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Abstract

Background: Induced pluripotent stem (iPS) cells have the capability to undergo self-renewal and differentiation into all
somatic cell types. Since they can be produced through somatic cell reprogramming, which uses a defined set of
transcription factors, iPS cells represent important sources of patient-specific cells for clinical applications. However, before
these cells can be used in therapeutic designs, it is essential to understand their genetic stability.

Methodology/Principal Findings: Here, we describe DNA damage responses in human iPS cells. We observe
hypersensitivity to DNA damaging agents resulting in rapid induction of apoptosis after c-irradiation. Expression of
pluripotency factors does not appear to be diminished after irradiation in iPS cells. Following irradiation, iPS cells activate
checkpoint signaling, evidenced by phosphorylation of ATM, NBS1, CHEK2, and TP53, localization of ATM to the double
strand breaks (DSB), and localization of TP53 to the nucleus of NANOG-positive cells. We demonstrate that iPS cells
temporary arrest cell cycle progression in the G2 phase of the cell cycle, displaying a lack of the G1/S cell cycle arrest similar
to human embryonic stem (ES) cells. Furthermore, both cell types remove DSB within six hours of c-irradiation, form RAD51
foci and exhibit sister chromatid exchanges suggesting homologous recombination repair. Finally, we report elevated
expression of genes involved in DNA damage signaling, checkpoint function, and repair of various types of DNA lesions in
ES and iPS cells relative to their differentiated counterparts.

Conclusions/Significance: High degrees of similarity in DNA damage responses between ES and iPS cells were found. Even
though reprogramming did not alter checkpoint signaling following DNA damage, dramatic changes in cell cycle structure,
including a high percentage of cells in the S phase, increased radiosensitivity and loss of DNA damage-induced G1/S cell
cycle arrest, were observed in stem cells generated by induced pluripotency.
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Introduction

Induced pluripotent stem (iPS) cells are produced by repro-

gramming somatic cells with a defined set of transcriptional

factors. They share numerous characteristics with embryonic stem

(ES) cells, such as the ability to undergo self-renewal and

differentiation, as well as expression of the same pluripotency

markers NANOG, OCT4, SOX2 and SSEA-4 [1]. Therefore, it is

possible to envision numerous therapeutic applications for human

iPS cells without the ethical challenges involved with human ES

cells.

Studies in mouse and human somatic cell reprogramming

utilized four transcription factors carried on integrating retroviral

vectors. Two cocktails of transcription factors were successfully

used: OCT4, SOX2, KLF4 and c-MYC [1,2], or OCT4, NANOG,

SOX2 and LIN28 [3]. OCT4, SOX2 and NANOG are master

transcriptional regulators of the pluripotent state in embryonic

stem (ES) cells [4,5,6,7]. These three transcription factors bind to

and activate expression of genes that are involved in maintaining

pluripotency, while repressing genes involved in differentiation [8].

OCT4, SOX2, and NANOG also bind to and activate their own

genes, creating a positive feedback loop that might ‘‘jumpstart’’

reprogramming [9]. However, c-MYC, LIN28 and KLF4 have

oncogenic properties and might activate tumor suppression

response when expressed in somatic cells. These responses consist

of cell cycle arrest, senescence and apoptosis, and may act as a

roadblock to reprogramming. Indeed, reprogramming is a very

inefficient process with 0.01 – 0.1% success rate [1,2,10],

suggesting that there are unknown limiting steps necessary for

the generation of iPS cells. Low efficiency of somatic cell

reprogramming can be partially explained by the activation of

TP53 pathway and INK4/ARF locus by reprogramming factors. In
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fact, genetic impairment of TP53 and CDKN1A (p21) levels, as well

as INK4/ARF locus dramatically increase efficiency of generation

of iPS clones, endowing almost every somatic cell with the

potential to form an iPS clone [11,12,13,14].

Introduction of transcription factors also increases the c-H2AX

foci [12], which are markers of double strand breaks. Thus, it is

possible that TP53 is activated following expression of reprogram-

ming factors by DNA damage, and that oncogenes block

reprogramming by activating DNA damage responses.

Since genetic manipulation of TP53 or INK4/ARF locus

significantly increases the efficiency of reprogramming, it has

been suggested that reprogramming could potentially depend on

rare spontaneous mutations or epigenetic silencing of INK4/ARF

or TP53 [15]. Another potential explanation is that activation of

TP53 by damaged DNA prevents the generation of iPS cells with

damaged DNA or DNA repair deficiencies [15]. Taking into

account the critical role of TP53 in mediating DNA damage

response and tumor suppression, it is critical to investigate the

function of TP53 and DNA damage response in iPS cells.

Embryonic stem cells are pluripotent cells that are isolated from

the inner cell mass (ICM) of the blastocyst [16]. They represent the

in vitro counterpart of cells that in developing embryo contribute to

embryo proper and some extraembryonic tissues. Similar to cells

of the early embryo, ES cells are rapidly dividing. The cell cycle in

ES cells is shortened in comparison to somatic cells, mainly due to

an abbreviated G1 phase and facilitated G1 to S transition [17].

Rapid progression through successive rounds of DNA replication

and mitotic division may expose ES cells to increased risk of

replication errors, which are the most common source of double

strand breaks (DSB) in proliferating cells. Double strand breaks

can also be induced by various physical (ionizing radiation) and

chemical (radiomimetic drugs) agents and represent the most

difficult type of DNA damage to repair.

