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Agent-based models for detecting
the driving forces of biomolecular
interactions

Stefano Maestri*2, Emanuela Merelli'* & Marco Pettini?

Agent-based modelling and simulation have been effectively applied to the study of complex
biological systems, especially when composed of many interacting entities. Representing
biomolecules as autonomous agents allows this approach to bring out the global behaviour of
biochemical processes as resulting from local molecular interactions. In this paper, we leverage the
capabilities of the agent paradigm to construct an in silico replica of the glycolytic pathway; the aim is
to detect the role that long-range electrodynamic forces might have on the rate of glucose oxidation.
Experimental evidences have shown that random encounters and short-range potentials might not
be sufficient to explain the high efficiency of biochemical reactions in living cells. However, while

the latest in vitro studies are limited by present-day technology, agent-based simulations provide

an in silico support to the outcomes hitherto obtained and shed light on behaviours not yet well
understood. Our results grasp properties hard to uncover through other computational methods, such
as the effect of electromagnetic potentials on glycolytic oscillations.

Long-distance electrodynamic interactions between two small molecules have been largely studied within the
framework of quantum electrodynamics, since long-range forces can be detected among excited atoms with
similar transition frequencies"2. However, interactions beyond the Debye screening length (~ 10 A in biologi-
cal systems?), carried out by the molecular cognate partners of a biochemical reaction, are not well investigated.
Nonetheless, experimental evidences for the existence of collective excitations of biological macromolecules are
available in the Raman and Far-infrared spectroscopic domains**. Although long-distance electrostatic interac-
tions have been considered unlikely, electrodynamic interactions, occurring between oscillating electric dipoles,
might have a long-range nature; deterministic selective forces can thus be activated at a distance when the mol-
ecules undergo coherent collective oscillations®. The existence of forces of this kind might justify the efficiency of
biochemical reactions more than the sole effect of stochastic short-range interactions, which rely just on Brown-
ian diffusion and chemical affinity. Numerical studies proved that the overall interaction potential U(r) between
cognate partners (with r being the 1ntermolecular distance) is generally composed of a short-range term (1/r®)
and a resonant long-range term (1/r), meaning that, when the dipole moments of two molecules oscillate at
the same frequency, an attractive resonant potential U(r) ~ r— 3 should be added to the random Brownian force”.

These phenomena have been lately analysed, theoretically and experimentally, in the interactions among
lysozyme molecules and oppositely charged dyes®. However, detecting long-range molecular recruitments in
biosystems is still held back by the current technology; even these recent results, gained through Fluorescence
Correlation Spectroscopy, are limited to systems where long-range interactions are built-in (by setting up a solu-
tion in which electrostatic interactions are non-screened).

Computational approaches might be able to overcome some of these hurdles, allowing to test in silico the
existing theoretical models. Indeed, numerical simulations, such as those performed through Molecular Dynam-
ics, have been already successfully carried out®, taking into account an a priori knowledge of numerous physical
parameters characterising the molecular interactions under study. On the one hand, a model that considers the
largest amount of empirical information allows generating a faithful representation of the biological system
and provides a reliable in silico support for theoretical and experimental analyses; on the other hand, the lack of
empirical data may limit the complexity of the system simulated.

This article aims to address most of these issues by exploiting an alternative way to define a computational
model of molecular interactions in a metabolic pathway. Specifically, we construct an agent-based model (ABM)
of a well-studied process, the glycolysis of yeasts, to simulate the effect of the long-distance electrodynamic
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Figure 1. (a) Three-dimensional representation of the agents environment. Specifically, it is a one-attolitre
cubic portion of cell cytoplasm, populated by enzymes and metabolites, each modelled as an autonomous agent
and represented as a sphere. The figure is obtained from the 3D interface of the simulator we developed over our
glycolysis ABM. It shows the position of every molecule instant by instant. The software also makes it possible
to highlight the metabolites perceived by every enzyme at each time step of the simulation. (b) Graphical
representation of the agent’s perception, by which every modelled enzyme detects the cognate metabolites in its
surrounding environment. Each enzyme, depicted as a sphere of radius r, is able to perceive its neighbouring
metabolites at different distances d. Such a process is fundamental to reproduce in silico the effects of the long-
range forces on biochemical reactions, as will be discussed throughout this article.

interactions among the biomolecules involved in the pathway. Agent-based simulations make use of autonomous
systems (agents) able to interact with one another in a concurrent and asynchronous fashion; they can thus fairly
faithfully replicate in silico the behaviour of the entities interacting in a real biological system. ABMs require
instructing the agents representing the simulated molecules with minimal empirical information, letting the
global behaviour of the process result from local interactions, which are generated dynamically at each step of
the simulation. The system evolves due to the ability of every agent to perceive and respond to the states of its
environment, which is unpredictable and populated by other agents; the agent’s perception results in perform-
ing an appropriate action (if any) able to modify the environment’. The agent-based approach allows both the
environment and the molecules to be three-dimensional (as shown in Fig. 1a); molecular shapes can thus affect
the diffusion processes.

