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Abstract

Chemical hyperspectral imaging (HSI) data is naturally high dimensional and large. There

are thus inherent manual trade-offs in acquisition time, and the quality of data. Minimum

Noise Fraction (MNF) developed by Green et al. [1] has been extensively studied as a

method for noise removal in HSI data. It too, however entails a manual speed-accuracy

trade-off, namely the process of manually selecting the relevant bands in the MNF space.

This process currently takes roughly around a month’s time for acquiring and pre-process-

ing an entire TMA with acceptable signal to noise ratio. We present three approaches

termed ‘Fast MNF’, ‘Approx MNF’ and ‘Rand MNF’ where the computational time of the

algorithm is reduced, as well as the entire process of band selection is fully automated.

This automated approach is shown to perform at the same level of accuracy as MNF

with now large speedup factors, resulting in the same task to be accomplished in hours.

The different approximations produced by the three algorithms, show the reconstruction

accuracy vs storage (50×) and runtime speed (60×) trade-off. We apply the approach for

automating the denoising of different tissue histology samples, in which the accuracy of

classification (differentiating between the different histologic and pathologic classes)

strongly depends on the SNR (signal to noise ratio) of recovered data. Therefore, we also

compare the effect of the proposed denoising algorithms on classification accuracy. Since

denoising HSI data is done unsupervised, we also use a metric that assesses the quality

of denoising in the image domain between the noisy and denoised image in the absence of

ground truth.
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Introduction

Chemical imaging is an emerging technology in which every pixel or voxel of an image con-

tains hyperspectral data, often consisting of hundreds or thousands of data points. The spec-

trum at each pixel resolves the chemical components at that point and, thus, provides the

molecular profile of the sample [2–4]. Computer algorithms that can process the data to infor-

mation useful for a particular problem often require a specific data quality, at that spectral res-

olution, that often determines scanning (signal averaging) time. In addition to the chemical

signature of the data, another benefit of modern technologies including machine learning is

that workflows can be automated with fully digital structure and function analysis of the data

[5–8]. For example, Fourier Transform Infrared (FT-IR) spectroscopic imaging is emerging as

an automated alternative to human examination in studying disease development and progres-

sion by using statistical pattern recognition [9–14]. For a practical protocol for tissue imaging,

as demonstrated in at least one instance of tissue histopathology, the signal-to-noise ratio

(SNR) of 4cm−1 resolution spectral data needs to be more than 1000: 1 [13]. To achieve this

SNR, especially for the emerging high definition IR imaging [15–17], extensive signal averag-

ing is required. The need for signal averaging increases processing time ðSNR �
ffiffi
t
p
Þ, in turn,

increasing acquisition time [18] to the extent that clinical translation becomes impractical. Sig-

nal processing approaches to reduce noise has previously been suggested to mitigate this crip-

pling increase in integration time by mathematical methods to utilize correlations in data to

reduce noise but suffer from two major drawbacks. First, given the large size of the data, the

mathematical operations require computer processing often comparable to the acquisition

time itself [19]. Second, such methods invariably try to separate data into informative and

noisy components; subsequently, a manual selection step is required to identify the informa-

tion-bearing components thus compromising the automation benefits of using spectroscopic

imaging for tissue analysis [20].

One class of mathematical transform techniques for noise reduction utilize the property

that noise is uncorrelated whereas spectra (signals) have a high degree of correlation. In a

transform domain, hence, the signal becomes largely confined to a few eigenvalues whereas

the noise is spread across all. Noise reduction can be achieved by retaining eigenvalue images

that correspond to high signal content and computing the inverse transform. All the eigen-

value data contain signal and noise but the relative proportion of the signal to noise which

forms a threshold criterion for inclusion of specific eigen-images in the inverse transform.

Inclusion of too many will not allow for significant noise rejection, while inclusion of too few

would result in loss of fine spectral features. Hence, identifying eigenvalues corresponding to

high signal content is an important step in the noise reduction process.

