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Abstract: Due to the introduction of highly automated vehicles and systems, the tasks of operators
(drivers, pilots, air traffic controllers, production process managers) are in transition from “active
control” to “passive monitoring” and “supervising”. As a result of this transition, the roles of task load
and workload are decreasing while the role of the mental load is increasing, thereby the new type of
loads might be defined as information load and communication load. This paper deals with operators’
load monitoring and management in highly automated systems. This research (i) introduces the
changes in the role of operators and requirements in load management, (ii) defines the operators’
models, (iii) describes the possible application of sensors and their integration into the working
environment of operators, and (iv) develops the load observation and management concept. There are
some examples of analyses of measurements and the concept of validation is discussed. This paper
mainly deals with operators, particularly pilots and air traffic controllers (ATCOs).
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1. Introduction

The transportation sector is expected to continue growing considerably over the next two
decades. In dealing with this growth, it is essential to ensure the highest level of safety and security.
The revolution in information, computer, navigation and communication technologies catalyses the
development of highly automated systems in operators’ environments, such as future transport
systems. In parallel to these rapid technological changes, a large number of companies, universities,
and institutes have initiated intensive research on the future of autonomous systems. Worldwide,
several mega international and national projects have been initiated for the research, development,
and implementation of systems, regulations, and procedures for future transportation systems, such as
Vision Zero [1], eSafety [2], White Paper [3], European SESAR—Single European Sky Air Traffic
Management (ATM) Research [4], US Next-Gen—Next Generation Air Transportation System [5],
Japanese CARATS—Collaborative Actions for Renovation of Air Traffic System [6], and Brazilian
SIRIUS—Impulsionando o Desenvolvimento do ATM Nacional [7]. One of their main objectives is to
bring an extensive range of innovative solutions to the current transportation problems and as well as
to cope with future problems. These investigations have been introduced to countless technological
and system innovations in the working environment of operators. Thereby, the level of automation,
vehicle systems and the working conditions of the operators are continuously changing and being
redesigned. Transportation operations, therefore, must continue to adapt accordingly and meet the
needs of the growing transportation industry.

In a continually changing world, the role of operators (drivers, pilots, air traffic controllers (ATCOs))
is in a transition from active endogenous control to passive monitoring due to the introduction of
the intensive automation. It means that, before, operators were actively taking part in the controlling
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process, however now they are in a position of monitoring the current system. In the case of active
control, the operator takes control, depending on several factors such as skills, experience, and tacit
knowledge, etc. However, in the case of passive monitoring, operators become observers rather
than controllers of vehicles. These transitions also introduce several vital changes in the operators’
work and more vehicle-related problems into the system. As the level of automation was increased,
the human factors, operator loads, situation awareness and decision-making processes became more
critical. In this sense, operators need viable constructs, principles and transport systems to promote a
better understanding of automation and balancing their loads in complex systems.

1.1. Motivation

The complex and dynamic environment measures of operator performance are more complicated
than during the early stage of transportation. Despite all the advancements in transport technology
and automation, accidents continue to occur. With the continuous evolution of transport systems,
operators are supported by vast amounts of available data and relevant information. Too much
available information confuses operators during operation, particularly during the decision-making
process in abnormal/emergency situations. In this system, information and communication load were
detected as new types of operator loads. In addition to this, the role of mental condition is increased,
and, tasks and workload become more interconnected. In the modern operator environment, the role
of the operator has become an information manager rather than an operator. This highly automated
system may be accompanied by unbalanced operator load systems (varying from under load to
overload), unintended reductions in situation awareness, decreases in the quality of decision-making,
and increased levels of stress.

1.2. Contribution

In this paper, a new operator load model was created and the operator load divided into five
categories, namely work, task, information, communication and mental load. In addition to this,
the “Swiss Cheese model”, “load model” and “information model” were improved and adapted to
human operator work. The main objective of this research is to develop general load monitoring and
management systems for operators working in highly automated systems. Advances in sensor and
data integration technologies in the current transport systems, allow researchers to collect, measure,
monitor, and evaluate data prospectively with innovative devices. Such applications like video
camera, electrodermal activity (EDA) devices, eye-tracking device and outside measuring equipment
were used in the flight simulator and Air Traffic Control (ATC)/ATM simulation laboratory of the
Department of Aeronautics, Naval Architecture and Railway Vehicles (VRHT) at Budapest University
of Technology and Economics (BME). The overall result of this study shows that operator total
load systems can be monitored by integrated sensors in real-time and managed by the developed
methodology. These improvements, (i) help operators to balance their total loads during operation,
(ii) improve the operator’s situation awareness and decision-making process, (iii) let instructors better
understand the weaknesses of operators, and (iv) improve the quality of operator training.

2. Materials and Methods

2.1. Influence of Automation on Loads of Operators

While technology has helped drive improvements in the transportation industry, automation
has also increased significantly and is going to go on advancing at an increasing rate. Automation
in transport aims to improve safety outcomes by reducing human errors and improving the comfort
of operators (personal productivity and pleasure). Automation affects all modes of transportation
including rail, maritime, air and road transport while changing the vehicles, operation systems,
and operator working environments. The modern vehicles use smart sensors and cameras to assist
drivers and eliminate human errors. In current technology, transport systems are capable of carrying
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out many tasks that need to be performed by operators. According to Parasuraman, automation is a
device or system that accomplishes (fully or partially) a function that was previously carried out (fully
or partially) by the human operator [8]. Automation in transportation can be defined as an innovative
and modernised technology to monitor and control devices or systems to reduce the need for operator
intervention and activities. In vehicles, most of the driver tasks rely on automation, whether she/he
wishes to perform a task by automation.

Undoubtedly, automation brought countless advantages to transport systems and solved many
past and current problems such as traffic collisions, accidents, congestion, and environmental pollution,
etc. However, technological advances in automation and computing processes have produced
highly complex driver–machine systems. One of the drawbacks of automation is that the role of
the operator continues being affected by automation. The role of vehicle drivers and transport
controllers is transitioning from active control to passive observing and supervising with control
systems. The passive operator role at a high level of automation creates unbalanced total load systems,
particularly in abnormal/emergency situations. Operators, therefore, need viable constructs, principles
and transport systems to promote a better understanding of automation and balancing their loads in
complex circumstances. In this research, total load monitoring systems were integrated and tested
in pilots’ and ATCOs’ working environments. However, the developed load management methods
and sensor technologies can be applied not only in cockpits and ATMs but also in the working
environment of all other modes of transportation (air, road, rail, maritime) [9–12]. Figure 1 shows
futuristic in-car technologies as an example. With the help of the advanced sensors and cameras,
modern cars can monitor and store information about the driver’s vital health parameters, traffic
situation, road condition, and the driver’s ability and limitations. This measurable information can be
used to identify a total load on drivers to assist operators and control the vehicle when it is required
such as in an unforeseen/emergency situation.
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The first signs of aircraft automation were introduced on-board aircraft during the decade from
1920 to 1930, in the form of an autopilot based on a mechanical engineering concept that was designed
to keep the aircraft flying straight [13]. In the 1960′s warning and alerts, systems were developed,
and in the 1970s, engine fire warning systems were installed in the Boeing 707, Boeing 747, and Boeing
777 [14]. From the 1970s to the present day, there have been countless innovations introduced on-board
aircraft that enhance safety: electronic autopilots, auto-throttle, flight directors, airborne weather
radars, navigational instruments, and inertial platforms [13].