ABMs have been already successfully applied in the analysis of several biological systems and used to develop
tools for in silico supporting experimental studies'®™2. With the present work, we leverage the flexibility of the
agent-based modelling to construct in silico biochemical systems; this approach is intended to simulate the glyco-
Iytic process by taking into account different types of forces driving molecular interactions. We aim to abstract the
core features of biochemical systems characterised by purely random molecular encounters and compare them
to those where cognate partners interactions are mainly driven by deterministic long-range forces. ABMs allow
us to reproduce these phenomena in a network of mutually conditioning reactions without knowing a priori all
the parameters needed in a numerical simulation, which might be missing or difficult to assay experimentally.

By analysing the concentration changes of the molecular species during each step of the agent-based simula-
tion, we are able to hypothesise how long-distance interactions may quantitatively and qualitatively affect the
glycolysis process. This way, we can also hint at what might be the physical phenomena underlying the related
kinetic parameters if they would be assayed in vivo and highlight possible discrepancies with the values obtained
in vitro. These results would provide the basis for setting up further experimental studies.

Methods

From a kinetic to an agent-based model. The construction of an ABM able to represent the molecular
interactions of a metabolic pathway requires some information on the pathway itself and on the environment
where it takes place. In particular, we need to know the sequence of reactions to simulate, or a subset of those
relevant for our analysis, and some quantitative data, such as the initial concentrations of the species involved (as
it will be better explained later in this section). In this perspective, a kinetic model can serve as a source of such
data and as a reference against which to compare our results.

We cannot completely base our study on a kinetic model, since it uses experimental parameters, often assayed
in vitro, to directly describe the global properties of the system through a set of differential equations. Conversely,
we aim to understand if kinetic data actually underlie processes related to the ability of molecules to perceive
each other, even from a long distance. An ABM of molecular interactions allows not considering a priori some of

Scientific Reports |

(2022) 12:1878 | https://doi.org/10.1038/s41598-021-04205-8 nature portfolio



www.nature.com/scientificreports/

these parameters and thus provides a better baseline over which carrying out our in silico study. ABMs describe
molecular interactions at a local level, but they also possess compositionality, that is, the capability of recursively
applying the rules characterising agents interactions to define progressively higher abstraction levels. In this way,
we can hide the unnecessary details of a specific level and, at the same time, observe its global behaviour!>!*,
Considering the case of a metabolic pathway, a kinetic model treats enzymatic reactions as mathematical func-
tions that relate the concentrations of reactants to those of products, assuming that they incorporate the role
carried out by each molecular interaction. In our ABM, instead, each enzyme is represented by a dedicated
agent able to perceive the environment and its cognate partners; the interactions among the molecules are thus
explicit in the definition of the model. The compositionality of ABMs also makes it possible to conduct the study
at an abstraction level that can be represented with a small amount of empirical data, without losing accuracy
in reproducing macromolecular behaviours.

Nonetheless, not all the kinetic parameters can be overlooked: in order for a modelled saturated enzyme to
generate the products of the reaction, faithfully to its biological counterpart, it must wait for a time interval cor-
responding to the reciprocal of its k¢4 value (or turnover number). The k.4 represents the number of molecules
converted by an enzyme in the time unit; therefore, its reciprocal provides the interval after which the reaction
products are released in the environment, and the enzyme returns free.

Several kinetic models have already been constructed over metabolic pathways, mainly because the proper-
ties of metabolism at steady state simplify the model definition'>. However, by considering the enzymatic reac-
tions as just mathematical functions from reactants to products, they mostly focus on changes in metabolite
concentrations and do not provide the actual number of enzyme molecules in the simulated environment. In
contrast, for the reasons explained above, this information is fundamental for constructing our ABM. Based on
this requirement, we identified in the “Smallbone2013 - Iteration 18”'® a model particularly suitable to serve
as a source for the ABM, since it contains a complete set of experimental data on the isoenzymes involved in a
well-studied metabolic process, the glycolysis of Saccharomyces cerevisiae. The Smallbone2013 model provides
a detailed description of the chain of reactions that generates energy from glucose by breaking it into two mol-
ecules of pyruvate. In addition to the main branch of glycolysis, it includes the glycerol, glycogen and trehalose
branches and also considers the alcoholic fermentation steps, which lead to the formation of ethanol (see Fig. 2).
It, therefore, defines a system of interacting molecules sufficiently complex to allow bringing out, through an
ABM, the global effect of the long-range forces on the dynamics of the pathway.

Designing the model of glycolysis. The ABM is the basis for a simulator whose input is in the form of
an SBML (Systems Biology Markup Language) file filled with experimental data'’. It contains information about
the molecules involved in the metabolic pathway and their initial concentrations; data related to the reactions
carried out are also taken from this source. The Smallbone2013 model is represented in SBML format.