One widely used algorithm was provided by Green et al. [1] that applies Minimum Noise

Fraction (MNF) to order spectral components in terms of SNR in the transformed space. It

assumes that the covariance for the raw data SY and the noise Sδ can both be estimated. Simi-

lar to principal component analysis (PCA) that orders the components in terms of variance,

after transformation in MNF space, the top components are chosen and filtered and rest are

zeroed out. This reduced basis is then used for inverse transformation into the signal space.

Noise Adjusted Principal Components (NAPC) transform by Lee et al. [21] is a reformulation

of the MNF transform in terms of noise whitening process. While MNF and NAPC transforms

are mathematically equivalent, the latter consists of a sequence of two principal component

transforms: First to whiten the data (de-correlate noise from data); Second to perform eigen

decomposition on the modified covariance matrix, to order the underlying data by SNR.

Our goals in this work are to address the major challenges in noise rejection using mathe-

matical methods. Specifically, first, we aim to provide criteria for unsupervised band selection,
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thereby maintaining objectivity of the data analysis protocol and reducing analysis time within

the data processing pipeline by dispensing with the need for manual intervention. Second, we

aim to re-examine the mathematical formulation of the MNF approach to speed up the process

of computation of the forward and inverse transform MNF vectors. Specifically, we examine

two novel approaches: (a) use of a truncated singular value decomposition (SVD) variant that

is computationally more efficient, and (b) the use of a randomized variant of the above that

is also memory efficient and has a reconstruction accuracy-memory trade-off depending on

the application. Finally, we seek to improve the signal processing methods to provide a higher

confidence in the consistency and accuracy of the noise rejection pipeline. We propose a com-

parison between acquired and denoised biomedical images using a robust metric, thereby

providing better denoising guarantees in terms of both root mean square error (RMSE) and

structural similarity.

Materials and methods

Sample preparation and data collection

A paraffin embedded breast tissue microarray (BR1003) consisting of 101 cores were obtained

from US Biomax, Inc. The unstained sections of the TMA were placed on a BaF2 salt plate for

IR imaging. The sections were deparaffinized using a 24h hexane bath. High Definition data

was acquired using the Agilent Stingray imaging system with 0.62 numerical aperture and a

128 × 128 focal plane array. A spectral resolution of 4cm−1 along with a pixel size of 1.1μm was

obtained at the sample plane. The final FTIR sample has a spatial dimension of 11620 × 11620

pixels and spectral dimension of 1506 channels.

Classification

A random forest classifier was used to differentiate between the different histologic classes of a

tissue sample. Labeled pixels for each class were obtained by the cases annotated by a patholo-

gist. The pathologist distinguishes dense from loose collagen just by looking at the density of

the collagen fibers that are elucidated by the Hematoxylin and Eosin (H&E) stain. Pre-cancer-

ous and malignant epithelium are also identified using the H&E stained images as these images

are high resolution images that provide contrast in different cell types in the tissue. These

images are used to delineate nuclear architectures, shapes and sizes. These cellular features

along with the presence of basal cells and the extent of cellular growth are used to confirm the

disease state. On the other hand, while infrared imaging does not provide as much spatial

detail but offers a wide variety of molecular signatures that help in disease detection despite

the lower resolution.

In this study, we have used a four class model separating benign epithelium from malignant

epithelium. Finally, to assess the performance of the classifier, sensitivity and specificity is cal-

culated for all the classes to generate the receiver operating characteristic curve. The area

under this curve signifies the diagnostic potential of the model.

Methods

In practical situations, noiseless data dj is recorded by instruments as a noisy signal estimate yj,
due to fluctuations in detector current, backgrounds and source/instrument factors, which is

modeled as:

yj ¼ dj þ dj ð1Þ

where yj 2 R
S

is the actual data collected by the apparatus and dj 2 R
S

is the noise in the same
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pixel. The goal is to estimate δj given yj, so we can best estimate the true signal dj such that the

relevant features (peak positions, peak heights, relative peak spacing etc.) in the spectrum are

preserved.

