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A morphological investigation of 
sexual and lateral dimorphism 
in the developing metanephric 
kidney
Kieran M. Short1 & Ian M. Smyth1,2

Sexual dimorphism is a prominent feature of renal physiology and as a consequence, it differentially 
affects predisposition to many adult kidney diseases. Furthermore the left and right kidneys differ 
in terms of their position, size and involvement in congenital malformations of the urogenital 
tract. We set out to determine whether differences in the program of branching morphogenesis 
that establishes the basic architecture of the kidney were apparent with respect to either sex or 
laterality in mouse embryonic kidneys. This was achieved using a combination of optical projection 
tomography imaging and computational analysis of many spatial metrics describing the branched 
ureteric tree. We undertook a comprehensive assessment of twelve aspects of ureteric morphology 
across developmental time and we found no consistent differences between kidneys of different 
sexes or laterality. These results suggest that dimorphism is established after birth or at a 
physiological or cellular level that is not reflected in the morphology of the ureteric tree.

The metanephric kidney of mammals plays a critical role in regulating the excretion of solutes from the 
blood stream and in the control of complex physiological features such as blood pressure. Increasing 
evidence suggests that there are considerable gender differences which affect both normal renal function 
and the capacity of the kidney to respond to damage or disease. Numerous instances of such effects 
are evident both in human populations (such as acute kidney injury1,2) and in commonly used mouse 
models of disease (such as those caused by drugs or ischemia3–7). Broader measures of renal function 
such as age related decline in glomerular filtration rate8, general predisposition to the development of 
end stage renal disease9 and responses of the renin-angiotensin system10 are all influenced by gender. 
Although there is evidence in some cases that these effects are driven by differences in adult physiology 
(and the production of sex hormones in particular) it has not yet been established whether these exist 
as a consequence of differences in renal development.

Asymmetry in the body plan impacts kidney position, with the right kidney more intimately sharing 
the abdominal cavity with the liver. This is commonly credited as the reason for its more inferior and 
lateral position. Perhaps as a consequence, the right kidney is slightly smaller than the left11. The vascu-
larisation of the kidney is also known to vary based on laterality12. While a recent survey of the superfi-
cial morphology of the developing human foetal kidney documented the gradual ascension of the organ 
as development progresses, it found no evidence for sex or laterality effects on renal dimensions, weight 
(absolute or relative to body weight) or volume13. However, evidence for altered lateral development has 
been postulated, based on the observation that congenital abnormalities of the urogenital tract (CAKUT) 
are more frequently described on the left rather than the right side14. This laterality bias might also be 
reflected in the observation that left kidney size is reduced in children of low birth weight15 and that 
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unilateral multicystic dysplastic kidney is significantly more common in the left versus the right organ16. 
Despite these pronounced differences, their anatomical or physiological bases are currently unclear.

The ureteric bud (UB) sprouts from the nephric duct and invades the metanephric mesenchyme, 
initiating metanephric kidney development. Through a process of reciprocal interactions between these 
cell populations, the UB undergoes a program of branching morphogenesis to form an extensive bifur-
cated tree which will ultimately differentiate to form the collecting duct system of the adult organ. The 
cellular interactions between the tips of the branching UB and the cap mesenchyme cells surrounding 
them are important for instructing a proportion of the latter population to undergo mesenchyme to 
epithelial transition to form the renal vesicles which then remodel and differentiate to eventually form 
the functional units of the kidney, the nephrons. The association between UB branching and nephron 
specification is therefore tightly linked. In the mouse, branching morphogenesis occurs most rapidly 
during the period between the first branch event (at embryonic day (E) 11.5) and E16.5, at which point 
more than 1300 UB tip niches have been formed, as a result of approximately 13 branching events17. This 
rapid expansion in size and complexity is likely to be instrumental in establishing the normal architecture 
of the adult organ. The extent to which this critical early period of renal development contributes to (or 
is responsible for) adult sex or lateral dimorphism has yet to be determined.

Results and Discussion
Until recently analysing the contribution of branching morphogenesis to organ formation has been ham-
pered by a lack of methods to image and quantify the branching process. However, we have recently 
developed tools18,19 which allow us to comprehensively address whether sexual or lateral dimorphism 
apparent in the kidney is shaped by differences in the process of ureteric branching morphogenesis. 
Using the C57BL/6J mouse as our model we have analysed the structure of the branched ureteric tree 
at embryonic days 12.5 (Theiler stage20 20, limb stage21 8), 14.5 (Theiler stage 22, limb stage 11), 16.5 
(Theiler stage 24, limb stage 13) and 19.5 (Theiler stage 26/27, limb stage 14). This time line encompasses 
most if not all of the branching events that establish kidney structure. Left/right and male/female fetal 
organs were collected, stained with antibodies to the ureteric epithelium (E12.5 to E16.5) or cap mes-
enchyme (E19.5, as a measure of tip number17), imaged by optical projection tomography and analysed 
using either Tree Surveyor or Imaris software using our established protocols19. 