A dedicated module of the simulator converts the SBML model to an XML (Extensible Markup Language)
file specifically formatted to be interpreted by the simulator itself but also to be human-readable'®. Therefore, its
main function is to translate the kinetic representation of the metabolic reactions into our agent-based model.
To do this, for every reaction in the SBML model, it gets the reactants and products, and generates XML code
for each of its interactions. It also associates, to each modelled molecule and reaction, the physical and kinetic
parameters needed to set up the simulation; for the study proposed in this paper, they are limited to the molecu-
lar weights (automatically retrieved from online databases, such as UniProt!” and ChEBI?’) and the turnover
numbers. Our agent-based simulator can also deal with a higher level of detail, obtained by forcing an enzyme
to form a complex with an encountered cognate metabolite on the basis of a priority list constructed over the
kcat /| Kim ratio (specificity constant); this possibility can be established during the initial setup of the simula-
tion and requires the user to provide the Kj,, values of each enzyme-substrate interaction (see Sect. 2.2 of the
Supplementary Information). Despite that, with the current study, we want to leverage the capability of agent-
based simulations to reproduce the collective properties of a biological system drawing from a small amount
of empirical data; we thus simulate the molecular interactions as completely random, without predetermining
any priority on the metabolites perceived by an enzyme. A generalisation of the XML input and its construction
via the dedicated module of the simulator are described in the Supplementary Information; this document also
contains the actual XML listing generated for running the simulations.

By importing the reactions of the SMBL file as the input of our agent-based simulations, we excluded all those
for which the Smallbone2013 model does not provide the enzymatic concentrations. Our simulator can actually
handle this kind of reactions, since we can model them in terms of their bulk effects; however, for the aim of
observing the global behaviour of glycolysis as resulting from the local molecular interactions, introducing any
bulk reaction would perturb the environment and hide the absence of actual interactions among the molecules,
making the ABM close to a standard kinetic model. Based on this idea, we do not consider the adenylate kinase,
ATPase, and UDP to UTP reactions and glucose transport (between the extracellular environment and the cyto-
sol). The most significant of these reactions is the adenylate kinase, since it controls the ratio of ATP, ADP and
AMP (also called energy charge), which in turn affects the allosteric regulation of important enzymes, such as
phosphofructokinase and hexokinase?\. However, the length of the simulated process (1 second, as
better discussed in the “Results” section) makes the allosteric regulation and the whole energy charge effects
negligible’>?. Suppressing glucose transport and enzyme regulation also prevents, de facto, the achievement
of a steady state, helping us to emphasise the effects of the various types of interactions on the concentration
changes in the simulation interval.

The initial concentrations of the molecular species are gained from the SBML file as millimoles per litre
(mmol/1). The simulator’s module mentioned above converts these values into the initial particle numbers, needed
to instantiate the agents at the beginning of the simulation. In this regard, we point out that, although agent-based
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Figure 2. Schematic representation of the glycolysis steps and branches taken into account in our ABMs.

They are extracted and adapted, through a dedicated module of Orion, from the SBML of the Smallbone2013
kinetic model'®. The reactions in red are those excluded during the conversion; see the “Methods” section of
this manuscript and Sect. 2 of the Supplementary Information for details on the conversion process from the
SBML source to our ABM. For each metabolite involved, we report both the name and the acronym (in bold),
while, for every reaction, we indicate the abbreviation of each isoenzyme carrying it out (in italics). On the right
side of the image, we highlight the two main phases of the process; since the ethanol fermentation has not been
simulated, we prefer not to show this phase to preserve the readability of the figure.

simulations have a fairly light computational load, reproducing a metabolic pathway involves thousands of
molecules, and therefore as many agents running concurrently. The resulting resources demand conditioned
the molecular concentrations we were able to simulate. More precisely, we scaled the concentrations provided
by the Smallbone2013 model to values less than 1 mmol/l. Indeed, the Smallbone2013 model provides a wide
range of species concentrations (e.g., from the 6.28 mmol/l of glucose to the 0.0007 mmol/l of 1, 3-bis-
phosphoglycerate); scaling them just proportionally to the simulated volume (1 attoliter, as clarified later

Scientific Reports |

(2022) 12:1878 | https://doi.org/10.1038/s41598-021-04205-8 nature portfolio



www.nature.com/scientificreports/

in this section) would have caused the species with lower concentrations to disappear from the system. Adapting
the concentrations provided by the Smallbone2013 model to values less than 1 mmol/l is a first approximation
to meet the limits in the computational power. Future development of the simulator will implement distributed
computing to deal with concentrations more faithful to experimental data. In Supplementary Table S1, we report
the initial concentrations of all the simulated species.

Our agent-based model is intended to study the glycolytic pathway from the general perspective of the oxida-
tion of one molecule of glucose to two molecules of pyruvate; for this reason, we consider the pyruvate
as the end product of the process and excluded the fermentation-related reactions, catalysed by the pyruvate
decarboxylase isoenzymes (PDC1, PDC5, PDC6) and by the two alcohol dehydrogenase
isoenzymes (ADH1 and ADHS5). Therefore, the branches acting on pyruvate, that is, the succinate
and acetate branches of glycolysis, are not taken into account in our model.