Given a HSI Yorig 2 R
W�H�S

, where W, H are the spatial dimensions (width and height

respectively), it has been restructured into a 2D matrix Y 2 RN�S
, where N = (W ×H) is the

number of pixels, S is the number of spectral channels. Each column yi, 8i = [1: S] represents

the reshaped image for the ith spectral band and each row yj, 8j = [1: N] represents the spectral

signature for the jth pixel. The ith entry of the spectral vector yj 2 R
S of each pixel yij determines

the absorbance value of the tissue at that wavenumber. Wavenumbers ν are defined as inverse

of wavelength and have units cm−1. The recorded value at each wavenumber has unit absor-
bance/au, where au is arbitrary unit.

Mathematical background

Assuming additive noise only, raw data can be represented as Y = D + δ, where Y = {Y1, . . ., YS}

and D and δ are the uncorrelated signal (actual spectral data with baseline included) and noise

components of the raw data Y. Cov{Y} = SY = SD + Sδ, where SD and Sδ are the covariance

matrices of D and δ respectively. Noise Fraction (NF) for the ith band is defined as the ratio of

noise variance to the total variance for that band. Similarly Signal to Noise ratio (SNR) for the

ith band is defined as the ratio of signal variance to the noise variance for that band.

NF ¼ Varfdig=VarfYig ð2Þ

SNR ¼ VarfDig=Varfdig ð3Þ

MNF is the set of linear transformation (YMNF)i = Yϕi, for i = 1, . . ., S, such that the SNR for

(YMNF)i is maximum among all linear transformations orthogonal to (YMNF)j, for j = i + 1, . . .,

S. All the transformation vectors in MNF space follow �
T
i SY�i ¼ 1; 8i ¼ ½1 : S�. Maximization

of the noise fraction leads to a numbering of bands that gives decreasing image quality with

increasing component number. The SNR for (YMNF)i in MNF space can be formulated:

Varf�T
i Dg

Varf�T
i dg
¼
�

T
i SD�i

�
T
i Sd�i

¼
�

T
i SY�i

�
T
i Sd�i

� 1 ¼ li � 1 ð4Þ

The Noise fraction itself can then be re-factored as follows:

Varf�T
i dg

Varf�T
i Yg
¼
�

T
i Sd�i

�
T
i SY�i

¼
1

li
ð5Þ

The vectors ϕi are thus the real, symmetric eigenvectors of the eigenvalue problem:

detfSYS
� 1

d
� lIg ¼ 0 ð6Þ

Hence ϕi are the eigenvectors of SYS
� 1

d
, and λi, eigenvalue corresponding to ϕi, equals to

the noise fraction in (YMNF)i. Also, λ1� λ2� . . .� λS, so that the components show decreasing

image quality. Thus SNR is given by λi − 1.
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Geometric interpretation

As the data D and noise δ are additive and uncorrelated, we can write:

Y ¼ Dþ d

SY ¼ SD þ Sd

ð7Þ

Let the spectral decomposition of Sδ be Sδ = EΛδ ET. Rotating SY in Eq 7 with eigenvector

matrix E and rescaling it using the inverse-square root of the noise singular values Λδ, results

in new covariance matrix where the contribution of noise component has been turned into an

identity matrix.

SW ¼ ðL
� 1=2

d
Þ
TETSYEðL

� 1=2

d
Þ

¼ ðL
� 1=2

d
Þ
TETSDEðL

� 1=2

d
Þ þ ðL

� 1=2

d
Þ
TETSdEðL

� 1=2

d
Þ

¼ SWðDÞ þ Id

ð8Þ

Let the eigen decomposition of SW be SW = GΛMNF GT. Rotating SW in Eq 8 with eigenvec-

tor matrix G results in:

LMNF ¼ GTSWG

¼ GTSWðDÞGþ GTIdG

¼ LWðDÞ þ Id

ð9Þ

The series of transforms that we used to change the original data covariance matrix SY into

ΛMNF is given by the transformation vector F ¼ EL� 1=2

d
G which we call the MNF projection

vectors and ΛMNF estimates of SNR of the data.