Air traffic control is a real-time safety, critical decision-making process that is highly dynamic.
The “Air Traffic Management System”, as it is used today, is centrally controlled. The modern
workstation is designed to integrate several distinct subsystems into one system [5,15,16]. In designing
the working environment of ATCOs, it is necessary to take into consideration not only physical factors
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like the positioning of radar screens, lighting, auxiliary and visual displays but also subjective factors
such as skill, ability, experience, loads, anxiety, and stress. Further standardization of the panel layout
is required as well. All controls in a cockpit should be within easy reach of the crew, and all instruments
should be easy to read and understand by operators. The performance of the overall pilots and flight
deck system depends on understanding the total system. This situation will permit pilots to acquire
information without interference and allow them to operate all the controls efficiently for effective,
environmentally friendly and safe operation [17–20].

Concerning the working environment of pilots, aircraft cockpits and its systems have evolved
considerably over the decades. Past flight deck design practices have been highly successful in
producing safe and efficient aircraft. Technological advances provide improvements in pilots’ working
environments and will continue to do so in the future. The level of automation has changed the
way pilots control aircraft and their needs in the working environment. Due to these changes, flight
deck design needs to be reconsidered accordingly. The position and operation of controls and flight
instruments are crucial for operators. Pilots have to carry out their tasks based on the information
given on instrumental panels, and being received from ATCOs and other pilots. Advances in sensor
and data integration technologies in aviation systems make more information available than ever
before. On the other hand, highly automated systems have increased the monitoring tasks of pilots
instead of reducing control tasks. This phenomenon will cause pilots to lose their “situation awareness”
during flight operations.
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A comparison example of cockpit designs in the earlier days of aviation and the modern cockpit
environment is shown in Figure 2. As seen in this figure, the cockpit design has been changed
significantly with increasing display areas and a smaller number of individual displays. In the earlier
days of aviation, analogue instruments were used for information presentation since the 1960s [23].
With the introduction of new avionics systems and increasing levels of automation, in the early 1970s
Multi-Functional Displays (MFD) appeared in the cockpit to display information to the operators in
numerous configurable ways while a gauge can only display a limited amount of data. With the advent
of microprocessors, microelectronics, and Liquid Crystal Display (LCD) technology in the 1980s, the first
MFDs based on LCDs with their computer within the display appeared in the aircraft cockpit [24]. In the
early days of aviation, researchers and aircraft designers introduced as many more gauges to aircraft
to be able to provide reasonable information to pilots for the proper and safe performance of a flight.
In cockpits designed earlier, gauges could only display a limited amount of data. However, after rapid
changes in the level of automation, cockpits are designed to decrease the number of small instruments.
At first sight, the cockpit as a working environment has significantly simplified for the last two decades.
Unfortunately, the new cockpit instrumentation introduced some new problems too such as:

• designers must find the optimal examining solutions for indicating the measurements and
information, namely presentation in analogue or digital forms,

• the applied display may show too many and rather different information during a short time,
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• new, highly automated cockpit instrumentation and the working environment of pilots increase the
role of the mental load and brings in new types of load, information and communication overload.

With continuous evolution of the flight decks, including aircraft capabilities and sensor systems
pilots, are supported by huge amounts of available data and relevant information. In the current
modern cockpit environment, the role of pilots has become an information manager rather than an
operator. The huge amount of available information confuses pilots during operation, particularly
while decision-making in abnormal/emergency situations. While the introduction of new technology
brings significant improvements and may solve some problems [25–28], it often introduces others in all
transportation modes [29–32]. The future working environment of pilots (cockpit and future ground
control towers) needs to be designed by taking into account various psychological and human factors.

This paper comprises of the evaluation, monitoring, and management of the total load systems of
operators, considering their current needs. In that context, load monitoring devices were created and
performed measurements in the working environment of operators. The developed systems can be
used in the working environment of operators in order to balance “ total load”, increase “situation
awareness” and improve the “quality of decisions”.

2.2. Operator Models

The operator model can be defined by three different approaches: (i) Swiss Cheese model, (ii) load
model, and (iii) information processing model.

(i) Swiss Cheese Model: Operator errors during the decision-making process might be due to such
factors as under/overload, stress, fatigue, available time, and lack of tacit knowledge, etc. According to
James Reason [33], human errors can be divided into two categories: the person approach (errors of
individuals) and the system approach (working condition of humans). James Reason proposed the
model of “Swiss Cheese” to explain the occurrence of system failure [34]. In this model, accidents and
incidents are caused by a set of errors in complex circumstances. Each layer has several holes that
represent individual weaknesses in individual parts of the system—hence the similarity to slices of
randomly-holed Swiss Cheese. These holes are arranged vertically and parallel to each other with gaps
in-between each slice and are continuously opening, closing, and changing their location depending
on the current situation in complex systems. When by chance, all holes are aligned, this can cause
unfortunate outcomes such as accident and incident.

Figure 3 shows the “Swiss Cheese Model” of how an accident trajectory may penetrate a vehicle
accident. The vehicle accident might occur by way of multiple human errors or system failures in each
level in the system line up that influence each other (passes through holes in all of the defences) such
as loss of situation awareness, distractions, lack of experience and inadequate training.

(ii) Operator Load Model: Another approach can be applied to the description of the operator
model based on the operator load. One of the well-known load models is described by Endsley.
However, with the changes in the role of operators from active control to passive monitoring, there is a
need for redesigning of the Endsley load model. With rapid technological changes, in many cases,
information, communication and mental load became potential problems that require aviation systems
to monitor and control them. These load systems, therefore, were defined separately in the new model
(Figure 4). In this way, operator load is divided into five groups, namely work, task, information
communication, and mental load, which called operator total load. The operator total load monitoring
and management systems were created and tested in a flight simulator.

• The task load indicates the degree of difficulty and hardness when executing a task such as traffic
regulations, traffic demands, area design and other task demands. In the case of highly automated
systems, changes in traffic intensity and abnormal and emergency situations may generate several
extra tasks. This load can be assessed by the “NASA Task Load Index” (NASA-TLX) [35].