To complete the list of changes we made to the original kinetic model, we report that, according to most
of the literature, we modelled the reactions catalysed by hexokinase (and glucokinase), phospho-
fructokinase, and pyruvate kinase asirreversible?*%, since they function as control points of the
whole glycolysis process, despite the Smallbone2013 model considers irreversible only the reaction performed
by phosphofructokinase.

The subset of reactions characterising the model at the basis of our simulations, as resulting from the above-
described adaptations, can be found in Fig. 2 of this manuscript and in Supplementary Table S2.

Orion: agent-based simulator for metabolic pathways. The study proposed in this manuscript has
been carried out with the aid of Orion, a spatial simulator for metabolic pathways. It has been developed in Java
starting from a prototype project”’**. In what follows, we introduce the basic principles over which the simulator
has been designed; this information can help the reader to better understand the results of our work. Further
details on modelling and implementation choices are provided in Sect. 2 of the Supplementary Information.

Orion is a agent-based simulator, this means that the molecules involved in the pathway are represented by
agents, autonomous systems able to perceive changes in their environment and react to them. Formally, a reactive
agent is defined by a 6-tuple (E, Per, Ac, see, action, do) where:

E is the set of all states for the environment
Per is a partition of E

Ac is a set of actions

see: E — Per

action: Per — Ac

do:Ac x E— E

Per represents the perception of the environment from the agent’s point of view. An agent observes the environ-
ment (see), selects the appropriate action (action), and acts (do) on the environment itself®.

The simulations are performed in the three-dimensional space, representing a portion of the cytoplasm, that
is, the environment perceived by the agents. Each molecule is modelled as a sphere, whose radius is estimated
from its molecular weight and the average value of the molar specific volume of a protein in solution®-*!. These
modelling choices produce a fairly realistic molecular crowding in the simulated portion of the cytoplasm.
Moreover, by making every molecule spherical, we can correlate its shape to its diffusion coefficient through the
Stokes-Einstein equation for the Brownian motion of a spherical particle:

kgT

D =
6mnr (1)

where kg is the Boltzmann constant, T the temperature, 1 the viscosity of the environment, and r the radius of
the molecule. For our simulations, we set T = 298.15 kelvin and = 0.0011 pascal-second.

Each molecule can freely move, inside the simulation volume, according to a vector applied to the centre of
its sphere: its direction is generated randomly, based on polar coordinates, while its module is calculated from
the ambient diffusion coefficient D, obtained via Equation 1, as the average value of the square of the molecule
displacement x in a time #:

<x?>=2Dt (2)

A dedicated agent monitors the position of all the molecules to ensure that every movement ends in an empty
space of the environment, avoiding collisions and overlaps.

The simulator enables to set the space unit and the time scale as per requirement; in this study, we consider
the angstrom (A, equivalent to 10~!9 m) for space and 10~* seconds for time (corresponding to one tick of the
simulation clock). A cube of 1 attolitre (10718 L, having a side of 1000 A) represents the best option for the aim
of our analysis and meets the computational demand of the simulations (Fig. 1a shows the 3D space visualised
through the interface of the simulator).

The model at the basis of the simulator classifies molecules into three types: enzymes, complexes, and metabo-
lites; the latter can only move inside the simulation volume, while the first two classes of molecules can also act
on the environment.

Although molecular movements are modelled on the basis of Brownian diffusion, this study pushes forward
the capabilities of the agent paradigm by not limiting molecular interactions to just those allowed by random
encounters. Indeed, enzymatic reactions are simulated by exploiting the ability of agents to perceive and interact
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with one another: each enzyme identifies the cognate metabolites in its proximity thanks to a perception-sphere
that it projects on the environment. Such an approach is the simulator key feature that allows studying the effects
of long-distance interactions among biomolecules; for this reason, it will be detailed in the “Results” section.

Every molecular interaction may lead to the formation of a complex, which is modelled in the ABM as a
new agent. If such a complex represents a saturated enzyme, it waits an amount of time corresponding to the
reciprocal of its k., value and then releases the final product (or products) of the reaction; otherwise, it moves
and acts on the environment to bind the metabolite needed to reach saturation. This modelling approach is based
on the construction of a reaction automaton, introduced in a previous work® and formalised in Sect. 2.1 of the
Supplementary Information.

Results
Modelling short- and long-range forces among biomolecules.  To simulate the effects of the molec-
ular interactions operating at different distances, we endowed agents with specifically designed perception capa-
bilities. Their core property lies in the definition of a perception sphere that surrounds each active molecule
(enzymes and complexes, as explained in the “Methods” section). By setting the perception radius, that is, the
radius of the perception sphere, we can model various lengths at which enzymes and complexes are able to inter-
act with their cognate partners. Therefore, the capability of agents to perceive and interact with one another allows
us to abstract the effects of the electrostatic and electrodynamic potentials among the molecules of the simulated
environment; this can be achieved without taking into account all the physical parameters usually required in
molecular dynamics simulations (such as the potential values or the forces generated by molecular collisions)®.