Following introduction of DNA damage, cells elicit a complex

DNA damage response comprised of coordinated cell cycle arrest,

DNA repair, and in some instances apoptosis. We have previously

shown that human ES cells activate ataxia telangiectasia mutated

(ATM)-dependent checkpoint signaling cascade, including phos-

phorylation and nuclear localization of TP53 and arrest in the G2/

M stage of the cell cycle following irradiation [18]. In this study we

extend these findings to iPS cells and focus on understanding the

DNA damage response of iPS cells. We investigated activation of

checkpoint signaling and induction of cell cycle arrest following

exposure of iPS cells to c-radiation. We further examined double

strand break (DSB) repair and contrast the response of iPS cells to

ES cells. Finally, we compared the expression of DNA damage

signaling and repair gene and protein levels between ES, iPS and

differentiated cells. Our results show that reprogramming

significantly alters the DNA damage response in iPS cells relative

to their parent line, resulting in loss of the G1/S checkpoint and a

dramatic increase in radiosensitivity. Furthermore, iPS cells share

numerous similarities in DNA damage response with ES cells,

including G2/M cell cycle arrest, efficient DSB repair, and high

expression of DNA damage signaling and repair genes.

Results

Pluripotency and radiosensitivity in human induced
pluripotent stem cells

Induced pluripotent stem (iPS) cells share numerous similarities

with embryonic stem (ES) cells, including self-renewal, differenti-

ation into all three germ layers, and expression of markers found in

ES cells, such as OCT4, NANOG, SOX2, SSEA-3 and SSEA-4

[2]. In order to confirm that we are investigating DNA damage

response of pluripotent cells we examined expression of the

pluripotency markers NANOG, SSEA-4 and OCT4 in both

untreated cells and cells irradiated with one Gray (Gy) of c-

irradiation (Figure 1). We decided to use NANOG and SSEA-4 as

markers of pluripotency because they were not used in the

reprogramming cocktail to derive the AE iPS cell line. Further-

more, in the extremely remote case that irradiation reactivates the

reprogramming factors, NANOG and SSEA-4 would still reflect

expression of endogenous genes. Both the untreated cell

population and those exposed to radiation treatment show

expression (Figure 1A) and nuclear localization (Figure 1B) of

NANOG, as well as cell surface expression of SSEA-4 (Figure 1C),

suggesting that iPS cells retain pluripotency markers after

induction of DNA damage. We did not detect a decrease in

OCT4 protein levels by Western blot analysis (Figure 1A),

confirming these results.

Human and mouse ES cells exhibit profound sensitivity to DNA

damaging agents [18,19]. We also noted substantial detachment of

iPS cells from the surface of the cell culture dish by 24 hours

following irradiation (Figure 1B). To confirm that cells were

undergoing apoptosis, we performed Western blot analysis for

cleaved caspase-3, including both adherent and detached cells

(Figure 1D). Cleaved caspase-3 began to appear four hours after

irradiation in adherent cells and continued to increase for

24 hours, particularly in the detached cells, suggesting that iPS

cells undergo apoptosis.

Activation of checkpoint signaling in irradiated human
induced pluripotent stem cells

Following introduction of DSB, ATM undergoes auto-phos-

phorylation at serine 1981 and its kinase function is activated,

leading to phosphorylation of numerous downstream targets

[20,21]. We have previously demonstrated that ATM is

phosphorylated at serine 1981 and localizes to DSB sites within

15 minutes of c-irradiation in human ES cells [18]. We tested

activation of ATM-dependent checkpoint signaling cascade in two

iPS cell lines by Western blot (Figure 2A, Figure S1A) and

immunocytochemistry (Figure 2B and 2C) after c-irradiation.

Checkpoint signaling in AE iPS line in response to one Gy of c-

irradiation is depicted in Figure 2, whereas checkpoint signaling

following two Gy in IMR-90 iPS line is displayed in Figure S1A

(both lines were assayed after both dosages of irradiation, but here

we report complementary results). Both dosages induced a strong

checkpoint signaling response as evidenced by phosphorylation of

ATM and its target proteins. Western blot analysis revealed ATM-

serine 1981, CHEK2-threonine 68, NBS1-serine 343, and TP53-

serine 15 phosphorylation within one hour of c-irradiation. ATM-

serine 1981 and CHEK2-threonine 68 phosphorylation was

highest one hour after irradiation and declined subsequently,

staying above steady-state level six hours later. NBS1-serine 343

phosphorylation peaked four hours after irradiation, returning to

steady-state levels six hours following irradiation. ATM-dependent

phosphorylation of TP53 at serine 15 was highest two hours after

irradiation and declined four hours post irradiation. During the

same time period the level of total ATM, CHEK2 and NBS1

proteins did not change, whereas the level of total TP53 protein

increased following TP53 phosphorylation, suggesting that TP53 is

stabilized in response to radiation-induced DNA damage [22,23].

We also investigated localization of ATM-serine 1981 and TP53-

serine 15 in response to radiation exposure. Phosphorylated ATM

was localized to sites of DNA damage as detected by co-

localization with DSB marker c-H2AX (Figure 2B). In order to

confirm that we were observing the DNA damage response in

pluripotent stem cells, we co-stained iPS cells with TP53-serine 15

Damage Responses in Stem Cells
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and NANOG (Figure 2C) and detected nuclear localization of

TP53-serine 15 in NANOG-positive cells after irradiation.

Additionally, we compared expression of TP53 target genes

between non-irradiated and irradiated iPS cells (Figure S2). We

detected two-fold or greater upregulation of CDKN1A (p21),

GADD45A, PPM1D, SESN1 (SESTRIN1), SESN2 (SESTRIN2), and

MDM2 genes, suggesting that TP53 is transcriptionally activated

after irradiation. Interestingly, we did not detect upregulation of

TP53-dependent apoptosis genes BAX and BCL2. Collectively,

these results are very similar to our previous observations in

human ES cells and confirm activation of checkpoint signaling

cascade in iPS cells following exposure to c-irradiation.