We first assessed the branched UB structures by examining metrics describing the UB tips – the site 
of nephrogenesis and interaction with the cap mesenchyme. Comparisons of gross numbers of tips and 
branch generations showed that there was no difference in either measure relative to the sex or body side 
of the embryo across development (Fig. 1A,B; Table 1). It is possible that the number of tips is packed 
into a smaller area, but we also found that kidney volume and surface area were invariant (Fig. 1C,D). 
The UB tip volumes are also indistinguishable by sex or laterality across development (Fig. 1E). While tip 
number might be equal, it may still mask a demonstrable difference in the higher order organ structure 
– for example branching might be more advanced in some parts of the organ in one area relative to the 
other. To examine this possibility we compared the cumulative profile of the hierarchical branch pattern 
of every tip in the organ between sexes and body axes from E12.5 to E16.5. We found that the higher 
order structure of all kidneys was comparable (indicated by a gradual change in colour from green to 
red across all clades of the kidney) (Fig. 1F), and reinforces the notion of kidney branching stereotypy17. 
While no overt structural changes were identified, morphological alterations may be reflected in alter-
native spatial positioning of different tips or branch points in 3D space. To examine this possibility we 
measured and compared the branch angle and dihedral angles for every bifurcation in the organ. The 
latter measure quantifies the rotation between successive branch generations. In both cases we assessed 
local measures which are relative to the initial growth direction of branches from the site of a bifurcation 
point, and global measures which assess angles from a bifurcation point relative to the bifurcation points 
(or tips) of its children. These metrics were examined for all branch generations relative to sex and lat-
erality and no statistically significant differences were noted (Supplemental Figure 1A–E).

Descriptions of tip/branch number, hierarchy, and location in 3D space might fail to capture more 
subtle alterations in the structure of the branched UB. To this end we examined the length, volume, aver-
age diameter and curvature of the individual segments of the branched tree. In the case of dimensions, 
we saw no significant differences between embryonic gender or laterality (Fig. 2A–C). Interestingly, while 
there was no difference when comparing by laterality, there was a quantifiable difference in the curvature 
of branches between sexes at age E14.5 (Fig. 2D,E), with female branches exhibiting a uniform increase 
in curvature compared to male organs. While this affect was apparent across branch generation (Fig. 2D) 
and “inverse” generation (from the tips inward) (Fig. 2E, Table 2) the effect was a transient one, as dif-
ferences were not mirrored at E12.5 or E16.5.

Taken together this analysis emphasises the robustness of the program of renal branching morpho-
genesis. The only difference we noted with respect to organ sex or laterality was an increase in the cur-
vature of branches in female embryos at E14.5, but this resolved by E16.5. On this basis we find little 
supportive evidence for there being either a gender or laterality bias in the branching morphogenesis of 
the ureteric bud in the C57BL6/J mouse, despite the masculinisation of the organism having commenced 
by E11.522.
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Methods
Fetal kidneys.  Pure C57BL6/J mice (imported from The Jackson Laboratory in 2012) were pair mated 
and embryos collected at E12.5, E14.5, E16.5 and E19.5. A total of 12 litters (approximately 3 per time 
point) were taken. Male/Female animal numbers E12.5 (10/10), E14.5 (5/10), E16.5 (4/5), E19.5 (4/4). 

Figure 1.  Comparison of UB branching between male/female and left/right kidneys across selected 
stages of C57Bl6 mouse embryonic development. The number of tips (A), the maximum (95th 
percentile) branching generation (B), kidney volume (C), kidney surface area (D), and tip volumes (E) are 
indistinguishable between sex and laterality. The branching pattern (F) is also consistent between all groups 
across development as noted by the gradient of green (center) to red (tips). No differences were noted in 
statistical tests, p >  0.05 (Supplementary Table 1).

