceftolozane/tazobactam  > 64  > 64 12.5% 12.5% 75% 12.5% 87.5%
  Ceftazidime/avibactam 4 8 100% – 0% 100% 0%
  Ceftazidime  > 64  > 64 12.5% 12.5% 75% 12.5% 87.5%
  Cefepime  > 64  > 64 12.5% 12.5% 75% 12.5% 87.5%
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confirming global spread. A strength of the present study 
was the systematic approach where all isolates underwent 
phenotypic carbapenemase screening prior to genotypic 
assessment (CarbaR, CarbaR NxG, and WGS) consider-
ing that some carbapenemases may be outside the spectrum 
of current genotypic assays [14, 23]. Previous reports have 
shown that mCIM testing has excellent sensitivity (i.e., 
98%) and would capture isolates outside of the scope of 
commercially available genotypic testing platforms (i.e., 
SPM and some IMP) [14, 15, 23]. However, false nega-
tives are possible particularly among subtypes with poor 
hydrolytic activity (e.g., GES) [15, 23]. Additionally, with 
further implementation of carbapenemase-detection for 
carbapenem-resistant P. aeruginosa into clinical practice, 
periodic assessments on a local and global level should be 
conducted to detect shifts in carbapenemase prevalence and 
diversity to dictate local best practices for empiric therapy.

Previous data have supported the in vitro potency of 
ceftolozane/tazobactam and ceftazidime/avibactam against 

carbapenem-resistant P. aeruginosa. Indeed, susceptibility to 
both agents was highest in the USA consistent with a multi-
center assessment that previously found 91 and 81% of iso-
late testing susceptible to each agent, respectively [5]. This 
high proportion of isolate testing susceptible to ceftolozane/
tazobactam and ceftazidime/avibactam is likely secondary 
to the prominence of porin alterations and cephalosporinase 
over-production driving carbapenem-resistance. Consider-
ing the higher prevalence of carbapenemases globally, an 
assessment of meropenem-non-susceptible isolates from 
2012 to 2014 found 72% susceptibility to ceftazidime/avi-
bactam similar to the 72% susceptibility presented here [24]. 
Specific to an assessment of European and South American 
countries, ceftolozane/tazobactam remained active against 
65% of carbapenem-non-susceptible P. aeruginosa in both 
regions compared with 65% and 66% of carbapenem-resist-
ant isolates in the present study, respectively [25, 26]. The 
lowest ceftolozane/tazobactam and ceftazidime/avibactam 
susceptibility was observed in the Middle East/African sites. 

Table 4  Antimicrobial susceptibility testing results of ceftolozane/tazobactam, ceftazidime/avibactam and comparator anti-pseudomonal cepha-
losporins in carbapenem-resistant P. aeruginosa from the ERACE-PA Global Study Program (n = 807)

Subgroup Antimicrobial susceptibility testing results

MIC (mg/L) CLSI EUCAST

MIC50 MIC90 %S %I %R %S %R

Europe, n = 324
  Ceftolozane/tazobactam 1  > 64 65% 6% 29% 65% 35%
  Ceftazidime/avibactam 4 32 79% – 21% 79% 21%
  Ceftazidime 8  > 64 52% 8% 40% 52% 48%
  Cefepime 16 64 46% 24% 30% 46% 54%

Middle East, n = 163
  Ceftolozane/tazobactam 8  > 64 47% 7% 46% 47% 53%
  Ceftazidime/avibactam 4  > 64 57% – 43% 57% 43%
  Ceftazidime 32  > 64 33% 8% 59% 33% 67%
  Cefepime 16  > 64 42% 9% 49% 42% 58%

United States, n = 149
  Ceftolozane/tazobactam 1 16 85% 4% 11% 85% 15%
  Ceftazidime/avibactam 2 16 87% – 13% 87% 13%
  Ceftazidime 8  > 64 56% 7% 37% 56% 44%
  Cefepime 8 64 60% 20% 20% 60% 40%

South America, n = 106
  Ceftolozane/tazobactam 1  > 64 66% 2% 32% 66% 34%
  Ceftazidime/avibactam 4 32 75% – 25% 75% 25%
  Ceftazidime 8  > 64 51% 8% 41% 51% 49%
  Cefepime 8  > 64 50% 17% 33% 50% 50%

Africa, n = 65
  Ceftolozane/tazobactam  > 64  > 64 32% 0% 68% 32% 68%
  Ceftazidime/avibactam 32  > 64 34% – 66% 34% 66%
  Ceftazidime 32  > 64 22% 3% 75% 22% 78%
  Cefepime 32  > 64 14% 14% 72% 14% 86%
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This is consistent with the high prevalence of metallo-β-
lactamases observed in the present study and previous 
assessments from other countries in the region [27–29]. 
Assessments of novel agents or combinations with activity 
against both serine- and metallo-β-lactamase-producing P. 
aeruginosa are urgently needed in areas with such high prev-
alence of isolates harboring each or both enzyme classes.

Another underappreciated observation of the present 
study was that nearly 60% of carbapenem-resistant P. aer-
uginosa were isolated outside the ICU. While these findings 
are not ne [30], they have a tremendous impact on appro-
priate empiric therapy for the non-ICU patient population. 
These data further appeal for clinicians to consider early 
therapy that is active against carbapenem-resistant P. aer-
uginosa as part of empiric therapy guidelines outside of the 
intensive care units. The use of rapid molecular diagnostics 
will also help guide therapeutic decisions both within and 
outside the ICU.

The present study is not without limitations. Indeed, 
whole genome sequencing was not conducted for all car-
bapenemase positive isolates, so individual carbapenemase 
alleles were outside of the scope of the present study. How-
ever, we had a rigorous assessment for genotypic carbap-
enemases detection that included the commercially avail-
able CarbaR and the CarbaR NxG provides an expanding 
insight into the molecular detection of carbapenemases 
outside of only the “Big Five.” Additionally, this approach 
has translational benefit since healthcare providers in the 
clinical setting are increasingly making therapeutic deci-
sions based on commercially available genotypic assays. 
Similarly, mutations in chromosomal resistance mecha-
nisms have been described to dictate ceftolozane/tazobac-
tam and ceftazidime/avibactam susceptibility[11] however 
based on the molecular methods used were not assessed 
here.

In conclusion, the findings of the present study re-affirm 
the potency of ceftolozane/tazobactam and ceftazidime/
avibactam against a global collection of carbapenem-
resistant P. aeruginosa 5 years into marketing. Clinicians 
should consider the local prevalence and diversity of car-
bapenemases among P. aeruginosa to guide antimicro-
bial therapy as their presence may dramatically change 
the ceftolozane/tazobactam and ceftazidime/avibactam 
susceptibility profile. Rapid carbapenemase-detection 
may help direct empiric therapy to ceftolozane/tazobac-
tam, ceftazidime/avibactam, or alternative agents sooner 
in the clinical course prior to conventional susceptibility 
testing results. Additionally, the ERACE-PA Global Sur-
veillance Program provides a contemporary collection of 
carbapenem-resistant P. aeruginosa to study therapeutic 
optimization for this challenging pathogen.
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