Cell cycle arrest in irradiated human induced pluripotent
stem cells

We next investigated cell cycle arrest in iPS cells in response to

ionizing irradiation by flow cytometric analysis of DNA content using

PI (Figure 3A). As expected of self-renewing pluripotent cells, a high

percentage of non-irradiated iPS cells were in S phase. After exposure

to one Gy of c-irradiation, iPS cells arrested in the G2/M phase of the

cell cycle, displaying a similar absence of G1/S cell cycle arrest as

mouse, non-human primate and human ES cells [18,24,25]. Three

hours after irradiation a significant drop in the percentage of cells in

G1 phase was observed, whereas the percentage of cells in G2/M

increased. This trend continued for six hours after irradiation, and by

nine hours after irradiation the majority of cells (77%) were in G2/M

phase. By 24 hours post-irradiation, cell cycle distribution resembled

non-irradiated cells (Figure 3A).

In order to better understand when cells arrest after irradiation

(G2 or M phase), as well as the events that occur following iPS

cells’ return to the cell cycle, we performed immunocytochemistry

using the mitosis-specific marker histone H3 phosphorylated at

serine 10 (phospho-H3). In a population of non-irradiated cells, we

observed numerous phospho-H3-positive cells in various stages of

mitosis (Figure 3B). Twenty minutes after exposure to one

(Figure 3B) or two Gy (Figure S1B) of c-radiation we still observed

mitotic cells, presumably cells that were already undergoing

mitosis at the time of irradiation. However, two, four, and six

hours after irradiation, we could not detect any mitotic cells,

suggesting that iPS cells arrest in the G2 phase and do not enter

mitosis following irradiation. Mitotic cells start reappearing

24 hours after irradiation (please see Figure 3D for examples),

with no statistically significant difference in mitotic index

(5.160.34%) compared to non-irradiated cells (4.360.48%;

n = 3, 0.3.p.0.2; Figure 3C). Note that cellular debris is present

in cell colonies both at 6 and 24 hours after irradiation in

accordance with iPS cells’ radiosensitivity. In aggregate, both flow

cytometry and immunocytochemistry results reveal that iPS cells

arrest in G2 stage of the cell cycle and resume cell cycle

progression by 24 hours following irradiation.

Double strand break repair in human pluripotent stem
cells

The fact that iPS cells resume the cell cycle within 24 hours of

DNA damage suggests that DNA breaks are removed by that time

and allowing recovery from the cell cycle arrest. We investigated

DSB repair by monitoring formation and removal of c-H2AX foci.

Since open chromatin structure can lead to the formation of

microscopically visible foci in the absence of exogenous DNA

damage[26], and since both human ES and iPS cells have open

chromatin structure, we first tested the usefulness of c-H2AX as a

DSB marker in human ES cells by inducing localized damage. We

employed a 405 nm laser to induce DNA damage in a specified

nuclear region of several ES cells in the colony, as well as in several

mouse embryonic fibroblasts (MEF) that were used to co-culture

human ES cells (Figure S3). Thirty minutes after laser treatment, we

detected c-H2AX in MEF but only in affected cells and only in the

nuclear region that was targeted, confirming our goal behind c-

H2AX testing. In human ES cells, we also detected DNA damage

only in cells of colonies that were treated with the laser and not in

neighboring cells. However, unlike in MEF cells, c-H2AX staining

was not confined to the affected nuclear region; instead, staining was

present in the whole nucleus (Figure S3), perhaps due to highly

dynamic chromatin in pluripotent stem cells [27]. Nevertheless, we

confirmed that c-H2AX staining is sensitive enough to detect DNA

damage only in laser-treated human ES cells.

We performed a time-course immunocytochemistry for c-

H2AX in irradiated human ES and iPS cells (Figure 4). Non-

irradiated human ES and iPS cells were not completely void of c-

H2AX foci, which may reflect endogenous DNA damage.

However, within 20 minutes of c-irradiation we detected strong

induction of c-H2AX foci in both cell types. Over the following

four hours, both cell types lost many of these foci, so that by six

hours post irradiation the number of c-H2AX foci had returned to

steady-state levels.