Age Group Generation Tip number
Kidney Volume 

(mm3)
Surface Area 

(mm2) Tip Volume (μm3) n

E12.5 

Female 4.4 ±  0.6 12.6 ±  3.3 0.0142 ±  0.006 0.42 ±  0.21 2.5E5 ±  1.26E5 19

Male 4.5 ±  0.6 12.5 ±  2.3 0.0167 ±  0.007 0.48 ±  0.19 3.1E5 ±  1.56E5 14

Left 4.4 ±  0.7 12.8 ±  3.2 0.0148 ±  0.006 0.42 ±  0.18 2.38E5 ±  1.25E5 10

Right 4.3 ±  0.5 12.3 ±  3.4 0.0134 ±  0.005 0.42 ±  0.23 2.67E5 ±  1.25E5 9

E14.5

Female 9.1 ±  0.4 193.3 ±  30.7 0.308 ±  0.053 2.37 ±  0.27 8.9E4 ±  3.8E4 17

Male 9.4 ±  0.5 200.5 ±  23.0 0.265 ±  0.058 2.11 ±  0.32 7.6E4 ±  2.4E4 8

Left 9 ±  0.5 181.1 ±  26.7 0.303 ±  0.056 2.34 ±  0.28 1.0E5 ±  4.7E4 9

Right 9.1 ±  0.3 207.0 ±  29.2 0.314 ±  0.05 2.42 ±  0.25 7.5E4 ±  1.6E4 8

E16.5

Female 13.0 ±  0.9 1192.8 ±  209.2 3.53 ±  0.590 12.5 ±  1.6 8.5E4 ±  1.6E4 10

Male 12.3 ±  0.5 1046.8 ±  165.2 2.97 ±  0.640 10.6 ±  1.9 7.8E4 ±  6.5E3 6

Left 13.2 ±  0.7 1169.2 ±  212.0 3.53 ±  0.479 12.5 ±  1.2 8.9E4 ±  1.3E4 5

Right 12.8 ±  1.0 1216.4 ±  203.7 3.537 ±  0.683 12.6 ±  1.9 8.1E4 ±  1.8E4 5

E19.5

Female 3196.8 ±  263 6.557 ±  0.39 18.6 ±  0.6 8

Male 3259.3 ±  211.4 5.999 ±  1.284 17.7 ±  2.4 8

Left 3300 ±  348.3 6.447 ±  0.178 18.4 ±  0.4 4

Right 3093.5 ±  107.9 6.583 ±  1.598 18.8 ±  3 4

Table 1.  Global comparative kidney metrics for sex and laterality across C57BL/6 development.
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Figure 2.  Branch morphology comparisons between sex and laterality of C57Bl6 embryonic mouse 
kidneys. When assessed by both generation (from the ureter, out) and inverse generation (from the tips, 
in), the diameter (A), length (B) and volume (C) is consistent, with no significant differences detected 
(2-factor nested ANOVA). One point of difference is that of branch curvature. When analyzing branches 
by generation (D) or inverse generation (E), male and female kidneys differ at E14.5, with female kidney 
branches having more curvature (Table 2). This is no longer statistically significant by E16.5 (E). Note: E16.5 
data by generation is not shown due to ambiguity of the first two generations which are subsumed by the 
pelvis at this developmental stage.

Branches Analysed
Female 
Group

Male 
Group p-Value

Generation 1 0.020056 0.009305 0.0460

Generation 2 0.020455 0.011502 0.0438

Generation 3 0.020123 0.012236 0.0349

Generation 4 0.018552 0.011252 0.0064

Generation 5 0.016459 0.010866 0.0074

Inverse Generation 1 0.016625 0.009201 0.0001

Inverse Generation 2 0.018901 0.011752 0.0052

Inverse Generation 3 0.016665 0.011426 0.0184

Inverse Generation 4 0.016977 0.010183 0.0045

Inverse Generation 5 0.017366 0.011899 0.0255

Table 2.  E14.5 male/female curvature differences (tested by 2-factor nested ANOVA).
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Female kidneys were used during laterality analysis to remove any potential sex bias. Kidney numbers 
used in analyses are available in Table 1 and statistical comparisons of this data in Supplementary Table 
1. Visual inspection of the associated gonads was used to determine the sex of the embryo. All ani-
mal handling and experimental protocols were approved by the Animal Ethics Committee of Monash 
University (MARP2012–038) and conformed to the guidelines of the National Health and Medical 
Research Council of Australia. Mice had ad libitum access to standard chow and water with a 12 hour 
light/dark cycle. Mice were mated overnight. The presence of a vaginal plug the following morning indi-
cated embryonic day 0.5 (E0.5). Embryos were accurately staged by Theiler and limb staging criteria. 
Animal models were maintained under the auspices of ethics applications to Monash University (Monash 
Animal Research Platform committee B) and in accordance with the conditions set out by the Australian 
Bureau of Animal Welfare.

Organ staining and Optical Projection Tomography (OPT) imaging.  The branching UB was 
stained as per published protocols17,19. Briefly, organs were fixed in 4% paraformaldehyde in phosphate 
buffered saline for 10 minutes and stained with mouse pan-cytokeratin (Abcam #115959) primary 
and anti-mouse Alexa-555 secondary antibodies (Life Technologies #A-31570). As previously pub-
lished23 samples were embedded in agarose, cleared, and scanned using a Bioptonics 3001 OPT scanner 
(Bioptonics, UK).

Quantification of 3D UB data.  The Tree Surveyor program18 was used to profile the three-dimensional 
structure of the branched ureteric bud. Results were examined comparing metrics for tip number, the 
number of branch generations, kidney volume and surface area, mean tip volume, branch segment length, 
volume, diameter and curvature, local and global branch angles and dihedral branch angles. Niche counts 
and kidney volume/surface area calculations at E19.5 were carried out as previously described19 using 
Imaris (Bitplane, Oxford Instruments).

Statistical Analyses.  T-tests with Welch’s correction for potential unequal variances and unequal 
sample sizes was used for whole-kidney measurement comparisons. A 2-factor nested ANOVA was used 
to compare branch metrics between groups. This partitions variation/drift in individual samples inside 
group variation, before comparison with another like-wise partitioned group. Plotting of data was carried 
out using R statistics24 with the Deducer package25, and statistical tests were performed using Microsoft 
Excel 2010 (with two-factor nested ANOVA formulas26, and two-tailed t-tests as standard).
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