• The workload is defined as the total amount of work by an operator in a specific time period as it
depends on both human factors (human behaviour, skill, tacit knowledge, experience, etc.) and
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external factors (traffic regulation, traffic planning, weather condition, etc.). Several techniques
have been proposed for measuring and evaluating operator loads. The most well-known
measuring techniques are the following: (i) “Situation Awareness Global Assessment Technique”
(SAGAT) [36], (ii) “Situation Awareness Rating Technique” (SART) [37], (iii) “Automation Thrust
Index” (SATI) [38], (iv) Subjective Workload Assessment Technique (SWAT) [39], and (v) Workload
Profile (WP) [40].
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• As an operator workplace environment becomes increasingly complex, the amount of information
gained from vehicle systems is also increased. The automated vehicle systems provide too much
information to operators from different sources. The amount of information creates confusion
among operators. Information load, therefore, was created and included in the Endsley load
model. This load depends on traffic regulation, weather condition and other aspects.

• Communication load can be defined by the level of understanding between operators which
depends on language, cultural norms, and social relations. This load, therefore, is included in the
Endsley load model as well (Figure 4).

• Mental load is the physical and psycho-physiological condition of operators and strongly depends
on human aspects (behaviours, skills, knowledge, experience, physical and psychophysical
condition). The quality of situation awareness and decision-making process is directly affected
by the mental load of operators. In the literature, numerous articles have been published in the
field of mental load [42,43]. The mental load of operators is measured by using medical and
physiological devices.
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With the rapid technological changes, in many cases, information, communication and mental
load became potential problems that required aviation systems to monitor and control. These load
systems, therefore, were defined separately in the new model (Figure 4). By this way, operator load
is divided into five groups, namely work, task, information communication, and mental load which
called as operator total load. The operator total load monitoring and management systems are created
and tested in a flight simulator.

(iii) Information Processing Model: In order to understand how to monitor and measure a total
load of an operator, it is crucial to have a clear understanding of how operators acquire and analyse
information for “decision-making” and “performance action”. Various studies in the literature try
to model human information processing systems [44,45]. One of the most recognised and clear
explanations of the human information processing model was given by Wickens [46]. This information
model was framed around five key components: (i) initial sensors (eyes, ears), (ii) perception, (iii) human
memory (working and long-term memory), (iv) decision and response selection, and (v) response and
execution. According to this model (Figure 5), the starting point of the information process is the initial
sensors, namely eyes and ears. The human brain then processes the detected information. Working
memory is a short-term (recent) memory that maintains some amount of information in the mind to
enable its manipulation for further information processing while long-term memory is used for storing
information and knowledge. The processed incoming information can be temporarily stored and
manipulated in the working memory for supporting the human decision-making process. This stage
can be described as “main thinking” and is connected with long-term memory where information and
knowledge can be stored for more extended periods of time. The most appropriate response, finally,
can be executed and accordingly, the decision can be made in the last stage.
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The information model of Wickens [46] was improved and adapted to operators by including
(i) sensory memory, (ii) situation awareness, (iii) skill and competence, and (iv) load measuring
techniques (Figure 5). According to the improved model, after receiving information by the operator
senses, receptors encode stimuli from the external environment. Thereafter, the collected information
might be transmitted through the sensory memory which is limited a certain amount of information
that can be processed for a concise time, about half a second to three seconds, and forwards to working
memory. Finally, information might be encoded and stored in long-term memory.

This information process highly depends on the operator’s skill, competence, experience, physical
and physiological condition. Moreover, the total load of operators can be monitored from their responses
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during “situation awareness”, “decision-making” and “performance actions”. The information
processing is linked with the reaction time of operators. Due to highly automated systems, information
load increases during some phases of flight such as take-off, approach, and landing particularly. It is,
therefore, these flight phases that can generate a high mental state which can, in turn, lead to increased
“reaction time”, and reduced “decision-making time”.

According to Cummings [47], a person is capable of processing three bits of information per
second on average without error. In cases of an operator receiving higher than three bits per second,
the occurrence of unavoidable errors and loss of information can be expected. However, the rate
of information processing highly depends on the operator’s characteristics such as operator skill,
competence, experience, total load, physical and physiological condition.

2.3. Sensor Integration into the Working Environment and Experiment Details

Human behaviour, such as the decision-making process, reaction time, and hesitation frequency,
is one of the hot recent research areas of the mind in the fields of neurophysiology and human
factors, because of its strong connection with the operator’s performance variation, and how it affects
human errors. Advances in sensor and data integration technologies in the current transport systems,
allow researchers to collect, measure, monitor, and evaluate data prospectively to cope with cognitive,
educational and operation challenges, such as maintaining operator load systems, re-designing training
and reducing economic consequences [48–50]. The modern sensors are out-of-the-box technology
and their costs are significantly high. However, with the continuous development of the technology,
the cost of the sensors has been dropping and will continue its downward trend over the next years.
In addition to this, sensors become smaller in size and require less energy to function. The newly
developed sensor systems will let operators and supervisors better understand how operators can
cope with their loads while having multiple tasks. In this sense, even though the cost of the ultimate
technologies is expensive, using this technology has beneficial outcomes both in the economy by
reducing the cost associated with maintenance, fuel spends, time-saving, and as well as saving human
life by eliminating human errors, particularly in abnormal and emergency situations.

These new and emerging technologies enable the creation of new microsensors that might be
integrated into the operators’ working environment, namely into the driver and pilot cockpits, and
ATCOs’ working room (not only integrated into the table and chairs).

The sensors can be classified as follows:

• passive—built into the environment for a distance from the operators, like eye tracking, infrared
and cameras, etc.,

• passive-integrated—sensors integrated into the working environment for direct sensing of the
operators’ behaviours (such as heart rate, and skin resistance, etc.) built into the operators’ control
elements or their clothes,

• semi-active sensors—measuring some characteristics such as the reactions of operators on some
signals, and information, etc.,

• active—such sensors that measure the reactions of the operators in response to the specially
generated signals (including signals initiated for testing the system and operators).

In this research, several load measuring techniques were created and applied by physiological
measures such as video cameras, electrodermal activity (EDA) Open Source Bio-Monitor (OBIMON)
devices, eye-tracking devices and outside measuring equipment in the flight simulator and ATC/ATM
simulation laboratory of the VRHT at BME.

(i) Participants

The concept was tested in the flight simulator of a Piper Seneca 3 multi-engine aircraft with former
student pilots of VRHT with limited experience, and experienced flight instructors working at the
department of VRHT. No accidental events were reported by the participants.
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(ii) Experiment Design

In this research, three flight scenarios were created: Visual Meteorological Conditions (VMC),
Instrument Meteorological Conditions (IMC), and IMC with Attitude Directional Indicator (ADI) failure.

