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Abstract

Background: While males usually benefit from as many matings as possible, females often evolve various methods of
resistance to matings. The prevalent explanation for this is that the cost of additional matings exceeds the benefits of
receiving sperm from a large number of males. Here we demonstrate, however, a strongly deviating pattern of polyandry.

Methodology/Principal Findings: We analysed paternity in the marine snail Littorina saxatilis by genotyping large clutches
(53–79) of offspring from four females sampled in their natural habitats. We found evidence of extreme promiscuity with
15–23 males having sired the offspring of each female within the same mating period.

Conclusions/Significance: Such a high level of promiscuity has previously only been observed in a few species of social
insects. We argue that genetic bet-hedging (as has been suggested earlier) is unlikely to explain such extreme polyandry.
Instead we propose that these high levels are examples of convenience polyandry: females accept high numbers of matings
if costs of refusing males are higher than costs of accepting superfluous matings.
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Introduction

In many species, females mate with more than one male to

decrease their risk of only receiving sperm of poor quality or with

low compatibility, to increase the probability of receiving sperm

with sexually selected ‘‘good genes’’, to avoid inbreeding and to

increase genetic diversity of the offspring [1–6]. However, benefits

of multiple matings are likely to decline with number of males

owing to sampling effects, that is, additional matings will only

marginally contribute with genes of better quality [2], unless

postcopulatory mate-choice, such as cryptic female choice and

sperm competition, is extremely effective [5]. Moreover, benefits

of matings are traded off against costs of additional matings [1].

These are possible reasons why, in a majority of studied species,

multiple mating means that a female mates with more than one

but seldom more than a few males [3,7–10]. Nevertheless, in some

species of single-queen social insects and high-density flies, females

mate ten times or more as many males than in other species

[11–13], which may be explained by increased genetic variation

among offspring [14], nutritional benefits [15–16, but see 17–18

for examples of where nuptial gifts instead have detrimental effects

on females], or convenience polyandry where costs of resisting

matings exceed the costs of additional matings [19].

Female L. saxatilis become mature after six months and can live

several years. Mating activity is most intense during spring and

summer but copulating pairs can be observed year round. The

species is ovoviviparous and the female retains the fertilized eggs in

a brood-pouch until they hatch into 0.5 mm small snails.

Populations are dense (100–1000/m2) and sex ratios are even.

Consequently, most males encounter tens of receptive females

each day. Experimental studies show no evidence of precopulatory

female-based mate-choice and no male-male competition, al-

though males can exert choice with respect to size of partners [20].

To find a partner, the male follow the mucous trail of other snails

[21]. When encountering a female, he mounts her shell and

positions himself at the right hand side, inserting the penis under

the shell of the female. Males mount shells of both females and

males, as well as juveniles, but copulation attempts with males and

juveniles are interrupted after only a few minutes, while matings

with females lasts 20–30 minutes or more [20,22]. During

copulation the female is usually inactive, making no attempts to

reject the male [22]. Sperm is slowly transferred by ciliary

movement along the groove in the male penis into bursa copulatrix of

the female [20]. Besides fertile eusperm, ejaculates contain

parasperm - sterile germ cells that have lost their nucleus, and

are thought to facilitate transport of the eusperm [23]. During

mating the female carries the male, which increases the risk of her

being dislodged by waves and translocated from the upper littoral

zone to the sublittoral where predation by crabs and fishes are

much more severe (Johannesson et al. subm.). Females carry
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mature offspring in their brood pouch throughout the year. When

females are kept in isolation, they continue to give birth to new

offspring for at least ten months (Johannesson pers. obs.), which

indicates that they have the capacity to store functional sperm for

long times.

The reproductive biology of Littorina saxatilis suggests that

females may be promiscuous and that multiple paternity is

common. In an earlier attempt to estimate the level of multiple

paternity in L. saxatilis we detected an average of 7.6 males

contributing to broods of wild-mated females [24]. However, we

analysed only 20–23 out of 23 to 87 offspring per brood. Based on

earlier results of about five sires per clutch in a related species

Littorina obtusata [25], we expected this to be enough to estimate the

number of sires. Since we estimated up to ten sires in one sample,

the question arose whether the sample size used allowed us to

detect all sires in a brood. The true or most likely number of sires

in a brood could not be estimated directly or by modeling from

these results, since, theoretically, sampling and analyzing more

offspring may produce either a distribution with a higher number

of offspring per sire but the same number of sires in the brood, or

the same average number of offspring per sire and more sires in

each brood.

To estimate the true paternity level in L. saxatilis we now

genotyped almost all offspring in four large broods from our

previous experiment. The results show that the number of sires

involved increased substantially, whereas the average number of

offspring per sire was similar to what was found using a smaller

sample size. This new finding challenges our earlier suggestion that

polyandry in L. saxatilis is a result of genetic bet-hedging applied by

the females to avoid inbreeding, bad genes and genetic

incompatibility [24].