Two main pathways for DNA repair include error-prone non-

homologous end joining (NHEJ) and error-free homologous

recombination repair (HRR). Unlike NHEJ, HRR relies on the

presence of the sister chromatid for use as a template for accurate

DNA repair and is hence limited to late S and G2 phases of the cell

cycle. We hypothesized that HRR plays a major role in DSB

repair in ES cells due to the fact that, in any given moment, more

than 70% of an ES cell population is in the S and G2/M phases of

the cell cycle [18] when the sister chromatid is available. In order

to test this, we exposed ES and iPS cells to c-radiation and

investigated the formation of RAD51 foci (Figure 5A). RAD51 is a

recombinase that is essential for HRR and, following induction of

DSB, localizes to the foci that are believed to represent sites where

HRR takes place. Two hours following irradiation we detected the

formation of RAD51 foci in the majority of cells suggesting that

both ES and iPS cells repair DSB by HRR. Even more direct

evidence of HRR are the sister chromatid exchanges (SCE) that

represent a subset of HRR events. We treated ES and iPS cells

with 50 and 100 nM camptothecin for one hour to induce breaks

in S-phase cells. Camptothecin is a topoisomerase I inhibitor that

stabilizes the topoisomerase I – DNA complex. Topoisomerase I-

introduced single strand nicks in DNA can be converted into DSB

following collapse of the replication fork with stabilized topoisom-

erase I – DNA complex. Therefore, camptothecin specifically

introduces DSB in replicating cells, eliciting HRR. We observed

an increase in the number of SCE following 50 nM and 100 nM

Figure 1. Pluripotency and radiosensitivity of human induced pluripotent stem (iPS) cells. (A) Western blot analysis of NANOG and OCT4
demonstrating no change in protein level after irradiation. b-actin served as the loading control. (B) Confocal microscopy for NANOG in iPS cells at
indicated time periods after irradiation. Inset – zoomed region of a colony displaying nuclear localization of NANOG. Green – NANOG, Blue – DNA,
scale bar = 100 mm (20 mm inset). (C) Confocal microscopy for SSEA-4 in iPS cells at indicated time periods after irradiation. Green – SSEA-4, Blue –
DNA, scale bar = 20 mm. (D) Western blot analysis for cleaved caspase-3 after irradiation. Human iPS cells were irradiated, or left untreated, returned to
the incubator and recovered for the indicated periods of time. Adherent and detached cells were collected and analyzed separately. b-actin served as
the loading control. Note that the level of cleaved caspase-3 increases after irradiation, particularly in detached cells.
doi:10.1371/journal.pone.0013410.g001
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Figure 2. Activation of the checkpoint signaling cascade in human induced pluripotent stem (iPS) cells after irradiation. (A) Western
blot analysis of ATM-serine 1981, total ATM, CHEK2-threonine 68, total CHEK2, NBS1-serine 343, total NBS1, TP53-serine 15, and total TP53 at
indicated time points after c-irradiation of iPS cells. b-actin served as the loading control. (B) Confocal microscopy for ATM and c-H2AX in iPS cells at
indicated time points after irradiation shows co-localization of ATM-S1981 and c-H2AX after irradiation. Green – ATM-serine 1981, Red – c-H2AX, Blue

Damage Responses in Stem Cells
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treatments of ES and iPS cells (Figure 5B). The increase was

similar in both cell types, suggesting that iPS cells have similar

HRR capacity as ES cells.

Gene expression analysis in human pluripotent stem cells
and differentiated cells

ES cells have been reported to have greater capacity for DNA

repair as compared with somatic cells, and have higher expression

of some DNA repair genes [28,29,30]. We explored this finding in

human ES and iPS cells by comparing the expression level of

genes participating in DNA damage signaling, cell cycle arrest,

and DNA repair across three human ES cell lines (WA01, WA07,

WA09), two iPS cell lines (IMR-90 iPS, AE iPS), and two

differentiated cell lines (WA07 teratoma fibroblasts [TF] and

IMR-90 fibroblasts), using quantitative PCR (qPCR) array

(Figure 6). TF and IMR-90 served as differentiated counterparts

for ES and iPS cell lines, respectively. Since the ES cell lines did

not show any significant difference in gene expression between

each other (p.0.05, Figure S4), they were grouped together and

used as a control for fold difference comparisons. Interestingly, we

also could not detect a significant difference in gene expression

between ES and iPS lines, although AE iPS line did show

increased gene expression relative to ES cells (less than two fold

difference, p.0.05, Figure S4). The general trend in fibroblasts

was reduced gene expression relative to ES and iPS cells

(Figure 6A). Out of 57 analyzed genes, 38 (66.7%) showed two-

fold or greater downregulation in IMR-90, whereas 31 genes

(54.4%) displayed two-fold or greater downregulation in TF. In

IMR-90, only two (3.5%) genes were two-fold or more

upregulated (MPG and TREX1), while in TF three genes (5.3%)

(MPG, TREX1 and GADD45A) were two or more fold upregulated.

Based on the p,0.05 cut-off, 23 genes in IMR-90 displayed a

statistically significant expression fold difference and nine in TF.

These genes also showed at least two-fold difference in comparison

to ES lines, so we considered their expression biologically altered.

Detailed results of the analysis are available in Table S1.

We grouped genes according to their pathways: DNA damage

signaling and cell cycle arrest (Figure 6B), DSB repair (Figure 6C),

mismatch repair (MMR; Figure 6D), base excision repair (BER;

Figure 6E), and nucleotide excision repair (NER; Figure 6F). The

corresponding p-values are shown in Table S2. Out of 18 genes

involved in cell cycle arrest and DNA damage signaling, seven

showed statistically significant lower expression in IMR-90 cells

(ATR, BRCA1, CHEK1, PCNA, RAD9A, SMC1A, TP53), one

showed significant reduction in TF cells (ATR), and another

showed increased expression in TF (GADD45A) (Figure 6B). In a

group of 22 DSB repair genes, 13 genes were expressed at

significantly lower levels in IMR-90 (ATR, BRCA1, FANCG, FEN1,

XRCC6(Ku70), LIG1, MRE11A, PRKDC(DNA-PKcs), RAD18,

RAD9A, RPA1, XRCC2) and five in TF (ATR, FANCG, FEN1,

MRE11A, PRKDC(DNA-PKcs)) (Figure 6C). In the group of genes

involved in MMR we detected five genes with lower expression in

IMR-90 (EXO1, MSH2, MSH3, MUTYH, N4BP2) and two in TF

(MSH2, N4BP2), whereas TREX1 showed higher expression in TF

when compared to ES cells (Figure 6D). Among eight BER genes,

three showed reduced expression in IMR-90 (MUTYH, UNG,

XRCC1), whereas MPG showed increased expression in IMR-90

relative to ES cells (Figure 6E). Finally, TF did not show significant

difference in expression of genes involved in BER or NER

(Figure 6E, 6F). Thus, ES and iPS cell lines display a similar

expression pattern for DNA damage signaling and repair genes

and exhibit generally elevated expression levels compared to their

differentiated counterparts, TF and IMR-90, respectively

(Figure 6A). These results suggest that differentiation and

reprogramming significantly alter the expression pattern of DNA

damage response genes.

We also validated gene expression data by comparing DSB

repair protein levels between ES, iPS and differentiated cell lines

(Figure 7). We detected a lower level of proteins involved in HRR

(MRE11, NBS1, and RAD52) and NHEJ (XRCC4 and ligase IV)

in TF and IMR-90 cells, compared to ES and iPS cells, thereby

confirming gene expression results.