Scenario 1: Visual Meteorological Conditions (VMC): This is an aviation flight category in which visual
flight rules apply; expressed in terms of visibility, ceiling height, and aircraft clearance from clouds
along the path of flight. In this category, pilots have sufficient visibility to control the aircraft by mostly
looking out the window. It is entirely the pilot’s responsibility to navigate the aircraft, maintain visual
separation from terrain and other aircraft during operation, and find an airport to safely land.
Scenario 2: Instrument Meteorological Conditions (IMC): This is an aviation flight category that
requires pilots to conduct most of the operation by looking at the flight instruments on the control
panel rather than by looking out the window under visual flight rules (VFR). This category requires
pilots to have more flying skills, tacit knowledge and experience.
Scenario 3: IMC with Attitude Directional Indicator (ADI) failure: In this scenario, pilots control the
aircraft under Instrument Meteorological Condition (IMC) with Attitude Directional Indicator failure.
This scenario is the most difficult task for a pilot to carry out.

(iii) Task Protocol

The participant pilots are lined up and holding short at RWY 25L (Runway 25Left). They configure
the aircraft for take-off (trim +5, flaps take-off, fuel pumps on, landing light on) and check
the instruments.

Take-off from RWY 25L

• Set power for take-off (Manifold pressure 40)
• Airspeed (blue line speed)
• Set 300 feet AGL-Above Ground Level gear up flaps up, set climb power (manifold pressure 39,

RPM-Revolutions per min 2600), fuel pumps off, landing lights off

• Maintain runway heading (250◦) until the aircraft reaches 1000 feet MSL-Mean Sea Level
• Climbing right turn to heading 340◦

• Stop climbing at 2500 feet and turn right to heading 070◦ for downwind.

Fly straight on downwind

• Maintain 2500 feet
• Configure the aircraft for the cruise (Manifold pressure 22, RPM 2400)

Approach and land on RWY25L

• Reduce power for approach (RPM forward, throttle pull back as required), fuel pump on, landing
lights on

• Turn right to HDG-Heading 160◦

• Set approach flaps and gear down when airspeed is in the white arc.
• Approach speed: blue line speed
• Land on RWY 25L
• Stop on the runway

Use of Integrated Microsensors: Integrated microsensors can be used for improving the operators’
working environment to monitor and manage the total load system. In order to measure the mental state
of operators and become familiar with operator behaviour, several microsensors were integrated into a
side-stick and a computer mouse by [51,52]. These integrated devices consist of a heartbeat counter
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sensor, skin conductance, skin temperature, and strain gauges to measure grasp force applied by
operators on the handle (how hard operator holds a side-stick or computer mouse) (Table 1, number 2).
The heart rate measurement is based on photoplethysmography (PPG) using infrared photo LED-Light
Emitting Diode and phototransistor placed next to each other in the handle under the pilot’s index
finger. The skin conductance sensor measures how sweaty the pilots’ palm is while the temperature
sensor provides information about the pilots’ skin temperature. In the flight simulator laboratory of
VRHT at BME, a series of tests were performed to measure the characteristics of pilots with different
skills. New computer software was developed by [53,54] to log data coming from the sensors, flight
parameters, and the reaction time of the operators. Different operators with different skills and flight
experience were tested in many flight situations with different stress levels to characterize the operators.

Electrodermal Activity Device (EDA): Electrodermal activity (EDA) is the property of the
human body that causes continuous variation in the electrical characteristics of the skin. It is a
psychophysiological indicator of emotional arousal generated by the sweat glands. Mental stress,
respiration, and psychological changes are the primary emotional activators that cause strong reactions
in the human body. With the activation of any of these factors, the human brain sends signals to the
skin to increase the level of sweating. As a result, human skin reacts and becomes a better conductor
of electricity. Electrodermal Activity (EDA) has been one of the most widely used methods over
200 years [55]. EDA can be measured from the skin surface by applying an electrical potential between
two points. The amount of sweat glands varies across the human body but is the highest in the palmar
surface, wrist area, shoulders, forehead and soles of feet regions [56]. These places of the human body
have the highest density of eccrine sweat glands that respond to the emotional stimuli. EDA devices,
therefore, should be placed on these body parts where changes in sweat gland activity can be easily
detected. The activity of sweat glands causes skin conductance and sweating causes a brief drop in the
electrical resistance of the skin.

In collaboration with the Department of Affective Psychology at Eötvös Loránd University (ELTE),
EDA measurement was realised in the flight simulator of the VRHT at BME (Table 1, number 3). For the
present study, the skin conductance activity of an experienced pilot was measured with the Open
Source Bio-Monitor (OBIMON) for electrodermal activity in a flight simulator. OBIMON is a small and
reliable device capable of synchronised measurement that was used to record EDA from the wrists and
shoulders of a pilot (Table 1, number 3). It measures sweat gland activity by taking into account the
“Skin Conductance Level” (SCL).

Use of Video/Motion Cameras in the Flight Simulator: Video and motion cameras can be used
for measuring the eye movement, and eye blink rate of operators in a complex environment. Given
the importance of eye movements for visual perception, there has been a surge of interest in eye
movements with numerous studies being conducted to clarify what kind of information can be
derived from eye movements. A number of studies have suggested that eye movement, blinking
rate, and fixation duration can be linked to the task, information processing, stress level, fatigue and
loads [57–59]. Many investigators have reported that an increase in eye movement when the task
increases in difficulty [60,61]. Rui Fu et al. [60] reported that as the complexity of the task increases, an
operators mental load increases, which leads to an increase in eye movement of operators. However,
some investigators have reported otherwise; they found an inverse relationship, a decrease in eye
movement with increasing task difficulty. For example, May et al. [62] indicated that eye movements
were restricted as counting complexity increased. When the level of task difficulty increases, the total
load of operators is also increasing, mainly work, task and mental load. There were two motion cameras
installed in the flight simulator cockpit by the current researchers. The main aim of the investigation
was to demonstrate the difference in eye motion changes through different flight scenarios and to
compare the differences between the experienced pilot and less-skilled pilot.

In this experiment, the number of eye movements was counted for an experienced and less-skilled
pilot. In addition to this, in order to examine the number of eye movements and eye blink rate
during different flight tasks, three flight scenarios were designed: (i) Visual Meteorological Conditions
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(VMC), (ii) Instrument Meteorological Conditions (IMC), and (iii) IMC with ADI (Attitude Directional
Indicator) failure (Table 1, number 4).

Eye-Tracking Device: Eye movement is a necessary component of the visual analysing of a human
being. Eye movements reflect human emotions and stress, and cannot be hidden, unlike other emotional
demonstrations such as hand movements or voice changes. This speciality, therefore, lets researchers
observe eye movement in relation to many scientific studies, including psychology, human behaviour,
cognitive science, marketing, and applied research fields. The eye-tracking technology was used to
track the eye movements by recording fixations and saccades within the time of the test. The eye-tracker
records and saves the information that can be presented with a heat map, cluster, and gaze plots. Eye
movements provide numerous clues to underlying cognitive processes as operators encode information,
and what information they use or ignore related to their performance under flight scenarios. It has
been gaining popularity around for over a hundred years [63]. Amongst research that has been
carried out for developing eye-tracking systems, there exists research in different disciplines such as
reading [64,65], human-computer interaction [66–68], psychoanalysis [69,70], and overlearned tasks [71].
In aeronautics, the eye-tracking method is used in the context of performance [72,73], visual scanning
behaviour [74,75], workload assessment [76,77], cognitive process [78,79], aircraft design [80,81],
aircraft maintenance [82,83] and physiological factors (stress, fatigue, drowsiness) [42,84].

