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Abstract

Understanding the influence of individual attributes on demographic processes is a key

objective of wildlife population studies. Capture-recapture and age data are commonly col-

lected to investigate hypotheses about survival, reproduction, and viability. We present a

novel age-structured Jolly-Seber model that incorporates age and capture-recapture data to

provide comprehensive information on population dynamics, including abundance, age-

dependent survival, recruitment, age structure, and population growth rates. We applied our

model to a multi-year capture-recapture study of polar bears (Ursus maritimus) in western

Hudson Bay, Canada (2012–2018), where management and conservation require a

detailed understanding of how polar bears respond to climate change and other factors. In

simulation studies, the age-structured Jolly-Seber model improved precision of survival,

recruitment, and annual abundance estimates relative to standard Jolly-Seber models that

omit age information. Furthermore, incorporating age information improved precision of pop-

ulation growth rates, increased power to detect trends in abundance, and allowed direct esti-

mation of age-dependent survival and changes in annual age structure. Our case study

provided detailed evidence for senescence in polar bear survival. Median survival estimates

were lower (<0.95) for individuals aged <5 years, remained high (>0.95) for individuals aged

7–22 years, and subsequently declined to near zero for individuals >30 years. We also

detected cascading effects of large recruitment classes on population age structure, which

created major shifts in age structure when these classes entered the population and then

again when they reached prime breeding ages (10–15 years old). Overall, age-structured

Jolly-Seber models provide a flexible means to investigate ecological and evolutionary pro-

cesses that shape populations (e.g., via senescence, life expectancy, and lifetime
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reproductive success) while improving our ability to investigate population dynamics and

forecast population changes from capture-recapture data.

Introduction

Age structure affects population dynamics and how populations respond to environmental

change [1]. For many organisms, age is an important factor determining an individual’s con-

tributions to population growth [2]. At the population level, differences in age structure can

result in divergent population trajectories even if total abundances are comparable and popula-

tions are exposed to similar environmental conditions. Knowledge of age structure, age-spe-

cific demographic rates, age-specific abundance, and how these factors interact through time

is important for detailed assessments of population dynamics, viability, and the consequences

of environmental variation and management actions [3–6]. Although shifting age structures

influence population dynamics and may cause substantial deviations from asymptotic projec-

tions, age structure and changes in age structure through time are rarely estimated in studies

of free-ranging wildlife [3, 6].

Capture-recapture methods provide a robust framework to estimate demographic processes

and incorporate auxiliary information to improve inferences [7]. Collection of age data or its

correlates (e.g., size or length) is common in capture-recapture studies (e.g., [8] and citations

therein). The importance of age on demographic rates has led to a variety of single- and multi-

state capture-recapture models that condition on initial capture (i.e., estimate demographic

rates, not abundance) to investigate age-dependent survival in terrestrial and aquatic ecosys-

tems [5, 7, 9–11]. Inference is generally limited to estimates of demographic rates for the

marked subset of a population. Methods to incorporate age- or age-related data in open-popu-

lation capture-recapture models that do not condition on first capture and can jointly estimate

survival, recruitment, and abundance (e.g., Jolly-Seber models), however, are more limited

and lack a unifying framework. Efforts to include age or age-like effects in Jolly-Seber (JS)

models include population reconstructions [12], estimating residency time in stopover dura-

tion models [13–16], and modified open-population models with Horvitz-Thompson estima-

tors for abundance [8]. While each of these approaches address study-specific challenges, they

involve analyses detached from the JS framework [8, 12], require study durations that are

greater than the lifespan of the study species [14, 15], or involve modeling demographic pro-

cesses prior to the study to account for individuals born before the first occasion [15]. These

challenges are particularly limiting for studies of long-lived species, which are often of high

conservation concern and a regular focus of long-term capture-recapture studies to monitor

abundance and demographic rates [17, 18].

Here, we develop a novel and generalizable age-structured JS open population model to

jointly estimate age-specific demographic rates, abundance, population age structure, annual

changes in age structure, and recruitment from capture-recapture and age data. Our approach

integrates six processes into one state-space JS model [19–21]: (1) age structure in the first year

of the study (i.e., year 1), (2) recruitment, (3) aging, (4) survival, (5) abundance, and (6) imper-

fect detection from capture-recapture data. This age-structured JS approach is straightforward

to generalize and can be applied to any species where capture-recapture and age data (or corre-

lates thereof) are collected, including when some observed individuals are missing age data.