Discussion

In this study we set forth to investigate the DNA damage

response, including checkpoint signaling, cell cycle arrest,

apoptosis and DNA repair in iPS cells. We found that the overall

response of iPS cells to ionizing radiation is very similar to that of

human ES cells. Following activation of the ATM-dependent

checkpoint signaling cascade by ionizing radiation, iPS cells arrest

cell cycle progression in G2 phase and repair DSB. We present

evidence for HRR in human ES and iPS cells. Human ES and iPS

cells exhibit elevated expression of DNA repair genes, perhaps

explaining the high capacity for DNA repair in human ES cells.

Irradiation of iPS cells induced a strong apoptotic response,

resulting in cleavage of caspase-3 four hours following radiation

treatment and visual loss of iPS cells from the colony 24 hours

after irradiation. In our initial experiments we used the same dose

of c-radiation (two Gy) as we did for studies on human ES cells.

The iPS cells responded with such a high level of cell death that

almost all cells died by 24 hours post-irradiation (data not shown).

However, when we performed experiments in human ES cells in

parallel with experiments in human iPS cells, we observed similar

radiation sensitivity. We attribute this to slightly different culturing

method of pluripotent stem cells used in this study (mTeSRTM1

medium instead of knock-out medium). We limited the dosage

used in this study to one Gy, which elicited a DNA damage

response while preserving enough cells to perform experiments.

We did not detect such a high level of cell death in IMR-90

fibroblasts, the parent line for IMR-90 iPS cells (data not shown),

suggesting that radiosensitivity is specifically associated with

pluripotent state. Thus, human iPS cells exhibit profound

radiosensitivity, similar to observations in mouse, non-human

primate and human ES cells [18,19,24,25].

We also investigated the expression of pluripotency markers

NANOG, SSEA-4 and OCT4 in untreated and irradiated iPS

cells. As expected, iPS cells show robust expression of NANOG

and OCT4 proteins, nuclear localization of NANOG, and cell

surface expression of SSEA-4. Similar to previous findings in

human ES cells, c-irradiation does not lead to downregulation of

OCT4 and NANOG protein levels during the six hours after

irradiation, and confocal microscopy confirmed expression and

appropriate localization of NANOG and SSEA-4 up to 24 hours

after DNA damage.

We next studied activation of ATM and its target proteins. The

kinetics of ATM, CHEK2, NBS1 and TP53 phosphorylation was

remarkably similar to observations made in human ES cells. We

confirmed canonical localization of ATM-serine 1981 to the sites of

DSB by co-localization with c-H2AX. Double labeling of irradiated

– DNA, Yellow – co-localization of ATM-serine 1981 and c-H2AX. Scale bar = 10 mm. (C) Confocal microscopy for NANOG and TP53-serine 15 at
indicated time points after irradiation. Red – NANOG, Green – TP53-serine 15, Blue – DNA. Scale bar = 10 mm.
doi:10.1371/journal.pone.0013410.g002
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Figure 3. Induction of a temporary G2/M cell cycle arrest in irradiated human induced pluripotent stem (iPS) cells. (A) Analysis of DNA
content of irradiated human iPS cells by flow cytometry using PI. Top panel: DNA histograms displaying cell cycle profiles measured 0–24 hours after one Gy
of c-radiation. Bottom panel: percentages of cells in G1, S, and G2/M phase of the cell cycle at indicated time points after irradiation. Percentages were
calculated using ModFit software (Verity Software House). Results were gated to exclude cellular debris, sub-G0 population, and doublets. Data represent
the mean 6 SEM calculated from three independent experiments. (B) Confocal microscopy for phospho-histone H3 after irradiation of human iPS cells.

Damage Responses in Stem Cells
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iPS cells with NANOG and TP53-serine 15 validated observation

regarding activation of checkpoint signaling in pluripotent cells.

Finally, examination of expression of TP53 target genes revealed

upregulation of CDKN1A( p21), GADD45A, SESN1, SESN2, MDM2

and PPM1D, indicating that TP53 is transcriptionally active.

Previous studies showed that TP53 knockout improves reprogram-

Green – phospho-histone H3, Blue – DNA. Scale bar = 10 mm. (C) Quantification of mitotic indexes in non-irradiated cells and 24 hours after irradiation. At
least 500 cells per condition were counted in three independent experiments, and statistical difference was determined with x2 test. The data represent
mean 6 SEM. (D) Examples of normal (top row) and aberrant (bottom row) mitotic figures visualized by confocal microscopy after staining for mitotic
marker phospho-histone H3. Abbreviations: A – anaphase, M – metaphase, P – prophase, T – telophase. Arrow – lagging chromosome, plus sign –
misaligned chromosome, asterisks – pole of mitotic spindle. Green – phospho-histone H3, Red – b-tubulin, Blue – DNA. Scale bar = 10 mm.
doi:10.1371/journal.pone.0013410.g003

Figure 4. Repair of double strand breaks in irradiated human embryonic stem (ES) and induced pluripotent stem (iPS) cells. Time
course immunocytochemistry for marker of double strand breaks c-H2AX in ES cells (left panel) and iPS cells (right panel). Green – c-H2AX, Blue –
DNA. Scale bar = 10 mm.
doi:10.1371/journal.pone.0013410.g004
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ming efficiency, leading some to question the status of TP53 in iPS

cells [15], but our finding suggests that TP53 is active in iPS cells.

Therefore, more likely explanation for TP53’s role during

reprogramming could be prevention of reprogramming of somatic

cells with DNA damage.