In the framework of this research, a TOBII eye-tracker was used to record the visual patterns of
the pilots in the flight simulator of a Piper Seneca 3 multi-engine aircraft through failure scenarios,
such as engine failure and equipment failure at the Department of VRHT at BME (Table 1, number 1)
and the results published in [42].

Heart Rate Measurement: The heart is an active, hollow muscular organ about the size of a
clenched fist and weighs about 310 g. It acts as a pump that provides a constant flow of blood
throughout the human body. Heart rate refers to how many times the heart contracts and releases in
a unit of time, usually per minute (bpm), and it is directly related to the workload being placed on
the heart. Heart rate is controlled by the Automatic (involuntary) Nervous System (ANS), which is a
part of the Central Nervous System (CNS). ANS uses two branches; the Sympathetic Nervous System
(SNS) and the Parasympathetic Nervous System (PNS). The sympathetic nervous system releases
hormones to accelerate the heart rate, such as in stress situations [85]. According to the National
Emergency Medical Association, the normal heart rate for a human adult ranges from 60 to 90 beats
per minute (bpm) at rest. Several factors influence heart rate such as age, gender, weight, exercise,
body temperature, emotional state, and stress, etc. [86]. Researchers have proven that stress can cause
changes to vital health parameters of a person such as an increase in heart rate, respiration rate, and
blood pressure. The monitoring and analysing of the heart rate of operators are one of the most
promising measures in mental load detection.

With the integration of heart rate monitor into the operator working environment, the mental
load can be measured, monitored and managed in real-time. The physiological parameters of
operators can be collected with the help of such medical methods such as Heart Rate—HR, Heart Rate
Variability—HRV [42,87,88], Electrocardiogram—ECG [86,89–91], Electroencephalography—EEG [89,
92,93], and Electromyography—EMG [69,94,95]. Heart Rate and Heart Rate Variability of pilots were
measured by Mansikka et al. during a real instrument flight rules proficiency test in an F/A-18 simulator
as measures of pilot mental workload [88]. Professor Szabo Sandor Andras evaluated the stress reaction of
the heart-brain axis by Heart Rate Variability parameters produced by Firstbeat Bodyguard 2 and adapted
to real flight [87,96]. In addition to this, QRS Mid-frequency and R-R interval studies let researchers draw
the stress level of operators in a complex environment. For example, a very clear relationship between the
complexity of the task and observable mental effort was found by Professor Lajos Izso [66–68], that when
the observable mental effort is high, the Mid-Frequency Power (MFP) is systematically low.

In this study, heart rate of the pilots was recorded through three flight scenarios (i) Visual
Meteorological Conditions (VMC), (ii) Instrument Meteorological Conditions (IMC) and (iii) IMC with
ADI (Attitude Directional Indicator) failure (Table 1, number 2–3) and the results were published in [42].
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Table 1. Possible sensors and their application.

No Name Performance Possible Application Integration into Working Environment

1 TOBII Eye-Tracker
Area of interest, Gaze points,

Eye movement Fixation
duration

Psychology research
(the mental state of operators),

Level of operator loads,
Human behaviour,

Attention level,
Performance at the cognitive level
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Table 1. Cont.

No Name Performance Possible Application Integration into Working Environment

4 Microsensor, Motion and
Video Cameras

Eyeblink,
Eye movement

Behaviour,
Attention level, Performance at the

cognitive level,
Task difficulty
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Table 1. Cont.

No Name Performance Possible Application Integration into Working Environment

7 Functional Near-Infrared
(fNIR) Spectroscopy

Monitor cerebral hemodynamic
changes within the prefrontal

cortex in response to the sensory,
motor, or cognitive activation.

Mental load assessment in a
complex work environment
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Table 1. Cont.

No Name Performance Possible Application Integration into Working Environment

10
Force Myography (FMG)

and
Muscle Strength Sensors

Position and movement of limbs
Muscle movement

Stress level,
Operator load assessment
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2.4. Data Processing

The overall objective of data processing of the measurements is to get the maximum information
on the operators’ behaviours, and loads. The following are the major methods that might be used
(Figure 6):

• preliminary data processing—filtration, reducing the effects of measured noise,
• detection of crossing the limits—generating warning signals based on crossing the limits by the

measured signals,
• evaluation of the change rates in measurements—with detection of the crossing the limits for

change rates,
• analysis of the signals’ shapes—including estimation of the maximum deviation, frequency of

changing processes, comparison with the standard processes of changing (including changing
according to the test signals in active measurements, and active monitoring),

• statistical and trend analyses—estimating the statistical characteristics and parameters of the trends,
• using the approximation formulas—developed especially for these purposes,
• identification of the model parameters—like the transition function of the operators.

The sensors of all the vital health parameters can be built in a compact wearable device (Heart
Rate—HR, Heart Rate Variability—HRV, Electrocardiogram—ECG, Electroencephalography—EEG,
Electromyography—EMG, Event-Related Brain Potentials—ERPs, Electrodermal Activity—EDA,
Functional Near-Infrared Spectroscopy—fNIR, skin temperature, and breathing–respiration sensor,
etc.), attached to operator clothes e.g., shirt and gloves (Force Myography—FMG, and Blood Oxygen
Saturation Sensor, etc.), and integrated into operator working environment e.g., driver cockpit, tower,
or simulator (eye-tracker, infrared thermal camera, and load tracking seat cushion, etc.).
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In the newly built concept, the autonomous system recognizes the operator in the loop and sets
all the parameters according to the subject. Then, all the measurable vital health parameters of the
operator will be continuously monitored, managed and stored in real-time. The upper (max.) and
lower (min.) values of each health parameter would be automatically given by the autonomous system
depending on the subject (for example heart rate measurement, Figure 7). The operator recognition
system is necessary because vital health signs vary substantially from subject to subject. The processed
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data of the measured parameters can support operators by giving suggestions, alerting warning signals,
and creating situation, fatigue and stress awareness. The autonomous system will identify what is
the normal or abnormal value for each of the vital health parameters for a specific subject from the
continuously stored data.
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Figure 7. Analysis of operator heart rate measurement.