Each perception radius is obtained by summing the radius of the enzyme to the perception distance at which
we want the enzyme to be able to find a cognate metabolite; the perception distance extends beyond the surface
of the sphere representing the enzyme. As the distance of the metabolite from the enzyme increases, the intensity
of the forces acting on it diminishes; for this reason, each perception sphere is characterised by different interac-
tion probabilities, depending on its size (more details on the perception spheres implementation are provided
in Sect. 2.4 of the Supplementary Information).

We simulated three different systems, in which the interactions characterising the glycolytic process are
driven by the specific kinds of forces whose effects on the pathway we aim to compare. Going into details, the
agent-based modelling approach makes us able to define:

® A system in which molecular encounters are driven only by Brownian motion and dynamic complemen-
tarities (e.g., lock-and-key or induced-fit phenomena). We modelled this system allowing enzymes and
complexes to identify a cognate metabolite within a perception distance of 5 A; this sets the space on which
electrostatic forces, such as those resulting from van der Waals-like potentials, operate.

o A system where a 10 A perception distance models the effects of electromagnetic potentials limited by the
Debye screening?; it restricts the interactions to just those allowed by stochastic short-range forces.

e A system characterised by perception distances of 300 A, chosen as the average length to simulate the exist-
ence of long-range electrodynamic forces among biomolecules (considering that the size of the simulation
volume of our study is 1000 cubic angstroms). As mentioned in the Introduction, these are deterministic
attractive forces activated by a long-range potential between two dipolar molecules A and B, if they vibrate
at frequencies wy = wp (that is, if they are at resonance). In real cells, this phenomenon might be observed
because a macromolecule oscillating at a high frequency (in the range of 10'° — 10! Hz) does not suffer
the Debye screening effect by the ions of the medium®”.

In Fig. 1b, we provide a graphical representation of how the perception radii project on the environment. Each of
them is given as the sum of the enzyme radius (r) and the perception distance (d) at which the molecule is able
to detect its cognate metabolites. The perception radius of the r1+d1 type schematises the constraint that limits
the enzyme interactions to those allowed by short-range forces (both 5 and 10 A perception distances), while a
r2+d2 type radius models the effects of the long-distance electrodynamic interactions. We point out that the
figure arranges side by side two different types of radii just for comparative purposes; in the ABMs defined for
glycolysis, only one type of radius is allowed per modelled system.

Imposing fixed perception distances for each simulated system may be considered a limitation, since a mol-
ecule involved in multiple interactions can be affected by different kinds of electrodynamic forces. However, to
define the glycolysis ABM, we need to balance the accounted systems’ details with the availability and reliability
of experimental data; nonetheless, we have to consider the computational cost of the simulations. Modelling
different radii for each agent (in the same simulation) would imply taking into account, a priori, a high number
of physical parameters that are currently unknown (i.e., the relative strengths of different interactions). We
experienced a similar problem with Molecular Dynamics simulations; the aim of our agent-based approach is,
indeed, to assess the possible presence of long-range molecular interactions in a metabolic pathway by relying
on few empirically known parameters.

Outcome of the simulations. By setting the local rules that determine movements and interactions of the
molecules involved in our model of yeast glycolysis (as detailed in the “Methods” section), the global behaviour
of the pathway can be observed, during the simulation, in the form of molecular concentration changes (mmol/l)
over time (s).

To balance the computational demand of dealing with thousands of molecules and the need of producing
worthwhile outputs, we run each type of simulation for an interval of 1 second (about ten days of actual running

Scientific Reports |

(2022) 12:1878 | https://doi.org/10.1038/s41598-021-04205-8 nature portfolio



www.nature.com/scientificreports/

Agent-based Simulation - Perception distance: 300 A Agent-based Simulation - Perception distance: 10 A
1 1
0.9 0.9
0.8 0.8
0.7 0.7
=0.6 =0.6
gos gos
€0.4 €0.4
0.3 0.3
0.2 0.2
0.1 0.1
0 e A N e, Ao i 0!

0 01 02 03 04 05 06 07 08 09 1 0O 01 02 03 04 05 06 07 08 09 1
S S

(a (b)

Agent-based Simulation - Perception distance: 5 A COPASI deterministic time course simulation

1

0.9
0.8
0.7
=0.6
gos
€04
0.3
0.2
0.1

0

k =0.6
5]

1
0.9
0.8
0.7

£0.5

€0.4
0.3
0.2

0.1

0

0
0.1 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 0.7 08 09 1

S S

(c) (d)