Methods

Sampling the Broods
The experiment was performed in 2004 and part of the material

was earlier presented in [24] where a detailed description of the

experimental design can be found. In brief, 18 wild-mated females

were collected in July on the island Saltö (N58u539, E11u10u) and

incubated during two and a half months in small aquaria with a

constant flow-through of seawater. At the end of this period 15

females were found to have produced 23–302 offspring (one

female died and two did not produce any offspring). All females

and offspring were subsequently stored at 270uC. In the previous

study we randomly chose eight families with total clutch sizes of

23–87, and analysed 20–23 randomly chosen offspring per family.

In the present study we analysed more offspring from three of the

earlier analysed families: F5, F7 and F8, that had intermediate

clutch sizes (69–87), and also included a new family F9, containing

117 offspring. After combining the previous and new data, the

number of analysed offspring was 53–79 per clutch (Table 1).

DNA extraction was not successful for the smallest juveniles.

Microsatellite Genotyping
DNA was extracted by the CTAB method [26], using pieces of

muscle tissue from the females and whole juveniles. Five

microsatellite loci, Lsub62, Lsub32, Lsub8 [27], Lsax6 and Lx23

[28] were amplified following the PCR protocol described in [24].

Allele sizes were determined by electrophoresis on a Beckman

Coulter CEQ 8000 automatic sequencer, followed by analysis with

the CEQ Fragment Analysis software.

Paternity Inference
The likelihood-based software COLONY [29] was used to

divide clutches into full-sib families and to estimate genotypes of

sires. Population allele frequencies were calculated from the data,

including the families analysed earlier [24], for more accurate

estimation. In the analyses, we assumed that only females were

polygamous, since COLONY allows either polygyny or polyandry,

not both. However, given the high population density and low

motility of the snails and that the females were sampled several

meters apart, it is very unlikely that the same male would have

mated with two or more of the analysed females. Genotyping error

rate was set at 2%, as estimated from the frequency of cases when

the genotype of an offspring and the mother did not match (in such

cases the genotype in that locus was denoted as missing data). An

earlier analysis of inheritance of the microsatellite loci used in this

study showed the presence of null alleles in the loci Lsax6 and

Lsub8 but no evidence of allele drop out in any of the loci [30].

However, the observed rare mismatches could not be explained by

maternal null alleles, since maternal genotypes were heterozygous,

with both alleles segregating in the rest of the offspring in a

Mendelian fashion. Instead, several different sources (stuttering,

amplification of non-specific fragments) appeared to contribute to

the genotyping artefacts. Accordingly, we ran COLONY with

‘‘other than drop out’’ error set at 2% rate per locus. This analysis

was run three times, and the configuration with best Log

Likelihood was chosen for further analyses. The most likely

paternal configurations were also compared with the minimum

numbers of sires explaining offspring genotypes in each half-sib

family, obtained using MINSIRES, a software that calculates the

minimum number of sires from multi-locus genotypes of progeny

in cases with large number of sires per brood [31].

The observed numbers of offspring per sire, as estimated by

COLONY, were compared with the distribution expected under

random mating in a large gamete pool, using a truncated Poisson

distribution [29,32]. To test whether genetic similarity between

parents affects fertilization success, we estimated the correlation

between the number of offspring and the relatedness between

parents [33] with the software RELATEDNESS 5.0.8 (http://

Table 1. The number of sires in four half-sib families of Littorina saxatilis.

Female Observed no of offspring Analysed no of offspring Most likely no of sires Minimum no of sires

F2 87 77 23 21

F6 71 71 16 15

F8 69 53 15 12

F9 117 79 23 20

Four females and their offspring were genotyped at five microsatellite DNA loci. The most likely number was estimated using the likelihood-based software COLONY
and the minimum number was calculated using MINSIRES.
doi:10.1371/journal.pone.0009640.t001
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www.gsoftnet.us/GSoft.html) using maternal and estimated pater-

nal genotypes. In both the analysis of random mating and genetic

similarity, the data for the four families were pooled.

To assess the effect of sample size on the estimated number of

sires, we subsampled offspring of one randomly chosen female (F2)

and estimated the most likely number of fathers. This was repeated

55 times with sample sizes ranging between 10 and 77 juveniles.

Results

The five microsatellite loci displayed high levels of polymor-

phism, with numbers of detected alleles per locus ranging between

9–23. The most likely numbers of sires contributing to each of the

families were 23, 16, 15 and 23, as estimated by COLONY

(Table 1). The results of the three independent runs showed very

little variation: number of sires was estimated to 14 instead of 15 in

F8 in one run and to 24 instead of 23 in F9 in another.