In the case of the system detecting any sharp changes in the operator’ vital health parameter(s),
unbalanced loads (overload or underload situation) or any confused, stressed or aroused situation,
the developed system first generates some suggestions to the operators which will be shown on
displays and send alerts/warning messages to the managers and supervisors. Moreover, this concept
will let supervisors better understand how operators can cope with their loads while having multiple
tasks. If an operator in the loop is incapable of dealing with the routine tasks or in case of a failure,
the ground operators (vehicle operation centre, aircraft remote control centres, ATCOs, robot pilots on
the ground) will able to take over the control. This innovative device would be very useful in balancing
operator over/under loads and decreasing operator errors, thereby reducing the number of incidents
and accidents. This system will create more effective interaction between operators and transport
systems as well.

2.5. Operator Load Monitoring Concept

The new operator load monitoring concept was developed for drivers to improve the working
environment and decision support system. This concept was designed to assist operators with
necessary control information and avoiding a crash [106–110]. In this concept, the decision support
system of drivers has three layers: (i) operation centre, (ii) vehicle on-board central processing unit,
and (iii) smart vehicle screen. The operation centre includes transport management, vehicle remote
control, traffic control system and transport manager. The vehicle on-board central processing unit
contains (i) operator load management, (ii) situation awareness, and (iii) decision support (Figure 8).
The vehicle on-board central processing unit collects and analyses the available data, including the
information provided by cooperating with other vehicle and operation centres. With this concept,
the driver of a vehicle will see all the necessary controlling information on his cockpit screen. In addition
to this, the total load of a driver will be estimated by measuring the driver’s vital health parameters
(heart rate, respiration rate, eye movement, skin resistivity, and skin conductivity etc.), human aspects
(behaviours, skills, tacit knowledge, experience, physical and psychophysical condition) and external
effects (traffic regulation, traffic congestion, and weather condition etc.) by using the integrated sensors
and cameras in the vehicle on-board central processing unit.
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Figure 8. Functional model of the driver decision support system (s—sensors).

In case a driver is stressed, aroused, confused or fails to perform routine control actions, the vehicle,
first, will generate some suggestions and advice to the driver, and then the operation centre will be
immediately informed about the current situation. If the driver still cannot cope with the problem(s),
then the operator centre might take over control of the vehicle from the driver. According to the
practice of the current researchers, most of the operators understand and are aware of the importance
of ongoing technological developments and the desired positive outcomes, that the developed system
not only makes their tasks easier and improves their comfort during operation, but also can save
human lives by avoiding accidents and incidents. However, on the other hand, there is some minor
number of end-users (particularly ATCOs) who are worried that the total load measurement will
be used for evaluating their quality of work and performance. It is, therefore, the outcomes of the
developed systems were implicitly explained to the operators before the measurements were taken.

2.6. Operator Load Management Concept

The operator load management concept was developed separately for overload and underload
situations. In the case of the overload situation, two different variations of load management methods
can be used; (i) assigning a scoring method—say as in [0,1]—to all the measurements, and (ii)
mathematical modelling (Figure 9). According to the assigned a scoring method, all the measurements
should be transferred to scores on a 0–1 scale for each operator load where each element should have a
weighting coefficient corresponding to different environmental conditions, abnormal situations and
failures. According to the developed model, the score is “0” if there is no load, and it is “1” when there
is the relative maximum load which can be managed by operators without causing any accidents and
incidents. This load can be calculated by actual load over maximum load. There will be five rectangular
gauges, each of which displays a different level of operator load currently being experienced by an
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operator. Each case can generate a weighting coefficient between 0 to 1, and if there is more than one
situation that plays a role at the same time, the total score will be the sum of all weighting coefficients.Sensors 2020, 20, x FOR PEER REVIEW 19 of 32 
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According to the mathematical model, two different rules might be used for overload situation:

• If one of the operator’s load reaches the threshold where the score is: (i) 0.8—a warning signal
must be generated, (ii) 0.9—calling special attention to continuously monitoring the operating
condition, and (iii) 0,95—immediate actions are required (Figure 9, left).

• Combination of at least two loads, namely in a case when any two types of load coefficients,
reach to 0.7 or above (Figure 9, right): (i) 0.7—warning, (ii) 0.8—monitoring, and 0.9—immediate
action required.

The operator load management can be developed by the use of more sophisticated methods,
like Markov’s decision support. The control field of the vehicle cockpit can be designed by projecting
the most necessary information (including loads, tasks, advice) in real-time mode to the vehicle
cockpit window instead of having a series of wide screens in control panels. This will help
operators to manage their total loads more efficiently and reduce their stress levels at the same
time. Another operator load management concept is an underload situation. As early sections indicate,
technological developments have shifted the role of the operators from active control to passive
monitoring of the automated processes. Unbalanced operator load systems may accompany this
highly automated system, and produce unintended reductions in situation awareness, decreases
in the quality of decision-making, and increased levels of stress. Sometimes the levels of operator
loads become too low where the operator may become inattentive and/or bored. This happens
because an operator’s job sometimes can get monotonous. These situations are generally referred
to as operator underload, including work, task, information communication and mental underload.
Operator underload caused attention to be withdrawn, leading to the decrement. In order to manage
operator underload, a management model was developed. According to the mathematical model, two
different rules might be used for underload situation (Figure 10):

• If one of the operator loads drops to the threshold where is the score: (i) 0.2—a warning signal
must be generated, (ii) 0.1—calling the special attention to continuously monitoring the operating
condition, and (iii) 0.05—immediate actions are required (Figure 10, left).

• Combination of at least two loads, namely in a case when any two types of load coefficients drop
to 0.3 or below: (i) 0.3—warning, (ii), 0.2—monitoring, and 0.1—immediate actions required
(Figure 10, right).
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In the operator load management model, the space of the load parameter was divided into several
sub-spaces as shown in Figure 11, including overload and underload states.
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• In the case of the operator overload situations: wover1 = 0.8 (a warning signal must be generated),
wover2 = 0.9 (calling special attention to continuously monitoring the operating condition), and
wover3 = 0.95 (immediate actions are required).

• In the case of the operator underload situations: wunder1 = 0.2 (warning signal must be generated),
wunder2 = 0.1 (calling the special attention to continuously monitoring the operating condition),
wunder3 = 0.05 (immediate actions are required).