—ATP—F16bP—GLC—GLY—NADH—PYR—TRH|

Figure 3. Concentration changes over time, in simulations of 1 second, of a selection of metabolites particularly
relevant for our study (for the complete set of plots, representing all the metabolites simulated, see Sect. 3.1 of
the Supplementary Information). Through this figure, we provide a comparison of the plots generated by three
agent-based simulations—with perception distances set to 300 A (a),10 A (b) and 5 A (c), respectively—and by

a deterministic time course simulation based on the Smallbone2013 kinetic model (d). The selected metabolite
species are: glucose (GLC), the source of the glycolytic pathway; pyruvate (PYR), NADH, and ATP, that is,
the end products of glycolysis; t rehalose (TRH) and glycerol (GLY), respectively, the products of the two
main glycolysis branches; fructose 1, 6-bisphosphate (F16bP), the product of the most important
control-point reaction of the glycolytic pathway, namely the one catalysed by the phosphofructokinase.
In plot (a), it is possible to notice how the simulation that takes into account long-range electrodynamic forces
(300 A perception distance) also shows a higher reactivity and an evident increase in the amounts of the
pathway end products. In comparison, the simulation that limits the electromagnetic forces to those affected

by the Debye screening (10 A perception distance), shown in (b), is not able to consume all the glucose

in the environment and generates significantly smaller amounts of pyruvate and thralose. Simulating

a system driven by van der Waals-like potentials (5 A perception distance), whose plot is represented in (c),
causes negligible changes in metabolite concentrations and the glucose consumption reaches a plateau; the
agent-based approach allows us to attribute this behaviour to the inability of the reactions that use ATP or NADH
as energy donor to bound these types of metabolites (see the “Results” section for further details). The plot (d)

is generated through the deterministic time-course simulation of the Smallbone2013 model using the software
Copasi®.

time); it turned out to be sufficiently long for us to observe and compare the specific features of each of the three
modelled systems.

In Fig. 3, we report some of the concentration changes characterising each type of system. For generating
these plots, we selected the metabolites whose amount variations during the simulation have been accounted as
the most meaningful for our analysis (a complete set of plots, covering all the metabolite species considered in
our models, is provided in Sect. 3 of the Supplementary Information).

'The simulation performed by setting perception distances of 300 A, which represents a system where we
hypothesise the existence of selective long-range molecular recruitments, has the highest reactivity and efficiency
(Fig. 3a); already after 0.9 s, all the glucose in the environment is consumed and the pyruvate (one of the
main products of the pathway) increases from an initial concentration of 0.2 mmol/l to about 1 mmol/l.

In the system where we limited the electromagnetic forces to those below the Debye screening (perception
distances of 10 A—Fig. 3b), we do not observe utterly different concentration changes in comparison to the
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previous one; however, they clearly show a lower efficiency in the production of pyruvate from glucose, which
a system of that type is unable to completely deplete in the chosen simulation interval.

These two types of simulations can also be compared in terms of variations of the other main products of
glycolysis and related branches. Indeed, they both report a clear, yet similar, increase of the glycerol amount.
Conversely, if we take into account the effects of long-distance interactions, the trehalose branch shows a
change of its end product from 0.015 to 0.76 mmol/l, a concentration 56% higher compared to the 0.48 mmol/I
resulting from a system limited by a 10 A perception distance. Regarding ATP and NADH, their concentrations
reach almost immediately a value close to zero and then oscillate around it during the entire simulation. This
behaviour is observable due to the short interval of glycolysis we are analysing: at this stage of the process, the
reactions that use ATP as an energy donor, as well as the redox conversion of dihydroxyacetone phos-
phatetoglycerol 3-phosphate, which is coupled with the oxidation of NADH, still have an abundance
of substrate to consume; as a consequence, the related enzymes continuously bind the ATP and NADH in the
environment to perform their catalytic activity.

We obtained remarkably opposed results in the case of simulations based on perception distances of 5 A, which
model a system affected only by short-range van der Waals-like potentials (Fig. 3c). Despite the certainty that a
metabolite will be bound by its cognate enzyme when it enters a such a small perception sphere (as detailed in
Sect. 2.4 of the Supplementary Information), at the end of the simulation, we can observe negligible increases
in the concentration of the pathway end products as well as in the consumption of glucose. In particular, the
curve representing the latter reaches a plateau after a small depletion in its concentration, a behaviour we would
observe at steady state; however, mostly because we did not implement enzyme regulation and glucose transport,
such a condition is unlikely in our simulated systems. We can also observe similar concentration changes for
glycerol (in this case, it increases before reaching a plateau). In both the situations, these anomalous behav-
iours are explainable if we observe the curves of ATP and NADH: the amount of ATP never decreases, because,
during the preparation phase of glycolysis, neither the hexokinases nor the phosphofructokinases are
able to bind this molecule and complete the catalysis of their respective reactions. Indeed, glucose molecules
are bound at the beginning of the simulation, but then the environment maintains the same concentration of
hexokinase-glucose and glucokinase-glucose complexes for the entire simulated interval (plots
reporting the concentrations changes of complexes are provided in Sect. 3.2 of the Supplementary Information).
This phenomenon also justifies why fructose 1, 6-bisphosphate (product of the phosphofruc-
tokinase) can only decrease, consumed by fructose-bisphosphate aldolase.NADH, instead,
remains stable at its initial concentration of 0.086 mmol/l, because the glycerol-3-phosphate dehy-
drogenase is not able to bind it; when all the glycerol 3-phosphate in the environment has already
been converted in glycerol, the latter can no longer be produced (causing the observed plateau of its curve).