Optimizing MNF

Expanding the entire MNF transform, we can infer the following:

D ¼ Y � F � R � F� 1

¼ Y � ðE � L� 1=2

d
� GÞ � R � ðE � L� 1=2

d
� GÞ� 1

¼ Y � E � L� 1=2

d
� G � R � G� 1 � L

1=2

d
� E� 1

¼ Y � E � L� 1=2

d
� G � R � GT � L

1=2

d
� ET

¼ Y � E � L� 1=2

d
� G � R � RT � GT � L

1=2

d
� ET

¼ Y � ðE � L� 1=2

d
� G � RÞ � ðE � L1=2

d
� G � RÞT

¼ Y � F̂ � ~FT

) F̂ ¼ E � L� 1=2

d
� G � R ==forward MNF transform

) ~F ¼ E � L1=2

d
� G � R ==inverse MNF transform

Since R is a block identity matrix R ¼
IK 0

0 0

" #

, introducing an extra RT term keeps the

value of the expression unaltered as R � RT = R. Writing the MNF transform in this way, we

ensure that we skip the costly matrix inversions of the MNF vectors. Also G � R is effectively

choosing the top K eigenvalues of G. Therefore we can reduce the computation cost by finding

Noise reduction and spectral chemical imaging

PLOS ONE | https://doi.org/10.1371/journal.pone.0205219 April 24, 2019 5 / 15

https://doi.org/10.1371/journal.pone.0205219


the reduced rank-K SVD of SY. The Λδ matrix inversion can also be replaced by more efficient

versions due to its diagonal structure.

Automatic band selection

The optimal value of K can be determined by inspecting the entries of ΛMNF = SNR + 1 which

is a diagonal matrix. The Rose criteria [22] states that an SNR of at least 5.0 is needed to be

able to distinguish image features at 100% certainty. We select the top K bands in the MNF

space for which SNR = ΛMNF − 1� 5.0. Automating this process is the main computational

speed factor that brings down the processing time from days down to a few hours.

Fast MNF

By exploiting the MNF formulation (sec. Optimizing MNF), we can avoid all inverse opera-

tions and replace them with transpose, thereby making computations faster. Owing to the

symmetric structure of covariance matrices, we also compute the singular value decomposition

using eigen decomposition which is faster. Also, the transformation matrices are of size

(S × K) instead of (S × S) where K� S. This is the main factor responsible for the algorithmic

speedup.

Approx MNF

Since K� S, it is inefficient to compute the full spectral decomposition of the covariance

matrix. Empirically, it was observed over different datasets, that the optimal value of the auto-

matically selected K is 2 − 3% of the total number of bands S. Hence we compute only a rank

K̂ truncated SVD of the whitened covariance matrix. This results in reduced computation

time as well as memory. The standard solutions to truncated SVD include the power iteration

algorithm and the Krylov subspace methods. Since power iteration is unstable at times due to

the structure of the singular values, we use a version of the Block Lanczos method [23]. We set

K̂ ¼ 0:03� S and compute the rank K̂ -SVD, then let the band selection criteria to decide the

optimal K.

Rand MNF

Although the block Lanczos algorithm can attain machine precision, it inevitably goes many

passes through SW, and it is thus slow when SW is large or does not fit in memory. To circum-

vent this scenario, we use a faster randomized and memory efficient version which computes

the K̂ -SVD of SW up to 1+ � Frobenius norm relative error [24].