The analysis of iPS cell cycle distribution revealed a lack of G1/

S arrest in irradiated iPS cells. Instead, iPS cells arrest in the G2

phase of the cell cycle, analogous to data in ES cells. Cell cycle

analysis revealed that reprogramming induces changes in the cell

cycle, resulting in highly proliferative cell populations mirroring

findings in the human ES cells. Since it has been proposed that the

G1 phase of the cell cycle is a time when ES cells are sensitive to

differentiating signals, it is not surprising that reprogramming also

leads to loss of G1/S cell cycle arrest in iPS cells, which may

protect them from differentiation.

Cell cycle analysis showed that cell cycle arrest is temporary and

that 24 hours after irradiation iPS cells restart cell cycle progression.

This finding suggests that iPS cells repair damaged DNA during this

time frame. We followed DSB repair by examining the kinetics of c-

H2AX foci formation and removal. H2AX is a histone variant that is

Figure 5. Homologous recombination repair in human stem (ES) and induced pluripotent stem (iPS) cells. (A) Confocal microscopy for
RAD51 in irradiated human ES cells (left panel) and iPS cells (right panel). Green – RAD51, Blue – DNA. Scale bar = 10 mm. (B) Sister chromatid
exchanges (SCE) in untreated and camptothecin treated human ES cells (left panel) and iPS cells (right panel). Cells were grown for one cell cycle in
the presence of 10 mM BrdU, followed by one hour treatment with 0, 50 or 100 nM camptothecin and 15 hours recovery in the fresh medium.
Following 90 minutes of colcemid treatment, cells were harvested for cytogenetic preparation and differential staining with Hoechst 33258 dye and
Giemsa was performed. The number of reciprocal SCE was counted in 25 metaphase spreads, and is expressed as number of SCE per chromosome
per cell. Error bars represent standard deviation.
doi:10.1371/journal.pone.0013410.g005
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phosphorylated at serine 139 (and referred to as c-H2AX) by ATM,

DNA-PK and ATR at DSB sites and covers megabase-long stretches

of DNA surrounding the DSB [31,32]. In mouse ES cells, c-H2AX

forms visible foci even in the absence of externally-induced DNA

damage and, following irradiation, endogenous c-H2AX foci cannot

be clearly distinguished from irradiation-induced foci [26]. This has

been attributed to open chromatin structure and global chromatin

decondensation that favors formation of visible c-H2AX foci and

limits the use of this marker in following DNA repair in mouse ES

cells [26]. Since both human ES and iPS cells also have open

chromatin structure, we first validated c-H2AX as a DSB marker in

human ES cells by inducing localized damage with a 405 nm laser.

We observed localized c-H2AX staining in laser-irradiated MEF, but

relatively spread out c-H2AX staining in laser-treated ES cells. This

can be explained by dynamic chromatin in pluripotent stem cells

[27], so that mobile chromatin distributes damaged DNA from a

localized region throughout the nucleus. However, c-H2AX staining

was not observed in untreated MEF and ES cells, justifying the use of

c-H2AX as a DSB marker in human ES cells. When we c-irradiated

ES and iPS cells, we observed c-H2AX foci forming within 20

minutes of irradiation. The foci disappeared within six hours of

irradiation, indicating that DNA repair took place within that time

frame, consistent with earlier observations of efficient DNA repair in

human ES cells [28].

The two main pathways for repairing DSB are homologous

recombination repair (HRR) and non-homologous end joining

(NHEJ). Homologous recombination is critically dependent on the

presence of the homologous sequence on the sister chromatid, so it

typically occurs in the late S and G2 phases of the cell cycle. The

advantage of HRR is that the original DNA sequence is restored

without any loss of information because it uses the sister chromatid

as a template, making it an error-free method of repair. In

contrast, NHEJ does not require regions of homology and can

operate in any stage of the cell cycle. Due to the complex nature of

DSB some processing is necessary prior to ligation step and may

lead to the loss of genetic information. HRR has long been

speculated to be the predominant form of DSB repair in ES cells,

and this was recently confirmed in mouse ES cells [29,33,34].

Mouse ES cells also demonstrate lower expression of key NHEJ

repair factors, such as ligase IV and PRKDC (DNA-PKcs) [29,34],

and show elevated expression or HRR factors (RAD51, Rad54

and RAD52) [29] compared to MEF. Here we show evidence that

human ES and iPS cells repair DSB through HRR, by using

RAD51 as a surrogate marker for HRR and visualization of SCE.

Gene and protein expression analysis revealed that both human

ES and iPS cells have higher expression levels of factors involved in

DNA damage signaling and DNA repair than their differentiated

counterparts. Maynard and colleagues [28] reported similar data in

human ES cells and showed that human ES cells exhibit a higher

capacity for repairing multiple forms of DNA lesions. Interestingly,

human ES and iPS cells display not only elevated expression of

genes and proteins involved in HRR (RAD52, MRE11, NBS1) but

also, NHEJ (PRKDC, XRCC6, ligase IV, XRCC4) relative to

differentiated cells, unlike in mouse ES cells [29]. Other researchers

also described differences in expression levels of NHEJ factors in

human ES cells relative to mouse ES cells: human ES cells expressed

higher levels of PRKDC and XRCC6 than mouse ES cells and

showed proficiency in end-joining, which mouse ES cells lack [34].