The novelty of our approach lies in treating individual age in year 1 as a random variable,

where 0 is not yet born and values> 0 indicate initial age (i.e., born prior to the study). After
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occasion 1, the traditional JS recruitment process describes new births, and individuals age

deterministically after birth. Modeling year-1 age-structure, rather than birth and survival pro-

cesses for the lifespan of the species prior to the study [15], is particularly beneficial for studies

of long-lived species because modeling decades of demographic processes prior to the study

and the associated assumptions are no longer required. This extension is also wholly contained

within the family of JS models [e.g., 16, 19, 21, 22], which provides opportunities to incorpo-

rate covariates, individual heterogeneity, and alternative parameterizations [21, 22] while cre-

ating new possibilities to incorporate age data, growth models, and investigation of age-related

ecological hypotheses that are common in conditional-on-first-capture capture-recapture

studies [5, 7, 9–11, 23] but generally missing in studies utilizing JS models. Further, because it

is formulated as an individual-based model, our approach extends to studies with incomplete

age data, correlates of age, and a variety of age-dependent demographic studies including evo-

lutionary and life history analyses (e.g., senescence, life expectancy, reproductive success),

recruitment, changes in age structure through time, and population viability analyses.

We begin by describing a state-space JS model using the Schwarz and Arnason superpopu-

lation formulation [24, 25] (hereafter JS model) and then extend the JS model to incorporate

age structure. We use simulation to validate that the age-structured JS model (1) returns unbi-

ased parameter estimates, (2) improves parameter precision relative to the JS model without

age data, and (3) extends inference from the JS model to include unbiased estimates of age-spe-

cific demographic processes.

We applied the age-structured JS model to a case study investigating polar bear (Ursus mar-
itimus) recruitment, abundance, age-dependent survival, and age structure in western Hudson

Bay, Canada (hereafter WHB). Improved estimation methods from limited data are particu-

larly relevant for managing polar bears and other difficult-to-study species in rapidly changing

environments [26]. Although capture-recapture studies are widely used to estimate polar bear

vital rates and abundance [27–29], age data provide information to investigate hypotheses on

age-class specific survival (e.g., subadult vs adult) [28, 29], senescence [30–32], and age struc-

ture [33]. However, in many cases the precision of demographic parameter estimates is low

and some parameters, particularly abundance, exhibit unrealistic fluctuations from year to

year [27–30]. Integrating capture-recapture and age data via an age-structured JS model pro-

vides new opportunities to address these challenges while also addressing the influence of age

structure on population dynamics.

Materials and methods

Jolly-Seber superpopulation formulation

We follow the methods of [25] for Bayesian analysis of the JS superpopulation model (i.e.,

state-space formulation using data augmentation; see also [34]), where the superpopulation is

defined as the group of animals that are part of the population at any point during the study

period. Data augmentation produces a dataset of M individuals that are allocated among K
study occasions according to a multinomial process for entry probabilities. Each individual in

the augmented data set has an inclusion parameter wi, where wi = 1 if the individual is part of

the superpopulation and 0 otherwise. We assume

wi � BernoulliðcÞ ð1Þ

where ψ is the probability an individual in the augmented data set is part of the superpopula-

tion. Note, wi = 1 is known for any observed individual. Individuals recruit into the superpo-

pulation during one of K occasions according to a multinomial process with occasion-specific
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entry probability βk,

b1:K � Dirichletðb1:KÞ ð2Þ

For purposes of working with an augmented data set, entry probabilities are re-expressed as

conditional probabilities, ηk, the probability of entry at k conditional on having not yet

entered. Here,

Z1 ¼ b1 ð3Þ

Zk ¼ bk=ð1 �
Xk� 1

l¼1
blÞ; k ¼ 2; 3; . . .K ð4Þ

The sequential state process (i.e., recruitment and survival) for individual i on occasion k
(zik), is now described as,

zi1 � BernoulliðZ1Þ ð5Þ

where zi1 = 1 if individual i was recruited by occasion 1 and 0 otherwise. For occasions >1, an

individual may either enter if not previously entered or survive if previously present,

zik � Bernoullið�zik� 1 þ Zk

Yk� 1

l¼1
ð1 � zilÞÞ ð6Þ

where ϕ is survival probability and the term
Qk� 1

l¼1
ð1 � zilÞ restricts entry to only include indi-

viduals that have not yet entered [25]. Combined with the latent inclusion variable (wi), the

product zik wi = 1 if individual i was alive and in the study population in year k and zero other-

wise. Individuals are then detected with probability p conditional on being in the study popula-

tion in year k,

yik � BernoulliðpzikwiÞ ð7Þ

where yik denotes the detection or non-detection of individual i in year k. Annual abundance

(Nk) and the superpopulation (N�) are derived as the sum of individuals alive in year k and

those ever alive, respectively;

Nk ¼
XM

i¼1
zikwi ð8Þ

N� ¼
XM

i¼1
wi: ð9Þ

For notation simplicity, we did not include individual (i) or time (k) indices on survival and

detection parameters; however, inclusion of covariates, fixed and random effects, individual

heterogeneity, and multi-state formulations are common extensions of the JS model [16, 21,

34–36] and are applicable to our age-structured JS model.