Furthermore, high proportions of the offspring were assigned to

identical full-sib families in all three runs (68, 100, 94 and 92% for

the F2, F6, F8 and F9 families, respectively). Estimating the true

least number of fathers based on multi-locus genotypes of the

progeny in MINSIRES [31] gave minimum numbers of sires of

21, 15, 12 and 20, which are all very close to the estimated full

number of sires that we obtained from the likelihood approach

using COLONY, thus confirming the high level of multiple

paternity. Indeed, the two estimates are expected to be close when

the true number of sires is large [31].

The repeated subsampling of various numbers offspring

demonstrates that the higher level of multiple paternity in the

present study (mean 6 S.E. = 19.362.2), as compared with the

earlier results (mean 6 S.E. = 7.662.1) [24] is a matter of sample

size (Fig. 1). Within each half-sib family each father contributed to

between one and eleven offspring, with a mean number of

offspring per father of 3.6 (Fig. 2), which is close to 2.9, found in

the previous study. A truncated Poisson distribution overlaying the

distribution of paternal offspring suggests that the fertilization

process deviates from a random process (P = 0.005, df = 5,

x2 = 16.7), with more males than expected by chance siring one

or four offspring and less males than expected siring two or three

offspring (Fig. 2). In the three families that were partially analysed

earlier, most of the full-sib families increased in size by adding

more data while only a few of the new offspring resulted in new

full-sib families (with only one member). This argues against the

possibility that the number of sires increased merely due to higher

possible number of genotyping errors in the larger dataset. Finally,

we found no correlation between relatedness of male to the female

and the number of offspring sired by this male (R2 = 0.017;

P = 0.26). However, this result should be treated with caution,

since many sires had 1–4 offspring only, and thus, their genotypes

could not be reconstructed with high confidence (average

probabilities 6 S.E. for locus genotypes of sires with 1, 2, 3, 4

and 5 or more offspring were 0.2660.02, 0.5360.04; 0.7260.04,

0.8160.02 and 0.9260.02, correspondingly).

Discussion

We have shown that polyandry in the marine snail L. saxatilis is

exceptionally high, in fact among the highest ever recorded. In L.

saxatilis, a brood of 60–80 offspring from one female is sired by 15–

23 males, each male being the father of only 5–6% of the offspring.

We acknowledge two potential limitations in the present dataset:

small sample size (four clutches) and the presence of null alleles in

two of the five microsatellite loci used for genotyping. However, it

is not likely that these factors inflated our estimates of number

of sires in the snail families. Variation in the number of sires

between the four clutches was relatively low compared to the

mean (mean 6 S.E = 19.362.2), and in the earlier analysis of eight

clutches the number of sires did not vary much either [24]. Thus,

it seems unlikely that, by chance, we picked four extremely

promiscuous females; however, for more precise estimates of

multiple paternity levels and its variation between clutches in this

species a larger sample size is warranted. Null alleles might cause a

problem in paternity reconstruction from genetic data, producing

apparent mismatches between genotypes of parents and their

offspring. While we did not detect any maternal null alleles in the

analyzed families, there could still be sires with null alleles in two of

the analyzed loci. This was taken into account by allowing for

genotyping errors in paternity reconstruction in COLONY, i.e.

mismatch in a single locus did not lead to an immediate inference

of an additional sire [29].

Although promiscuity is common among animal species, such

extreme levels of multiple paternity as reported here for L. saxatilis

Figure 1. The effect of sample size on the estimated number of sires. Most likely number of sires is estimated using COLONY in random
subsamples of offspring from a single brood of Littorina saxatilis; subsample size varies from 10 to 77 (i.e. the whole brood).
doi:10.1371/journal.pone.0009640.g001
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have rarely been found outside a few species of social insects in

which new colonies are established by single queens [13,34,35]. In

addition, extreme levels of multiple mating have been reported for

some other insect species, such as the seaweed fly (Coelopa frigida) in

which a female may mate 600 males during her three week life

[36]; genotype data is needed, however, to test if this corresponds

to similarly extreme levels of multiple paternity.

In a range of species, female promiscuity is used as an effective

tool to avoid inbreeding [37–40], or to reduce risks of genetic

incompatibility [41,42]. In most promiscuous species studied,

however, only two or a few males are involved in siring offspring of

the same female during the same mating season [3]. These

findings fits the general prediction from theory, that female costs

increase linearly with the number of mated males, while female

rewards peak at a low number of mated males and thereafter

decline asymptotically [2,43]. Consequently, extreme levels of

polyandry are unlikely to add genetic benefits to the female and

her offspring, unless circumstances are exceptional such as in some

species of social insects where effective population sizes are

severely restricted by a large part of each colony being excluded

from reproduction, in particular in species that found new colonies

by single mated queens. Indeed, modelling shows that genetic bet-

hedging is not a successful strategy unless populations are small

and costs of mating are low [14]. This model is supported by

recent empirical data: polyandry involving 2–4 males did not

increase levels of genetic variation and/or fitness of offspring in a

shark species in comparison to monoandry [10]; similarly, genetic

variation increased only marginally due to polyandry (2–3 males)