It appears that there are species-specific differences between mouse

and human ES cells regarding the roles of HRR and NHEJ, that

may mirrored by somatic cells: PRKDC activity [35] and XRCC6

expression [36] are higher in human somatic cells relative to mouse

cells, and XRCC5 (Ku80) is an essential protein in human but not

mouse cells [37]. Nevertheless, the relative contributions and

Figure 6. Analysis of DNA damage signaling and repair gene expression in human pluripotent stem cells and differentiated cells.
(A) Heat map of transcripts analyzed by PCR array. Expression values were normalized over the expression of b-actin and presented as log10 of
relative changes compared to WA07. In comparison to WA07, genes with higher expression are depicted in red, genes with lower expression are
depicted in green, and genes with no difference are depicted in black. The genes were grouped according to the pathway in which they participate:
(B) DNA damage and cell cycle arrest signaling, (C) double strand break (DSB) repair, (D) mismatch repair (MMR), (E) base excision repair (BER), (F)
nucleotide excision repair (NER). Expression fold differences were calculated using the -DDCt method relative to averaged ES cell lines and normalized
using b-actin as endogenous control. The data presented are from three independent experiments, and asterisks label statistical significance as
follows: * 0.01,p,0.05, ** 0.001,p,0.01, *** p,0.001.
doi:10.1371/journal.pone.0013410.g006

Figure 7. Comparison of DNA repair protein levels between
pluripotent stem cells and differentiated cells. Representative
Western blot analysis of steady-state level of proteins involved in
homologous recombination, non-homologous end joining, and pluri-
potency maintenance. The Western blots were run in triplicates. a-
tubulin served as the loading control.
doi:10.1371/journal.pone.0013410.g007
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importance of HRR and NHEJ in human ES and iPS cells still need

to be clarified.

Methods

Ethics statement
All experiments involving animals were approved by the

Institutional Animal Care and Use Committees (IACUCs) from

the Magee-Womens Research Institute and the University of

Pittsburgh, protocol #0803076.

Cell lines and cell culture
Human ES cell lines WA01, WA07 and WA09 (WiCell Research

Institute, Madison, WI), as well as human IMR-90 iPS-clone 1(IMR-

90 iPS; WiCell Research Institute) and amniotic epithelium iPS (AE

iPS; derived in our laboratory) cell lines were cultured in mTeSRTM1

medium (STEMCELL Technologies, Vancouver, BC, Canada) on

MatrigelTM (BD Biosciences, Bedford, MA) coated dishes and

coverslips. IMR-90 iPS cell line was produced by transducing

IMR-90 fibroblasts with retrovirus carrying OCT4, NANOG, SOX2

and LIN28 reprogramming factors. AE iPS were derived from

amniotic epithelial cells following transduction with retroviral vector

carrying all four reprogramming factors OCT4, SOX2, c-MYC and

KLF4 that was described previously [38]. Medium was changed daily

and human ES and iPS cells were passaged every five to six days using

1 mg/ml dispase (STEMCELL Technologies) following manufac-

turer’s instructions. IMR-90 human diploid fibroblast strain was

obtained from American Type Culture Collection (ATCC, Mana-

ssas, VA) and cultured in 90% Eagle’s Minimum Essential Medium

(ATCC) and 10% fetal bovine serum (FBS; Invitrogen, Carlsbad,

CA). WA07-derived teratoma fibroblasts (TF) were isolated from a

teratoma obtained from mice injected with WA07 cells. Following

tumor growth, teratoma was isolated and tissue enzymatically

dissociated into single cell suspension. TF were grown in 90%

Dulbecco’s Modified Eagle Medium (DMEM) supplemented with

10% FBS, 1% nonessential amino acids and 2 mM L-glutamine (all

from Invitrogen). Both IMR-90 and TF were enzymatically passaged

using TrypLETM Express (Invitrogen).

Irradiation
Cells were irradiated with one Gray of c-irradiation using a

GammacellH 1000 Elite cesium137 irradiator (Nordion, Ottawa,

Canada). Immediately after irradiation cells were returned to the

incubator for recovery until the appropriate time point.

Immunocytochemistry and Confocal Microscopy
Immunocytochemistry and confocal microscopy were performed

as previously described [18]. The following antibodies were used:

NANOG (R&D Systems, Inc., Minneapolis), histone-H3-serine 10,

TP53-serine 15, SSEA-4 (Cell Signaling Technology, Danvers,

MA), ATM-serine 1981 (Epitomics, Burlingame, CA), c-H2AX

(H2AX-serine 139; Millipore, Billerica, MA), b-tubulin (Develop-

mental Studies Hybridoma Bank at the University of Iowa, Iowa

City, IA), and RAD51 (EMD4Biosciences, Gibbstown, NJ).

Localized DNA damage was induced using a Leica 405 nm laser.

The laser beam was targeted at intra-nuclear positions via 63X oil

objective lens on Leica TCS-SP2 laser scanning confocal micro-

scope, similar to what has been previously described [39]. A laser

intensity of 25% was used. Thirty minutes after damage was

induced, cells were fixed and stained with anti-c-H2AX antibody.

Western Blot
Human ES and iPS cells were detached from the surface of the

cell culture dish by treatment with AccutaseTM (Millipore). Cells

were washed with PBS and incubated with AccutaseTM for two

minutes at 37uC. Detached cells were collected, pelleted by

centrifugation for five minutes at 200 g, and lysed in RIPA buffer

supplemented with 1 mM phenylmethylsulphonyl fluoride (Sigma-

Aldrich, St. Louis, MO) and 2x Halt phosphatase inhibitor

cocktail (Pierce, Rockford, IL). Fibroblast cell lines were lysed by

adding RIPA directly to the flask in which fibroblasts were grown.

Western blot analysis was performed as previously described [18],

and the following antibodies were used: Ligase IV, RAD50,

RAD52, XRCC4 (GeneTex, Irvine, CA), CHEK2-threonine 68,

CHEK2, TP53-serine 15, NBS1-serine 343, cleaved caspase-3, b-

actin (Cell Signaling Technology), ATM-serine 1981, NBS1

(Epitomics), OCT4, TP53 (Santa Cruz Biotechnology Inc., Santa

Cruz, CA), ATM, a-tubulin (Sigma-Aldrich), MRE11 (Millipore),

and NANOG (Kamiya Biomedical Company, Seattle, WA).