Inclusion of age structure

Age data (xik; the numeric age of individual i in year k) provide information on the underlying

state process (zik). For example, we know that an individual first captured at occasion k with

annual age> 0 was alive in previous sampling occasions (assuming geographic closure; see

Discussion). Age data, however, are only available for observed individuals and unknown for

all augmented individuals. To address this challenge, we treat age of individual i at occasion 1,

xi1, as a random variable described by an initial age distribution (π). For indexing purposes,
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we assume,

ðxi1 þ 1Þ � Categoricalðπ1:ðJþ1ÞÞ ð10Þ

where J is the maximum possible age in year 1, and the first age category (π1) denotes age 0

individuals that have not yet entered. We use (xi1 + 1) so that age-0 (not yet entered) references

the first category (π1). We define π in two parts by using the fact that π1 is equivalent to 1 − η1

in the JS model (i.e., not entered at occasion 1; Eq 3). Here, π1 = (1 − η1) is the probability that

an individual has not yet entered by occasion 1 (xi1 = 0), and π0
1:J describes the initial age struc-

ture at occasion 1 conditional on being alive. Together, π1:ðJþ1Þ ¼ ðð1 � Z1Þ; ðZ1π
0

1:JÞÞ. Parame-

terizing the model using an initial age structure also implies the state of an individual in year 1

is a deterministic function of age,

zi1 ¼
1 if xi1 > 0

0 if xi1 ¼ 0

(

ð11Þ

replacing Eq 5 in the JS model. Individuals then age annually during occasions 2, 3, . . . K,

xik ¼ ðxik� 1 þ 1Þð1 �
Yk

l¼1
ð1 � zilÞÞ ð12Þ

where annual ages are zero until an individual is recruited and increase deterministically there-

after. Missing age information for some portion of observed individuals can be addressed by

treating missing age data as random variables that are estimated using the same process as the

unknown ages of all augmented individuals (Eqs 10–12). Age (xik) is estimated for all individu-

als in the population (observed and unobserved) and thus reflects the population-level age-

structure, which can vary from annually observed ages for a variety of reasons (e.g., small sam-

ple sizes, variation in detection by age; see Case Study Results). Our approach makes no

assumptions about stable age distributions or asymptotic properties but instead allows age

structure to reflect data collected across the entirety of the study.

Directly linking the state and aging processes (Eqs 10–12) provides multiple benefits. Age

data now inform the state process for all previous occasions, because recruitment year and pre-

vious survival are known (e.g., an individual first captured at age 10 is known to have been

alive during the previous 9 years). Additionally, the realized age structure can be derived for

any occasion as the proportion of individuals alive in each age (i.e., Nj
k=Nk, where Nj

k is the

number of individuals aged j in year k), providing the ability to quantify annual age structure,

uncertainty in annual age structure, and investigate changes in age structure through time.

Age-structured JS models also allow investigation of age-specific hypotheses such as age-spe-

cific variation in reproduction, survival, life expectancy, and density-dependence within the JS

framework (analogous to models that condition on first capture; [7]). For example, we can

model survival as a function of age (e.g., a quadratic function of age; [23, 37]),

logitð�ikÞ ¼ a0 þ a1xik þ a2x
2

ik ð13Þ

where α0, α1, α2 describe the survival intercept at age 0 (or some centered value) and relation-

ships of survival with age and age2, respectively. Incorporating additional covariates, fixed and

random effects, or individual heterogeneity on survival, recruitment, and detection parameters

follow the same approaches as in JS models [16, 21, 34–36].
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Simulation study

We developed two simulation studies to evaluate model performance. We generated and ana-

lyzed 200 datasets with N� = 400 individuals, K = 7 occasions, occasion-specific recruitment

probabilities (β) = (0.4, 0.1, 0.1, 0.1, 0.1, 0.1, 0.1), detection probability (p) = 0.25, and J = 9 ini-

tial age classes with an initial age distribution (π0) = (0.27, 0.17, 0.14, 0.12, 0.11, 0.09, 0.06, 0.03,

0.01). Settings reflect a general survey design applicable across a variety of studies, but also

addresses challenges in our case study, specifically a medium duration study (7 years) with rel-

atively low annual detection probability, an imperfectly observed age-structure, and the possi-

bility of age-specific or age-constant survival. In the first simulation study, we assumed

constant survival across ages (ϕ = 0.85; hereafter ‘constant-survival simulation’), while in the

second simulation study we assumed survival was a quadratic function of age,

logit �ikð Þ ¼ logit 0:85ð Þ � 0:5xik � 0:20x2
ik, where ages were centered at 5 years (i.e., xik − 5) in

the regression model to improve convergence (hereafter ‘age-specific survival simulation’).