As seen in Figure 11, the “normal situation” is highly influenced by operator loads (work,
task, information, communication and mental load) and as well as several other factors such as
structure, surrounding, weather condition, traffic complexity, skill and tacit knowledge of operators,
etc. For example, if there is a failure in a transport system or the weather condition is too poor, operators
tend to get more nervous than in the normal situation. Figures 9 and 10 describe the situation for
each type of the loads, however, operators have the combination of the loads (Figure 11). In such
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cases, the operator load index can be defined at each key step of the investigation by using the
following formula:

iLoad =
5∑

i=1

wei(u, z)Lc (1)

where iLoad is total load index, wei is weighting coefficient and Lci is the load coefficient, u is the control
and z is the environmental characteristics. In the case of the over/under load situation, two different
variations of load management methods can be used based on the load coefficient. The total load index
can be determined for each [k+1] step by using the following formula:

iLoad[k + 1] =
r=9∑
q=1

(
A[k]iLoad[k] + wquB[k]u[iLoad[k]] + wqzF[k]z[k]

)
(2)

where u[k, iLoad[k]] is the management definition, and z[k] is the environment. u1 = Work load,
u2 = Task load, u3 = Information load, u4 = Communication load, u5 = Mental load and z1 = Structure
(such as mechanical failure, malfunction of the automation system or software errors) , z2 = Pilots,
z3 = ATCOs, z4 = Surroundings (such as normal or severe weather condition). Matrixes A, B, F are the
load transition matrix where the A matrix is the state transition matrix, the B matrix is the control matrix
which takes into account the effect of the applied management control on the operator load, and the F
matrix is the influence of the changing environment characteristics on the operator load index.

A =


a11 · · · a19

...
. . .

...
a91 · · · a99

 and il =



i1
i2
i3
i4
i5
i6
i7
i8
i9


(3)

B =


b11 · · · b15

...
. . .

...
b91 · · · b95

 and u =


u1

u2

u3

u4

u5


(4)

F =


f11 · · · f14
...

. . .
...

f91 · · · f94

 and z =


z1

z2

z3

z4

 (5)

3. Results

3.1. Typical Operator Load Measurements

Due to the wide application of modern technology, operator loads can be monitored and managed
by sensors, cameras and innovative medical devices. In this research, such applications like video
cameras, electrodermal activity (EDA) OBOMIN devices, and outside measuring equipment were
used in the flight simulator and ATC/ATM simulation laboratory of the Department of Aeronautics,
Naval Architecture and Railway Vehicles at Budapest University of Technology and Economics [111].



Sensors 2020, 20, 4665 22 of 32

Motion and Video Camera Results: In this experiment, the number of eye movements was counted
for the experienced and less-skilled pilots. According to this result, a strong relationship was found
between task and operator working behaviours like during taxi, take-off, and landing (experienced
and less-skilled pilots) seen in Figure 12. According to the eye movement results, the less-skilled pilots
made more eye movements during taxi (35%), take-off (37%) and landing (41%) in comparison to the
experienced pilots (Figure 12). On the other hand, in the case of the complexity of task increasing,
the number of eye movements per second also accordingly increases.
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Figure 12. Comparison of eye movement between experienced and less-skilled pilots.

In order to examine the number of eye movements and eye blink rate during different flight
tasks, three flight scenarios were designed: (i) Visual Meteorological Conditions (VMC), (ii) Instrument
Meteorological Conditions (IMC), and (iii) IMC with ADI (Attitude Directional Indicator) failure
and experiment details were given on page number 9. According to the results, the number of eye
movements of the experienced pilot was found to (i) 1.31 per second under Visual Meteorological
Conditions (VMC) scenario, (ii) 1.82 per second under Instrument Meteorological Conditions (IMC)
scenario, and 2.38 per second under IMC with Attitude Directional Indicator (ADI) failure (Figure 13).
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Figure 13. Eye movement comparison of the experienced pilot through different scenarios.

In this research, eye blink rate was used as a measure of studying the connection between the
mental state and the complexity of flight tasks. The human eye blinks once every four or five seconds
on average—that is approximately 15–20 times per minute [112]. Eye-blink rates can be affected by
a variety of different factors such as human behaviour, experience level, task (nature, difficulty, and
engagement) and endogenous state (mental activity, psychological state, and state of attention). Several
studies have shown that an increased level of task difficulty results in less frequent eye-blinking [113].
According to Jyotsna and Amudha [114], a constant increase in the level of task difficulty will increase
the cognitive load, which results in a reduced number of eye blinks. In contrast to these researchers,
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some other studies reported that the blink rate increases as the task difficulty increases [57,58,60].
Tanaka & Yamaoka studied the relationship between blink rate and task difficulty and reported the more
difficult the task became, the higher the blink rate was [57]. Additionally, a limited number of studies
found no relationship between the degree of task difficulty and the blink rate. For example, Pauline
Cho [115] reported that the level of task difficulty did not affect the blink rate in primary gaze and
downward gaze. In this research, the eye blink rate of an experienced pilot was investigated through
three flight scenarios. The number of eye blinks (full blink and half blink) of the experienced pilot
increased significantly in parallel to the task complexity: (i) 0.25 per second under Visual Meteorological
Conditions (VMC) scenario, (ii) 0.29 per second under Instrument Meteorological Conditions (IMC)
scenario, and 0.39 per second under IMC with Attitude Directional Indicator (ADI) failure (Figure 14).
In addition to this, it was also noticed that eye flutters (rapid muscle movement in the eyebrow area)
also increased.
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According to the outcomes of the experiments, direct relationships were found between task
difficulty and both eye movement and eye blink rate. As discussed earlier, a number of studies support
the outcomes and methodology of the experiments. On the other hand, some others do not. However,
in the newly built concept, the autonomous system recognizes the operator in the loop, and afterwards,
starts to continuously measure and store all the parameters on the subject in the operator environment
including eye movement, blink rate, skin resistivity, and heart rate, etc. The autonomous system will
identify what is the normal or abnormal value for each of the vital health parameters for a specific
subject from the continuously stored data. In the case of the system detecting any sharp changes in the
operator’s vital health parameters, the autonomous system will generate suggestions to the operator,
and the real-time information will be automatically given to the control managers and supervisors.

Electrodermal Activity (EDA) Results: In collaboration with the Department of Affective
Psychology at Eötvös Loránd University (ELTE), EDA measurement was realised in the flight simulator
of the VRHT at BME. For the present study, the skin conductance activity of an experienced pilot
was measured with Open Source Bio-Monitor (OBIMON) for electrodermal activity. OBIMON is a
small and reliable device capable of synchronised measurement that was used to record EDA from the
wrists and shoulders of a pilot (Figure 15). It measures sweat gland activity by taking into account the
“Skin Conductance Level” (SCL). For example, when operators are emotionally aroused, sweat glands
increase function and skin conductance level increases as well. Skin conductance is an indicator of
sweat gland function, so whenever the operator aroused, stressed or unbalanced loaded, sweat glands
increase function, and the skin conductance level gets higher accordingly. The Skin Conductance Level
of a pilot was recorded during all phases of the flight.