Error metric

In the absence of ground truth images of denoised data, we use a non-reference image quality

metric this is simple and easy to use. The Method Noise Image (MNI) [25] metric aims at max-

imizing the structure similarity between the input noisy image and the estimated image noise

around homogeneous regions and the structure similarity between the input noisy image and

the denoised image around highly-structured regions, and is computed as the linear correla-

tion coefficient of the two corresponding structure similarity maps.

Noise reduction and spectral chemical imaging
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Results

Setup

For all the experimentation, a standalone machine with Intel Xeon E5 − 1660@3.20GHz CPU

and 64GB of RAM was used. Software for the simulations, results and plots include Matlab

and ENVI.

Complexity analysis

Table 1 shows the algorithmic time and space complexity in terms of memory usage for the

different MNF versions. The best algorithm in terms of time-space-accuracy is Approx MNF.

This is because it computes the best rank-K SVD with little loss in its approximation or mem-

ory usage. Depending on how much one wants a memory-accuracy trade-off, one may choose

to switch to use Rand MNF, as it is a randomized version with approximation error guided by

its parameters. For a typical FTIR spectrum with S� 1500 bands, the algorithm estimated the

optimal number of bands to be K� 30, resulting in an efficiency factor of 50×.

Timing analysis

Standard MNF is worst in terms of time complexity as it computes the full eigen decomposi-

tion of SW ðOðS3ÞÞ and uses all the S eigenvectors to transform the input data into MNF space

ðOðNS2ÞÞ. In comparison, Fast MNF still computes the full decomposition of SW ðOðS3ÞÞ, but

uses the Band selection criteria to retain only the top K eigenvalues. Hence only the top K
eigenvectors are used to transform the data into MNF space ðOðNSKÞÞ. For Approx MNF, we

only compute a truncated rank K̂ -SVD of SW, since it was empirically observed that the top K
chosen bands lie within K̂ ¼ 2 � 3% of S, thereby highly reducing the computational cost

ðOðS2KÞÞ. Again, only the top K eigenvectors are used to transform the data into MNF space

ðOðNSKÞÞ. Rand MNF uses a randomized algorithm to compute a truncated rank K̂ -SVD of

SW, hence it is much more efficient in terms of speed ðOðnnzðSWÞÞKÞ, as the values in SW

will only be non-zero for channels which are correlated in terms of signal. Only the top K
eigenvectors are used to transform the data into MNF space ðOðNSKÞÞ. Refer to Fig 1 for run-

time. In all the three variants with S� 1500 and K� 30, the algorithmic scaling of SK instead

of S2 reduces runtime by� 50×. For the BR1003 data, the entire MNF denoising process was

reduced from� 1 month to� 2 hours. This clearly shows that the larger the data size, the bet-

ter is the scaling of the proposed algorithms, thereby massively reducing the computational

time of denoising for large TMA and associated datasets.

Note: Since the structure of the noise is unknown, we cannot instinctively perform the

rank-K approximation of Sδ, because depending on experiment and instrument there is no

guarantee on the strength of noise present in the raw data. For this reason, in the first step of

eigen decomposition, we choose to retain bands which accounts for 99% variance in the noise

bands. This further reduces the computational time of the process (� 3× extra speedup).

Table 1. Comparison of time and space complexity of MNF versions. O: big-O complexity. nnz(X): # non-zero ele-

ments in X. N: # pixels, S: # spectral bands and K: # chosen bands.

Algorithm Time Space

1. MNF OðS3 þ NS2Þ OðNS þ S2Þ

2. Fast MNF OðS3 þ NSKÞ OðNK þ S2Þ

3. Approx MNF OðS2K þ NSKÞ OðNK þ SKÞ
4. Rand MNF OðnnzðSWÞK þ NSKÞ OðNK þ SKÞ

https://doi.org/10.1371/journal.pone.0205219.t001
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Space analysis

Standard MNF computes the full SVD decomposition ðOðS2ÞÞ. The transformed data in

MNF space contains all S bands ðOðNSÞÞ. Fast MNF again does the full SVD decomposition

ðOðS2ÞÞ. However the data in transformed domain only contain K bands ðOðNKÞÞ. Both

Approx MNF and Rand MNF compute the truncated rank K decomposition, hence there are

K eigenvectors each of S dimension ðOðSKÞÞ. The data in the transformed domain contains

only K bands ðOðNKÞÞ. For the FTIR data with S� 1500 bands and K� 30, we achieve a

RAM space saving of� 50×, allowing us to process more data simultaneously in one go.