Although not necessary, we found that centering ages aided convergence similar to centering

or scaling covariates [38]. Expected survival probabilities in the age-specific survival simula-

tion varied from 0.63 at age 1, to a maximum of 0.88 at age 4, then decreased to 0.03 at age 9.

Based on these parameter combinations, population growth rates were slightly >1.0 for the

constant-survival simulations and slightly <1.0 for age-specific survival simulations. We

selected nine age classes for demonstration purposes, but recognize that the number of age

classes will vary by study species (e.g., studies specific to polar bears and other long-lived spe-

cies will require more age classes). Although beyond the scope of this paper, simulation set-

tings are easily modified to investigate a variety of extensions and study-specific questions

including time-varying demographic rates, individual heterogeneity in detection or survival,

unobservable age classes, and varying levels of missing age data (see Discussion, Supplemen-

tary Materials).

We analyzed data from the constant-survival simulation using both the JS and age-struc-

tured JS models to assess effects of including age data on the precision of parameters (p, β, α,

π0, ϕ, N�), derived annual abundances (Nk), and annual population growth rates (Nk+1/Nk),

which are often a primary interest in JS studies. We calculated the percent reduction in coeffi-

cient of variation for survival probabilities, annual abundances, and annual population growth

rates to evaluate changes in precision between the JS and age-structured JS models for these

key parameters. For the age-specific survival simulation, we used the age-structured JS model

with a quadratic survival model. Here, our primary objective was to assess the ability of the

age-structured JS model to return unbiased parameter estimates, particularly for age-specific

survival.

We repeated analyses of both the constant and age-specific survival simulations using dif-

ferent values of maximum age in year 1 (J). The value of J should be, at minimum, equal to the

maximum observed age in the dataset. However, deciding whether and how much larger than

the maximum observed age J should be requires consideration of species biology and study

design. To address this concern, we evaluated model robustness to selection of J by generating

data using J = 9 while fitting models that assumed J = 9, 10, or 14 in analyses. Due to the gen-

eral robustness of the model to selection of J, we present results from analyses assuming J = 10

in the main text while results from analyses assuming J = 9 or 14 are provided as a Supplement

(S1–S3 Tables in S1 Appendix). We did not explicitly evaluate the effects of setting J too low as

many of the simulated datasets observed at least one individual that was 8 or 9 years old during

the study.
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Case study

We used a 7-year dataset (2012–2018) of individually marked polar bears in WHB to investi-

gate multiple components of polar bear demography. The data are from a long-term study on

polar bear ecology in the Hudson Bay region [28]. Our primary objective was to apply the age-

structured JS model to estimate survival, recruitment, abundance, and annual age structure.

The resulting estimates are from a subset of the larger, long-term dataset and do not reflect the

status of the WHB polar bear subpopulation [28], but instead reflect a simplified case study to

demonstrate the age-structured JS model. We analyzed encounter histories of independent

polar bears (i.e., females and males age� 2 years of age) monitored each fall (August—Sep-

tember). Each year, researchers from Environment and Climate Change Canada (ECCC) cap-

tured polar bears during helicopter surveys using standard chemical immobilization

techniques [39]. Unmarked bears were individually marked by numbered ear tags and perma-

nent tattoos. Numeric age was assigned based on analysis of a vestigial premolar extracted dur-

ing first capture [28, 40]. Age was known for individuals that were first captured as cubs-of-

the-year or yearlings accompanying an adult female. Capture and handling methods were

reviewed and approved annually by the ECCC Western and Northern Animal Care Commit-

tee. A complete description of survey methods is provided in [28].

We fit three models to the data set: JS model without age data, age-structured JS model with

constant survival, and age-structured JS model where survival was a quadratic function of age

[23, 37]. We set the maximum age in year 1 at J = 35, which is 3 years older than the maximum

observed age recorded in WHB and likely greater than the maximum age of polar bears in this

region [28, 33]. For the age-specific survival model, ages were centered on the median

observed age of 11 years. In addition to direct estimation of survival, recruitment, abundance,

and age structure, we also derived several other metrics of ecological importance: cumulative

survival, life expectancy, and annual age structure. Cumulative survival and life expectancy

metrics are calculated from posterior samples of age-specific survival, while annual age struc-

ture was derived from age-specific abundances (Nj
k=Nk). Life expectancy is defined as

the expected number of years that an age-2 bear (i.e., individuals that survive to

independence) will survive. Life expectancy was derived as the expectation of successive

binomial trials, specifically we calculate the cumulative survival probability to and death

at age j (yj ¼
Qj� 1

a¼2
�a � 1 � �j

� �
), then sum expectations across all ages

(life expectancy ¼
PJ

a¼2
aya). Additionally, we monitored the annual proportion of the popu-

lation in prime breeding age (10–15 years old), a period when polar bears often exhibit their

greatest reproductive output [32, 41]. We assumed constant detection probability (p) across

years, conditional on an individual being alive (Eq 7).