We compared the results described so far with the output obtained through a numerical time-course simu-
lation; this has been performed via the Copasi software®® over the Smallbone2013 model's. We modified the
original SBML with the same changes applied to our ABM, relating to accounted reactions and initial molar
concentrations (see the “Methods” section). However, we left unchanged the functions associated with enzymes
regulation, because a system of differential equations resulted in being less flexible than an ABM and removing
this feature would have compromised its consistency, making the numerical simulation impossible. As shown in
Fig. 3d, the kinetic model thus generates results closer to a steady-state condition, a property that, at first glance,
may mislead the observer to find analogies with the simulations accounting 5 A perception distances. However,
excluding the fluctuations of metabolites concentrations, which are better captured by the ABM and more evident
in the related plots, most of the shown concentration changes are loosely similar to those identified when we
simulated 10 A and 300 A perception distances. This can be verified at least for the consumption of glucose
and ATP, and for the increase of pyruvate and fructose 1, 6-bisphosphate;nonetheless, they show
significantly smaller variations from their initial molar concentrations. Although we consider identifying such
properties in some of the most relevant species of the pathway noteworthy, we also point out that the last observa-
tions do not apply to all the simulated metabolites (as explained in Sect. 3.1 of the Supplementary Information).

Discussion
The outcomes of the agent-based simulations detailed above suggest that the two systems reproducing an off-
resonance situation, where molecular interactions rely only on van der Waals-like potentials or, at least, on
electromagnetic forces shorter than the Debye length, are not able to oxidise glucose at a high rate. This property
is particularly true when we limit the perception distance to 5 A, resulting in negligible changes in metabolite
concentrations. By analysing the complexes formed by specific enzymes, such as hexokinases and phos-
phofructokinases, we attributed this behaviour to the inability of the electrostatic forces to guarantee the
interaction of these enzymes with the needed energy donors. In this regard, the agent-based approach shows
one of its major capabilities: it reproduces the dynamics of local interactions among the molecules (modelled as
autonomous agents) and “captures” the formation of complexes, even when they are partly-saturated enzymes.
Such a possibility allowed us to observe, in the system limited by short-range electrostatic interactions, a
condition that might be detrimental for the cell anaerobic metabolism, which commits the production of energy
(in the form of ATP) only to a fast-paced glycolytic process. At the current stage of our work, this consideration
represents just a hypothesis: in real cells, glycolysis’ processes take place in times ranging from few seconds to
hours?*?*3*3>, making our one-second interval of simulation just a testbed to validate the capability of ABMs to
support the study of the above-described forces in biological systems. However, if confirmed by further analy-
ses, this result might suggest the non-feasibility of the lock-and-key model for enzymes in metabolic processes.
Interestingly, even though enzymes regulation has not been modelled, the systems driven by electromag-
netic forces (including those below the Debye screening length) produce oscillatory-like fluctuations in the
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Figure 4. Synchronised oscillation-like fluctuations observed in fructose 1, 6-bisphosphate
(F16bP),dihydroxyacetone phosphate (DHAP)and glyceraldehyde 3-phosphate (GAP).
The first metabolite is the product of the phosphorylation of fructose-6-phosphate, catalysed by
phosphofructokinase, while the other two are generated by the subsequent reaction in the glycolytic
pathway, carried out by fructose-bisphosphate aldolase.DHAP and GAP are also interconverted
by the triosephosphate isomerase.In (a,b), that is, the plots of the simulations that take into account
the electromagnetic forces (limited or not by the Debye screening), we can observe an oscillatory trend with

a frequency of about 2.8 s7!, synchronised in all the three curves. Conversely, in the simulation that considers
just short-range electrostatic interactions, shown in plot (c), these oscillations are almost unnoticeable. The
higher frequency measured experimentally in yeasts glycolysis® is of 30 s~; therefore, at the time scale of our
simulations, these can be considered more as micro-oscillations, which give us a clue of the higher faithfulness
to the real glycolytic process of the models whose interactions are not limited to just random encounters and
chemical affinities.

concentrations of fructose 1, 6-bisphosphtate, the main product of phosphofructokinase.
Moreover, as shown in Fig. 4, these fluctuations are synchronised with the concentration changes of DHAP
and GAP, the products of the subsequent reaction in the glycolytic pathway, especially due to its reversibility.
Conversely, such behaviour is almost unnoticeable in the output of the simulation that allows only short-range
van der Waals-like potentials (5 A perception distance). Phosphofructokinase has a central role in the
regulation of glycolysis and, pivoting around this enzyme, an oscillatory behaviour has been experimentally
observed during the oxidation of glucose (even if at much lower frequencies)*>*. Considering the high level
of abstraction of the current glycolysis ABM, this result might be considered another clue that, by not limiting
molecular interactions to just shape complementarities and chemical affinities, we generated processes more
faithful to those occurring in cellular glycolysis.