Denoising profiles

The improvements offered by the different versions of the MNF presented in this study are

illustrated in Fig 2. The extent of denoising both in the spectral and spatial domain is approxi-

mately the same for all the different MNF algorithms. Fig 2A. depicts the spatial detail offered

by different MNF versions with zoomed in sections in Fig 2C and 2B. shows the horizontal sig-

nal profile across the sample. Next, spectral profiles are compared across the different algo-

rithms with reference spectrum (without MNF) to illustrate the extent of noise removal in

Fig 1. Runtime comparison of different implementations of MNF. The figure illustrates how time scales with

varying size of the input data for proposed versions and optimizations of the standard MNF. The size is varied from

10K pixels (100 × 100) to 1000K pixels (1000 × 1000). Compared to the standard MNF, all the other versions have a

speedup factor of� 10. This speedup is obtained by utilizing the fact that we do not need all the forward MNF vectors,

but only the top K ones that are digitally calculated, avoiding manual selection. Also, a set of optimized matrix

operations have been implemented, for instance replacing all inverse operations with transpose for improved

computational performance. Due to BLAS optimized modules in Matlab, matrix multiplications are efficiently

distributed across the cores automatically. Note: The standard MNF runtime includes automatic band selection.

https://doi.org/10.1371/journal.pone.0205219.g001
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Fig 2. Spectral and SNR comparisons: A. IR image of a patient case at amide 1 band. B: Intensity profile along the

horizontal line in the cases shown in A spanning the entire core for both the noisy and the denoised (in gray) version.

C. Zoomed in view of the area marked with a red box in top row. D. Comparison of the spectral profile of the noisy

and the MNF version at the pixel marked in red in C.

https://doi.org/10.1371/journal.pone.0205219.g002
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each case (Fig 2D). It can be seen that even with a speed up factor of� 10 there is no signifi-

cant reduction in the spectral and spatial image quality.

Error metric

Along with evaluating the performance of the presented MNF versions by examining the tissue

profile, we utilize the MNI (method noise image) metric [25] aiming to maximize the struc-

tural similarity between the input noisy image and the denoised image around highly-struc-

tured regions, in the absence of ground truth. Fig 3 shows the metric values for a core, over all

the 1506 bands. A lower value of MNI indicate better denoising and structure preservation.

This is evident from the fingerprint region (900 − 1800cm−1) which has very low values of

Fig 3. MNI metric plot for a breast tissue biopsy. Lower values of MNI indicate better denoising and perseverance of structure. Across all the four

variations we notice low values of MNI in the fingerprint region (900 − 1800cm−1), which is mainly responsible for tissue classification. This shows that

even in the presence of noise, the subtle structural features of the tissues are preserved after denoising. High MNI values in the IR silent region (1800

− 2700cm−1) are expected as they mainly contain noise and no relevant signal components. The functional region (2700 − 3600cm−1) has low MNI again

followed by high MNI values in the water vapor absorption bands (3600 − 3800cm−1).

https://doi.org/10.1371/journal.pone.0205219.g003
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Fig 4. Eigenimages of the top K bands in the MNF space for two given TMA cores. There is an evident decrease in structural features and SNR with

increase in band number. Manually inspecting these eigenimages or defining some measurement metric (Reddy et al. [20]) on them, increases the

processing time and computation cost for MNF. Our approach automatically determines the optimal value of K from the MNF eigenvalues in a

computationally efficient manner.

https://doi.org/10.1371/journal.pone.0205219.g004
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MNI, while it is higher for the IR silent region (1800 − 2700cm−1). Since Standard MNF, Fast

MNF and Approx MNF are almost the same in terms of reconstruction accuracy, all the plots

from those three methods are same. The Rand MNF method which has a space-accuracy

trade-off, produces similar results but with slight variations in most bands (notice the wavering

in the plot).