Implementation

Models were fit in a Bayesian framework using Markov chain Monte Carlo (MCMC) methods.

Both the JS and age-structured JS models are easily fit in common MCMC software packages

such as WinBUGS, JAGS, or NIMBLE. In our study, models were fit using NIMBLE v0.8.0

[42] accessed through R v3.5.1 [43]. For the simulation studies, we ran three chains for 120,000

iterations with 20,000 iterations discarded as burn-in and thinned to every 10th iteration to

reduce file size. For the case study, we increased the number of chains to six and the number

of iterations to 220,000 to increase the number of effective samples. We assessed convergence

using diagnostic plots and the Gelman-Rubin statistic (R̂; [44]). Vague priors were used for all

parameters [44, 45], specifically Beta(1,1) for detection probability (p) and the data augmenta-

tion parameter (ψ), and separate Dirichlet(1) priors for entrance probabilities (β) and initial
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age distribution (π0). For the constant-survival models, we used ϕ~Beta(1,1), and for the qua-

dratic survival models we assumed inv.logit(α0) ~Beta(1,1) and independent Normal(0,

sd = 10) for α1 and α2. Results are reported as posterior medians and 2.5 and 97.5 percentiles

(95% CRI) of retained posterior samples.

We evaluated goodness-of-fit using a posterior-predictive check to evaluate the ability of

the model to predict the number of observed individuals each year (nk), which is a shared met-

ric across modelling approaches. For each iteration, we generated the expected number of

observed individuals (� nk � Binomialðp;NkÞ) and compared the observed and expected

counts using the Freeman-Tukey statistic [34, 46]. There was no evidence of a lack of fit for

any of the models (Bayesian p-values = 0.39 for JS, 0.43 for the age-structured JS with constant

survival, and 0.59 for age-structured JS with age-specific survival). R scripts and model code

for the simulation and case studies are provided as Supplementary Materials (S1–S3 Files).

Under our simulation settings, each model generally required < 5 hours to run on a desktop

with a 3.1 GHz processor.

Results

Simulation study

Both the JS and age-structured JS model produced unbiased estimates of survival, recruitment,

and abundance in the constant-survival simulations (Fig 1, S1 Table in S1 Appendix). The age-

structured JS model improved precision of all parameters relative to the JS model without age

data (Fig 1). Incorporation of age structure also reduced fluctuations between successive Nk,

resulting in improved precision of annual growth rates (Fig 1). Under these simulation set-

tings, the coefficients of variation for survival, annual abundance, and annual population

growth rate were reduced by 32%, 35%, and 52%, respectively, in the age-structured JS model

relative to the JS model (Fig 1).

The age-structured JS model also performed well in age-specific survival simulations, pro-

viding minimally biased to unbiased estimates of age-specific survival, abundance, recruit-

ment, and initial age structure (Fig 2). A slight negative bias was observed in the initial age

distribution for age 1 individuals. This likely resulted from several factors, including small

sample size bias as numerous simulations resulted in zero individuals aged 8- or 9-years-old in

year 1, low detection probability, and simulation of true maximum age J = 9 but with the

assumption during analysis of J = 10. To evaluate the effect of detection probability (p) on the

estimation of age structure, we re-ran simulations where p = 0.50 and bias noticeably

decreased (S3 Table in S1 Appendix). Survival, recruitment, detection, and most abundance

estimates appeared robust to the selection of J (S1–S3 Tables in S1 Appendix). Biases in year 1

abundance, superpopulation abundance, and year 1 age structure were evident when modeled

J� true J (i.e., true J = 9 but was modeled as 14), but diminished with increasing detection

probability and increasingly reasonable selection of J (i.e., J = 9 or 10; S1–S3 Tables in S1

Appendix).