The results suggested that emotional arousal was highest during flight take off in comparison to
en-route and landing. Moreover, based on analyses of the measured EDA, the arousal was found to be
high when the flight took turns. This is an interesting finding that needs to be replicated in further
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studies. In addition to this, a TOBII Eye-tracker was used to record the visual patterns of the pilots, and
Heart Rate Measurements were also performed through failure scenarios in the flight simulator of the
Department of VRHT at BME. The results of the measurements were published in [42]. According to
the results, eye-tracking and heart rate can be used to assess the degree of mental status.Sensors 2020, 20, x FOR PEER REVIEW 24 of 32 
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3.2. Load Monitoring Concepts for Pilots and ATCOs

The operator load monitoring and management concepts were developed separately for pilots
(Figure 16) and ATCOs (Figure 17). In the pilot concept, there are five types of operator loads which
vary depending on the measured loads that are presented by small colourful columns on the pilot’s
screen (Figure 16, left bottom). The second part is the “task zone” which is associated with the
air-ground communication and recommendations from pilots and air traffic (Figure 16, middle bottom).
Finally, the third part is the “advice zone” in which pilot receives all the necessary advice on the cockpit
window from the ground (ATCOs, aircraft remote control centres, robot pilots on the ground) or
on-board (robot pilots or other aircrafts’ pilots) (Figure 16, right bottom). For example, with upcoming
technologies, the traditional two pilot set-up will be reduced to one on-board and one robot co-pilot
on-board or the ground. The advice which will come from these virtual robot pilots can also be shown
on the cockpit window.
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Concerning the concept of ATCO, there are several load monitoring devices integrated into the
ATCO’s working environment such as eye-trackers, heart rate monitors, skin temperature sensors,
motion tracking systems, infrared thermal camera systems and load tracking seat cushion sensors,
etc. (Figure 17). In this concept, on the one hand, all the physiological parameters of ATCOs will be
monitored and stored in real-time, and the five types of loads will be presented accordingly on the
ATCO’s screen. On the other hand, there will be a display for tasks and advice, which helps to avoid
misunderstanding between operators.
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4. Discussion

4.1. Evaluation of the Results

In highly automated systems, the role of mental condition was found to be increased, and task and
workload became more interconnected, and information load and communication load were detected
as new types of operator loads. Thereby a new operator load model was created and divided into
five categories, namely work, task, information, communication and mental load. Eye movement,
visual attention and eye blink of pilots (experienced and less-skilled) were measured in the flight
simulation during take-off and final approach. According to the outcomes, in the case of the complexity
of task increasing, the number of eye movements, and eye blink accordingly increased. Based on
these results, a recommendation of using eye-tracking systems was developed for operator training
in the flight simulator. This measurement lets the current researcher draw a mental picture of an
operator in real-time. On the other hand, the results of EDA measurement suggested that emotional
arousal was highest during flight take-off in comparison to en-route and landing. Moreover, based
on the analyses of the measured EDA, the arousal was found to be high when the flight took turns.
This measurement shows that the skin conductance level of operators can be measured continuously
during their operation; the results let the current researcher monitor the mental load of operators.
Lastly, operator load management systems were built for under and overload situations by using
this measurement.

With the developed system, operators will have tasks according to their current conditions,
including the level of total loads, state of physical and psychological parameters, and other aspects
(traffic complexity, weather condition, unlawful actions, etc.). In the new system, the vital health
parameters of operators will be continuously measured and stored during operation. In this concept,
the autonomous system recognizes the operators in the loop and in the case of the system detecting
any unbalanced loads (overload or underload situation), the system first generates some suggestions
to the operators which will be shown on their screens, and sends alerts and warning messages to
the managers and supervisors. If the operators in the loop are incapable of dealing with the routine
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tasks (such as strip marking, transferring an aircraft to the next sector) or in the case of failure, the
control of the aircraft will able to take over from the pilots in the loop by ground operators or the
fatigued ATCOs can be replaced with fresh ones. The overall result of this paper suggested that the
developed load monitoring and management methods serve as an excellent tool for balancing the total
operator load, thereby improving the performance of operators and increasing the safety of operators’
actions, particularly in an abnormal/emergency situation. The consequences of this development in
this research are: (i) monitoring operator total loads, (ii) managing operator actions, (iii) increasing the
level of situation awareness, (iv) reducing operator loads on the subject, (v) better decision making
and improving the quality of the decision, (vi) increasing operator effectiveness and productivity,
and (vii) increasing safety particularly in abnormal/emergency situations. The outcomes of this paper
will be useful in balancing operator total load, creating operator training courses, designing operator
working environments (cockpit and ATC systems), and decreasing communication errors between
operators, etc.

4.2. Load Management Concept Validation

Concept verification, validation and testing were continuously used during this research, and as
well as model development simulation. Only the major elements are summarized here. The current
authors adopted and developed a new concept on operators’ load modelling, monitoring and
management that could be used in simulation and testing in simplified forms as simulation and the
testing element of the concept. The current researchers, therefore, verified and validated the concept
only. Concept validation means the evaluation of the developed operator load models and monitoring
and management of the real processes. During the concept validation, the following aspects were
studied: (i) before starting the real measurements, the vital health parameters of the invited pilots
were measured in the flight simulator, (ii) same pilots and tasks were used for all of the measurements
(eye movements, electrodermal activity, and heart rate, etc.), and a test flying was performed through
predefined simplified tasks before the measurements were taken.

5. Conclusions

Due to rapid development in automated systems in aviation, it is expected that the role of operators
will be changed from active controlling to passive monitoring. This highly automated system may be
accompanied by unintended reductions in situation awareness, unbalanced operator load, increased
stress, and issues of mistrust, boredom, and monotony. While the responsibility of the operator
to fly safely remains unchanged, several new skills are required to control the aircraft. The future
operator environment (cockpit and future ground control tower for pilots) needs to be redesigned
taking into account various psychological parameters, human factors, and total operator load systems.
Operators need viable constructs, principles and aviation systems to promote a better understanding
of automation and balance their loads in complex circumstances.

The present research had the scope to develop general load monitoring and management systems
working in highly automated systems. To do so, first, the role and loads of operators were investigated
and analysed by using (i) outside measurements (like motion cameras, infrared thermal cameras), and
(ii) connecting directly to the operator’s body (EDA—Electrodermal Activity Device—OBIMON and
heart rate monitor). According to the overall results, all the investigated measuring methods fully
support the operator load index classification and allow the implementation of load monitoring and
display systems for pilots (Figure 16) and ATCOs (Figure 17). Second, some of the well-known operator
models like “load model” by Endsley, “Swiss Cheese Model” by James Reason and “information
model” by Wickens were improved and adapted to human operator work that enables full modelling
of the operator situation awareness and decision processes in highly automated systems (Figures 3–5).
Third, a new operator load model (namely: work, task, information communication and mental) was
created, tested and verified in flight simulators and partially validated in real situations (Figure 4).
Fourth, the Formulas (1)–(5) were defined for the load index calculation method of operators. Finally,



Sensors 2020, 20, 4665 27 of 32

the total load management rules were built and management methods were developed based on
workload, task, information, communication, and mental load for overload and underload situations
(Figures 9 and 10).
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