We could not reach such a conclusion if we based our analysis on a standard kinetic model, which derives the
changes over time of the concentrations (often of metabolites alone) through rate and balance equations. As it
lacks the capability to represent the granularity of a molecular system, this approach hardly grasps the fluctua-
tions in the species amounts, generating several discrepancies with the results we gained through our agent-
based simulations. Although differential equations best suit modelling the continuum or macroscale level'?, such
divergences might also be attributed to the possible inaccuracy through which kinetic parameters are essayed in
vitro. Indeed, already in the early 2000s, Teusink et al. questioned that in vitro kinetics could be able to faithfully
describe an in vivo behaviour™.

Furthermore, the standard kinetic modelling is based on the Michaelis-Menten formalism, which assumes
diffusion-limited enzymatic reactions and a homogeneous environment, not considering the effects of molecular
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crowding on diffusion processes®. Other modelling approaches in Systems Biology (such as those based on
Brownian dynamics or spatial partial differential equations) also struggled to deal with this problem due to the
complexity of representing molecules 3D shape and diffusion at different scales®.

Molecular Dynamics simulations, which may not be affected by the limitations mentioned above, require a
high number of physical parameters to be performed. Numerical simulations of this kind have been carried out
to detect long-range interactions among biomolecules through the molecular diffusion behaviour®. In this case,
simulating just one type of protein (the white egg Lysozyme) and one oppositely charged dye (the Alexa Fluor
488) required an a priori knowledge of several data (as mentioned in the “Results” section); applying the same
approach to a complex pathway of many reactions would be significantly more difficult than performing in silico
studies through agent-based simulations.

We think that the results provided in this article support the reliability of ABMs in capturing the essential
features of a complex biological process and faithfully reproducing different aspects of its behaviour, even on
the basis of few empirical data. This approach identifies in the long-range electrodynamic forces some of the
fundamental “ingredients” necessary for glycolysis to operate in an efficient way.

With this manuscript, however, we just laid the groundwork for further in silico and experimental studies
that would explore those aspects of metabolism dynamics overlooked at the current stage of our analysis. An
optimised implementation of Orion would allow longer simulations that, complemented by experimental valida-
tion of the present results, might highlight if some of our outcomes could be biased by the abstraction level of
the agent-based models. As a first step in this direction, we recently carried out a study where we experimentally
demonstrate the activation of resonant electrodynamic intermolecular forces for bio-macromolecules with a
long-range action; this result has been achieved by characterising clustering transitions induced by fluorescence
correlation spectroscopy*.

Once the robustness of our agent-based approach is reinforced, we might pave the way for a better com-
prehension of those phenomena associated with cellular metabolism that are still not well understood. As an
example, it can be applied in the study of the Warburg effect, which describes the preference of cancer cells for
the anaerobic (and energetically inefficient) consumption of glucose through glycolysis, even in presence of a
high oxygen concentration*!. Recent studies have linked such a process to the effect of glycolytic oscillations*?
and to the rate of glycolysis, increased to provide a selective advantage over metabolic competition in the tumour
environment®. In this paper, we have shown how long-range electrodynamic forces may affect the rate and effi-
ciency of glucose oxidation, as well as the oscillations in glycolysis intermediates; therefore, additional studies
might enlighten us on their potential involvement in such an anomalous behaviour of tumour cells.

Similar results might also be reached by empowering the capabilities of the agent-based approach with meth-
ods from other disciplines. Among them, the topological data analysis, already used to better understand enzy-
matic reactions through ABMs*, may provide the current model with a many-body perspective. Shape calculus
and hierarchical structures can be applied to represent molecular conformations and increase the accuracy of
the interactions between cognate partners; these approaches would allow modelling the geometry of molecules
shapes and collisions with a higher precision*#**. Moreover, we may better capture the collective synchronisation
properties of a population of molecules behaving as coupled oscillators by using BOSL, the biological oscillators
synchronisation logic*. Putting efforts in these directions might provide a new standpoint in our comprehension
of molecular interactions and disclose aspects of biological systems that are still unexplored.

Data availability

All data generated or analysed during this study are included in this published article (and its Supplementary
Information files). The SBML of the Smallbone2013 - Iteration 18 model is accessible at http://identifiers.org/
biomodels.db/MODEL1303260018; the modified version of this SBML, generated for running the time-course
simulations with Copasi, is available at https://bit.ly/orion-simulator.

Code availability

The simulations described in this manuscript have been performed with the agent-based simulator Orion 2.0.0.
The simulator has been developed at the University of Camerino as a non-open and commercially-oriented
software. For this reason, the source code is not openly released. To guarantee the methods reproducibility, a
demo version of the simulator is accessible at https://bit.ly/orion-simulator.
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