Case study

We analyzed encounter histories from n = 296 individual polar bears that included 427 capture

events. The number of bears captured each year ranged from 51 to 72 independent bears, with

observed ages from 2–30 years old. Abundance estimates from the age-structured JS model

with constant and quadratic survival functions were relatively consistent but differed from the

JS model without age data. Most bears in the superpopulation were present at occasion 1 in the

age-structured JS models (Fig 3). Survival in the age-structured JS model with constant sur-

vival was 0.98 (95% CRI: 0.94–1.00), substantially higher than the JS model without age data
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(0.86, 95% CRI: 0.79–0.93; Fig 3). The age-structured JS model with quadratic survival sup-

ported the hypothesis of survival senescence, with survival lower for younger individuals, near

>0.95 for individuals aged 7–22, then decreasing to near zero for individuals > 30 years

(Fig 3).

Fig 1. Boxplots of posterior medians for survival, recruitment, and detection (top), abundances (middle), and annual

population growth rates (bottom) from 200 simulated data sets analyzed using Jolly-Seber models that ignore (grey) or

incorporate (blue) age structure. Boxplots include medians (black line), interquartile range (box), and range of values (whiskers).

Red horizontal lines denote data generating values. Data generation fixed the maximum age in year 1 (J) at 9, but age structure

analyses assumed J = 10 to evaluate robustness to uncertainty in maximum age.

https://doi.org/10.1371/journal.pone.0252748.g001

PLOS ONE Age-structured Jolly-Seber model

PLOS ONE | https://doi.org/10.1371/journal.pone.0252748 June 9, 2021 9 / 19

https://doi.org/10.1371/journal.pone.0252748.g001
https://doi.org/10.1371/journal.pone.0252748


All models provided similar estimates of superpopulation abundance (~ 500–600 individu-

als) but differed in the survival and recruitment processes leading to these superpopulation

abundances (Fig 4). Ignoring age structure resulted in lower survival, lower year 1 abundance,

and higher and more variable recruitment in subsequent years, leading to substantial variation

among yearly abundance estimates (Figs 3 and 4). Conversely, in the age-structured JS model,

abundance estimates were higher, more precise, and relatively consistent across years due to

higher annual survival and lower recruitment, leading to more biologically plausible values for

a K-selected species (Figs 4 and 5). Conditional on surviving to independence (age 2), life

expectancies from the JS model and the age-structured JS model with quadratic survival

were 9.2 yrs (6.8–16.6) and 18.1 yrs (10.9–26.8), respectively. Life expectancy from the

Fig 2. Boxplots of posterior medians for annual recruitment and detection (βk and p, respectively; top left), age-specific survival (top right),

abundances (bottom left), and initial age distribution (bottom right) from 200 simulated data sets analyzed using age-structured Jolly-Seber

models where survival is a quadratic function of age. Boxplots include medians (black line), interquartile range (box), and range of values (whiskers).

Red horizontal lines denote data generating values. Data generation fixed the maximum age in year 1 (J) at 9, but analyses assumed J = 10 to evaluate

robustness to uncertainty in maximum age.

https://doi.org/10.1371/journal.pone.0252748.g002
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age-structured JS model with constant survival was 43.7 yrs (18.6–100+ yrs) with the upper

credible interval never stabilizing due to posterior mass of annual survival near 1.0 (Fig 5).

While polar bears are long lived, individuals > 25 years-old are rarely observed [28, 33]. Life

expectancy results provide further ecological support for the age-structured JS model with qua-

dratic survival while demonstrating how small changes in annual survival lead to large differ-

ences in life expectancy for long-lived species (Fig 5).

Fig 3. Recruitment and detection probabilities (top) and annual survival (bottom) of western Hudson Bay polar bears from Jolly-Seber models

that ignore age structure (black) or incorporate age structure and assume annual survival is constant (blue) or a quadratic function of age (red).

Points and error bars are posterior medians and 95% credible intervals, respectively.

https://doi.org/10.1371/journal.pone.0252748.g003
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Individuals 6–8 years of age were disproportionately represented in the 2012 age structure,

suggesting strong recruitment from the 2004–2006 birth years. Cascading effects of this large

cohort led to significant changes in population age structure and recruitment across years (Fig

6). The proportion of individuals in prime breeding age (10–15 years of age) varied among

years, increasing from 0.25 in 2012 (95% CRI: 0.22–0.28) to 0.38 in 2016–2018 (95% CRI:

0.34–0.42), which tracked the aging of the 2004–2006 cohort (Fig 6). Recruitment of age 2 indi-

viduals was lower during 2012–2016 but increased in 2017 and 2018, 2 years after the large

cohort born in 2004–2006 entered prime breeding ages (Fig 6). Explicitly linking survival,

recruitment, and aging processes also forced ecologically consistent changes in age structure

across years (Fig 6). For example, although surveys detected zero age 5 individuals in 2012, the

estimated proportion of age 5 individuals was� 0 due to observations of this age class in sub-

sequent years (Fig 6). Similarly, changes in the estimated annual age structure followed biolog-

ically plausible processes even though annual age data displayed large fluctuations due to small

annual sample sizes (Fig 6).