Visualizing MNF bands

Fig 4 visualizes the top K eigenimages (where K is automatically determined by the selection

criteria) for two different patient cases (core1 and core 2). The bands in MNF space are

arranged in decreasing order of SNR (increasing order of noise fraction), resulting in decreas-

ing image quality with increase in band number. This suggests that the eigenimages in MNF

space have decreasing image quality in terms of both the noise and structural detail. So, a few

top bands in the MNF space should be able to capture most of information represented in the

data along with denoising. This concept can further be utilized to develop automated selection

criteria for the number of bands to be kept after the transform. This can help eliminate user

based subjectivity, make the process faster and easier to implement.

Impact on tissue classification

Furthermore, we studied the effect of MNF based data processing on tissue classification mod-

els. In particular we have investigated the performance of different MNF algorithms against

Fig 5. Effect of MNF variants on the classification accuracy of a breast tissue biopsy. A-D. Classified images after standard MNF, fast MNF, Approx

MNF and Rand MNF in a clockwise order. E. H&E (Hematoxylin and Eosin) stained image of an adjacent slice of the same tissue. F. Receiver Operating

Characteristic (ROC) curve with area under the curve (AUC) values for the malignant epithelium class.

https://doi.org/10.1371/journal.pone.0205219.g005
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raw data for distinguishing cancer from benign breast cells. It can be seen in Fig 5, that for all

the MNF versions, the Area Under Curve (AUC) value of the malignant epithelium (cancer)

class is the same and there is a 10% drop in accuracy without the use of MNF. This suggests

that for the development of highly accurate and efficient diagnostic models with HSI data,

MNF gives better performance. Also, the MNF techniques presented in this paper (Fast MNF,

Rand MNF and Approx MNF), offers the same performance as compared to standard MNF

with a factor of 60× reduction in the processing time and 50× reduction in memory space

required for computation.

The case shown in Fig 5 belongs to a typical hyperplasia disease state that is known to be

correlated with malignant signature but the extent is not well understood. This leads to slight

variations in the projections as the some cells may be at the interface of benign and malignant

classes. Further to illustrate that the projections are mainly different because of borderline pix-

els, projections of a benign case is also shown in Fig 6 where the epithelial assignments are sim-

ilar for all the MNF approximations except at the edges.

Conclusion

In this paper, we demonstrate how to automate the band selection process in the MNF space,

which drastically reduces the workflow duration of MNF denoising of TMA’s from almost a

month down to a matter of hours. We introduced three different optimizations of the MNF

algorithm depending on the speed-memory-accuracy trade-off, resulting in a 60× runtime

improvement and 50× memory efficiency. A well established error metric is also used which

helps us decide the quality of denoising, in the absence of ground truth images. Similar

Fig 6. Effect of MNF variants on the classification accuracy of a benign case of breast tissue biopsy. A-D. Classified images after standard MNF, fast

MNF, Approx MNF and Rand MNF in a clockwise order.

https://doi.org/10.1371/journal.pone.0205219.g006
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classification performance of the suggested approaches as compared to conventional tech-

niques suggesting the potential of the developed methods for computationally efficient analysis

of big datasets for diagnostic applications. As a future work, we would like to make better

approximations of the noise model itself, so that we can apply approximations for the eigen

decomposition of the noise covariance matrix, hence further reducing the computational time

of the process.

Supporting information

S1 Dataset. A small set of the data (S13_noisy.mat) we used for our experiments has been

uploaded as a supplementary file. Also in the supplementary files please find all our matlab

code files (S_1_file-S_12_file) (.m).
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