in a species of social ants [13]. Hence, recent findings challenge

earlier opinions that genetic benefits are important to explain

multiple paternity (although see [44]). Consequently, extreme

levels of polyandry are even more difficult to explain with genetic

benefits for the female and the offspring. The finding that the

number of sires of a brood of L. saxatilis is as high as 15–23 thus

challenges our earlier suggestion that genetic bet-hedging is a main

explanation for polyandry in this species [24].

An alternative explanation for promiscuity is convenience

polyandry [19], that is, females take the costs of additional

matings instead of spending time and energy on trying to reject

harassing males. Convenience polyandry is documented among

species of reptiles, insects and crustaceans, often in combination

with male-female battles, and sometimes with cryptic female

choice [36,45–47]. In seaweed flies, high population densities

together with an even sex ratio and intense precopulatory female-

male battles, suggests that female flies take the costs of superfluous

matings instead of increased costs of prolonged battles [48].

Similarly, L. saxatilis forms exceptionally dense populations of both

sexes on the shore, increasing a female’s risk of male harassment.

In contrast to the flies, females rarely attempt to reject mounting

males [22], despite the fact that matings are costly to females. In a

recent study we show that females that carry males during mating

are more susceptible to dislodgement by waves than females

without males on their back, (Johannesson et al. subm). A likely

explanation is that costs for rejection of males are higher than

accepting superfluous matings. To withdraw into the shell, for

example, will result in dislodgement and likely being washed off

shore with a substantially increased mortality risk [49]. Instead of

rejecting mounting males, females actively halve the number of

matings by producing an andromorphous mucous trail that result

in males being unable to discriminate between female and male

trails of this species, as is possible in closely related species

(Johannesson et al. subm.). This is a very cost-effective way of

reducing the number of matings.

The fact that the distribution of number of offspring per sire

deviated from the expected number under random fertilization would

suggest postcopulatory sexual selection in the species. However, as

sires with one or four offspring were over-represented and sires with

two or three offspring were under-represented, the results are

inconclusive and a further experimental assessment is needed to test

for postcopulatory sexual selection. Although we did not find a

correlation between relatedness of male and female genotypes and

number of offspring, the possibility that some sperm were selected

against remains open due to obvious limitations of inferences from

offspring of wild-mated females: 1) there could have been matings

with additional males that did not result in any offspring; 2) genotypes

of sires that had 1–2 offspring cannot be reconstructed reliably. This

will be investigated further in a laboratory experiment when virgin

females are mated with several known males.

Figure 2. Full-sib family size distribution in four broods of Littorina saxatilis. Observed number of offspring per male is estimated in
COLONY. Expected number of sires is approximated by a truncated Poisson distribution.
doi:10.1371/journal.pone.0009640.g002
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Another possibility is if snail females benefit from multiple

matings by receiving nuptial gift in the form of parasperm [23,24].

The general function of parasperm is paternity assurance that in

different species of insects includes nuptial gifts to females,

suppressing female mating activity, formation of sperm plugs after

copulation or even attacks on the rival sperm [15–18]. Although

prosobranch molluscs exhibit complex and diverse forms of

parasperm, their function is still unknown [23]. In Littorina snails,

parasperm cells produce polysaccharide-rich vesicles, released in

the female bursa copulatrix, which could serve as nuptial gifts, and

lysosomes with other secretory products that may affect the female

or the rival sperm [23,50]. However, these hypotheses are solely

based on cell morphology of the parasperm and require

experimental support [23,50].

As discussed earlier [24], L. saxatilis may pass severe population

bottlenecks associated to occasional toxic algal blooms and

recolonization of island sites. During such events polyandry would

potentially be beneficial to females colonizing new sites, similar to

queens of social insects that establish a new colony. Indeed, high

levels of multiple paternity (ten sires per brood or more)

substantially increase effective population size compared to low

levels of multiple paternity, for which the effective population size

is actually lower than for complete random mating and

monogamy [51,52]. Possibly, the extreme level of polyandry in

L. saxatilis is beneficial during occasional bottlenecks, but the costs

of multiple mating will still be carried by all females daily, so this is

unlikely to be the sole explanation for this unique behaviour.

Instead, we conclude that convenience polyandry is a main factor

explaining the extreme level of polyandry in L. saxatilis, but that

positive genetic effects during situations of strong bottlenecks,

nutritional benefits and postcopulatory sexual selection may add to

pay for the increased costs of excessive matings.
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