Discussion

We developed an age-structured JS model to improve estimation of demographic parameters

and, thus, inference about population dynamics from capture-recapture and age data. The

novelty of our approach arises from integrating model components describing age structure,

aging, survival, recruitment, and abundance into a single hierarchical model that overcomes

the challenges of unknown ages in JS models (for observed and unobserved individuals) and

individuals born prior to the study [15]. Unifying these processes within the JS framework pro-

vides a holistic approach to evaluating the effects of age structure on population dynamics,

while substantially improving precision of demographic parameter estimates. The additional

information that comes from our age-structured JS model has numerous applications in

Fig 4. Annual and superpopulation abundances for western Hudson Bay (WHB) polar bears from Jolly-Seber models that ignore age structure

(black) or incorporate age structure and assume annual survival is constant (blue) or a quadratic function of age (red). Points and error bars are

posterior medians and 95% credible intervals, respectively. Analyses used a subset of the larger, long-term WHB polar bear study and, therefore, do not

reflect the status of the entire subpopulation ([28]; see Methods for additional details).

https://doi.org/10.1371/journal.pone.0252748.g004
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population and evolutionary ecology, including identification of sustainable harvest levels that

reflect age-related variation in reproductive value [47], survival or reproductive senescence [1],

and understanding the influence of age structure on population viability [2, 48].

Evaluating age-specific demography, particularly demographic senescence (i.e., degradation

of survival or breeding probabilities associated with aging), is essential to understanding the

impacts of age structure on population dynamics [1]. If demographic senescence is ignored,

parameters such as life expectancy, extinction risk, and population viability may be over- or

underestimated [2]. We found that WHB polar bear survival increased with age early in life

and reached a plateau from approximately 7–22 years of age, followed by decreasing survival

thereafter, a pattern common in many mammal species [49]. Survival of polar bears previously

defined as “prime-age” (i.e., 5–19 years of age; sensu [30]) was high and relatively stable, which

has been hypothesized as an effect of improved body condition, enhanced hunting efficiency,

and intra-species interactions during these ages [28–30]. Polar bear reproductive senescence

was previously documented and primarily attributed to changes in body condition [32, 50,

51]; however, survival senescence is less well understood but may have important implications

for the viability of K-selected species such as polar bears [1, 30, 31].

Individuals 6–8 years of age were disproportionately represented in the 2012 age structure,

suggesting large recruitment classes in 2004–2006. WHB female body mass was above average

when these large age classes were dependent young (2005–2009; Lunn unpublished data), sup-

porting previous findings that maternal body mass in polar bears is positively correlated with

Fig 5. Cumulative survival (A) and life expectancy (B) of western Hudson Bay polar bears from Jolly-Seber models that ignore

age structure (black) or incorporate age structure and assume annual survival is constant (blue) or a quadratic function of age

(red). Posterior medians and 95% credible intervals are shown. Cumulative survival and life expectancy estimates are conditional on

surviving to two years of age (i.e., independent bears). Upper credible bound for life expectancy from the age structure model with

constant survival is> 100 years and not shown (see Results).

https://doi.org/10.1371/journal.pone.0252748.g005
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increased reproduction and survival of their young [50, 51]. Increased recruitment of age 2

individuals during 2017–2018 coincides with years when the 2004–2008 cohort began entering

prime breeding ages (10–15 years old; Fig 6; [28, 32, 51]), providing a possible mechanism to

explain this increase in recruitment. Results thus far demonstrate how unifying age structure

Fig 6. Annual age structure of western Hudson Bay polar bears using an age-structured Jolly-Seber model that assumes annual

survival is a quadratic function of age (black; medians and 95% credible intervals). Red points are year-specific proportions from

observed data. Grey polygon denotes prime breeding ages (10–15 years of age). The annual proportion of the population in prime

breeding age is summarized in lower right panel (median and 95% credible intervals).

https://doi.org/10.1371/journal.pone.0252748.g006
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and demographic models can provide new insights into the effects of age structure on popula-

tion dynamics, growth, and viability, but further investigations are required to separate varia-

tion in recruitment due to environmental conditions, increased abundance of breeding age

individuals, and favorable conditions early in a breeder’s life [32].

The generality of our approach provides a promising tool for future investigations into the

effects of aging on population dynamics. Thus far, we have assumed age can be identified

when an individual is observed. Although not fully explored herein, our approach allows for

both missing age data and the incorporation of age proxies (e.g., morphometric data such as

dental cementum or size) when annual age data are missing. Missing age data for some portion

of observed individuals are addressed using the same process as unknown ages for augmented

individuals, whereby age in year one is considered a random variable (Eqs 10–12). As the pro-

portion of observed individuals without age data increases, information on the age-structure

declines and the age-structured JS model reverts to a JS model without age data. The levels at

which missing age data result in no additional benefits, however, will likely vary by study spe-

cies (e.g., maximum age and life expectancy) and survey design (e.g., detection probability,

study duration). In the absence of explicit age data, age proxies could be integrated with an

additional hierarchical level that describes, for example, a growth model linking morphometric

data to annual age (e.g., Gompertz, von Bertalanffy) [5, 11]. Growth model parameters can be

directly estimated when both morphometric data and age data are available for some individu-

als. Alternatively, informative priors can be developed from separate studies linking morpho-

metric data to age [52].

Simulation studies demonstrated that both the JS and age-structured JS models provided

unbiased estimates of demographic rates and abundances; however, incorporating age data

improved precision of demographic rates and population growth rates, increased the power to

detect trends in abundance, and allowed unbiased estimation of age-dependent survival and

changes in annual age structure. The age-structured JS model was generally robust to uncer-

tainty in the selection of maximum age in year 1 (J), with parameter estimates practically unaf-

fected even when J was 1.5 times greater than the true value. Setting J requires thoughtful

consideration of species biology; however, setting J too high will often be apparent via esti-

mates of age structures� 0.01 across consecutive older age classes (S1 Appendix). Finally,

while our simulation studies were not exhaustive, the simulation scripts provided in S1 File are

readily modified and provide opportunities to extend this general framework to investigate

study-specific topics. As noted by reviewers, there are numerous extensions worthy of future

research, including the incorporation of covariates on demographic rates, individual heteroge-

neity in detection or survival, unobservable age classes, and the effects of missing age data [16,

21, 34–36, 53].

We made several simplifying assumptions in our case study by not allowing for individual

or temporal variation in survival (except by age), detection, reproduction, or movement,

although there is capacity within our framework to generalize the model to these factors. Our

case study consisted of a subset of a broader, long-term WHB polar bear study, thus our results

may not represent the status of the entire subpopulation and are not intended to be used for

management purposes [28]. Also, the age-structured JS model described herein is non-spatial

and assumes individuals recruit into the population when born or at independence (e.g., 2

years of age in our polar bear case study). In this parameterization, recruitment provides direct

insights into intrinsic recruitment factors (i.e., reproduction) but does not explicitly handle

spatial processes such as immigration. High proportions of older immigrants could result in

positive bias in annual abundance and survival as older immigrants are assumed to be alive

and in the population during previous occasions. Extending our non-spatial age-structured JS

to a spatially explicit open population model [54, 55] may help distinguish between
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demographic (recruitment, aging, and survival) and geographic (immigration and emigration)

processes, while providing more robust ecological inferences from combined capture-recap-

ture and age data.

Age structure of free-ranging populations may fluctuate in response to environmental

stressors, especially factors that disproportionately affect reproduction or age-dependent sur-

vival (e.g., weather, competition; [5, 56]). For long-lived species such as polar bears, birth rate

and survival probability of newly independent animals (i.e., age 2 years) often respond first to

regulating factors such as declining carrying capacity [47, 57]. Shifts in age structure can affect

population dynamics, resulting in population growth rates and viability measures that vary

considerably from asymptotic projections [3, 6, 58]. The degree to which age structure varies

in free-ranging populations, however, is poorly understood, because the data required to esti-

mate annual age structure have been difficult to obtain [3, 6]. Conversely, we demonstrate how

an age-structured JS model provides a flexible approach to jointly estimate population-level

annual age structure, abundance, and demographic rates from commonly collected capture-

recapture and age data. For example, our case study detected a substantial pulse in recruitment

associated with an increase in the proportion of prime breeding age adults even though the

model did not explicitly force this relationship. We believe this age-structured JS model pro-

vides numerous opportunities to explore age structure dynamics and how these dynamics

result in fluctuations in vital rates and the trajectories of free-ranging populations.

Jointly modeling abundance, survival, recruitment, age structure, and the aging process

within the JS framework provides an important advance in our ability to evaluate population

dynamics and provides crucial information for species management and conservation. Inte-

gration of age and capture-recapture data within the JS framework allows exploration of a

wider range of demographic processes, including evolutionary and life history analyses (e.g.,

senescence, life expectancy, reproductive success) and the effects of age structure on popula-

tion persistence, while also improving our ability to explore interacting hypotheses in evolu-

tionary, behavioral, and population ecology. Recognizing how demographic rates, abundance,

and age structure interact within the JS framework in turn can help improve the explanatory

power of JS models and more accurately forecast future population dynamics.
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