Flow Cytometry
Flow cytometric analysis of cell cycle distribution was performed

as previously described [18].

Sister Chromatid Exchanges
For sister chromatid exchange studies, human ES and iPS cells

were grown on MatrigelTM as described. Four days after plating

the cells, 10 mM 5-bromo-29-deoxy-uridine (BrdU; Roche Applied

Science, Mannheim, Germany) was added to the medium.

Following twenty three hours incubation, BrdU-containing

medium was aspirated, cells were washed three times with

phosphate-buffered saline (PBS; Invitrogen), and medium con-

taining 0, 50 or 100 nM camptothecin (Sigma-Aldrich) was added.

One hour following addition of camptothecin, cells were washed

three times with PBS and incubated for 15 hours in fresh medium.

In order to arrest mitotic cells, 120 ng/ml colcemid (Invitrogen)

was added to the medium for 90 minutes. Following colcemid

treatment, cells were harvested with AccutaseTM and pelleted by

centrifugation. Medium was aspirated and one milliliter of

prewarmed 0.75 mM KCl (Sigma-Aldrich) was added dropwise

while gently tapping the tube. Additional four milliliters of

prewarmed hypotonic KCl solution were added and cells were

allowed to swell in water bath at 37uC for 20–30 minutes. Cells

were prefixed with ten drops of cold fixative (one part acetic acid

and three parts methanol; all Sigma-Aldrich) and incubated for

five minutes at room temperature. Following centrifugation,

supernatant was discarded and fresh cold fixative was added for

30 minutes. This step was repeated two more times, for a total of

three fixations. Following the last fixation step, cells were dropped

onto slides and left to dry and age for at least one day before

staining. Aged slides were rehydrated in PBS and stained with

50 mg/ml Hoechst 33258 (Invitrogen) in dark for 15 minutes.

Following a wash in PBS, slides were placed in 2X SSC (0.3 M

sodium chloride and 30 mM tri-sodium citrate dihydrate, pH 7.0;

Invitrogen) on a 55uC hotplate and exposed to UV at a distance of

less than 10 cm for 15 minutes. Slides were rinsed in PBS and

stained in 4% Giemsa for 10–15 minutes. Metaphase spreads were

visualized using light microscopy and the number of chromosomes

and sister chromatid exchanges (SCE) counted. Twenty-five

metaphase spreads were analyzed per condition. Results are

presented as a number of SCE per chromosome per cell.

RNA isolation and PCR Arrays
Total RNA was isolated with TRIzolH Reagent (Invitrogen) and

genomic DNA was eliminated with the DNA-freeTM kit (Ambion,

Austin, TX) as previously described [18]. Complementary DNA

was produced using RT2 First Strand Kit (SA Biosciences,

Frederick, MD). First, an additional genomic DNA elimination
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reaction was performed, followed by the first strand cDNA

synthesis reaction using one microgram of total RNA. Comple-

mentary DNA was subsequently used in the DNA Damage

Signaling Pathway PCR array (SA Biosciences) according to the

manufacturer’s directions. The quantitative PCR reaction was

carried out using the following program on Applied Biosystems

7900HT system (Applied Biosystems, Foster City, CA): 10 minutes at

95uC to activate HotStart DNA polymerase, followed by 40 cycles at

95uC for 15 seconds and at 60uC for one minute. The PCR array

(PAHS-029) contained pre-dispensed primer sets that include 84

DNA damage signaling pathway genes, five housekeeping genes for

normalization of PCR array data, one genomic DNA contamination

control, three reverse transcription controls, and three PCR positive

controls. The TP53 signaling array (PAHS-027) had similar layout,

except that it contained 84 genes involved in TP53 signaling

pathways. Data were analyzed using SDS 2.2.2 software and the SA

Biosciences data analysis tool (http://sabiosciences.com/pcrarrayda-

taanalysis.php). We excluded from the DNA damage signaling array

data analysis of ten genes with Ct values above 30 (BTG2, CIDEA,

DMC1, GADD45G, GML, IP6K3, PCBP4, RAD51, SEMA4A, TP73).

Expression fold differences were calculated using the -DDCt method.

b-actin was used as an endogenous control to calculate DCt values

(Ctgene of interest – Ctb-actin). Gene expression fold differences were

calculated relative to the averaged DCt value in embryonic stem (ES)

cell lines (WA01, WA07, WA09), as the ratio of 2-DCt between the cell

line of interest and ES cells (2-DCt cell line of interest/2-DCt ES cells).

Statistical analysis
Means and SEMs were calculated, and the statistical significance

for mitotic index before and after irradiation was determined by x2

test. The significance was determined at p,0.05. p–values for SA

Biosciences PCR arrays were calculated using a web-based analysis

software available at http://sabiosciences.com/pcrarraydataanalysis.

php. The p-values were calculated based on a two-tailed Student’s

t-test, and statistical significance was determined at p,0.05.

Supporting Information

Figure S1 Activation of checkpoint signaling and cell cycle

arrest in human induced pluripotent stem (iPS) cells. (A) Western

blot analysis of ATM-serine 1981, total ATM, CHEK2-threonine

68, total CHEK2, NBS1-serine 343, total NBS1, TP53-serine 15,

and total TP53 at indicated time points after two Gy of c-radiation

of iPS cells. b-actin served as the loading control. (B) Confocal

microscopy for phospho-histone H3 after irradiation of human iPS

cells. Red - phospho-histone H3, Blue - DNA. Scale bar = 10 mm.

Found at: doi:10.1371/journal.pone.0013410.s001 (3.02 MB

TIF)

Figure S2 Expression of TP53 target genes in irradiated human

induced pluripotent stem (iPS) cells. Human iPS cells were

irradiated with one Gy and gene expression fold changes were

calculated at indicated time points using the -DDCt method

relative to non-irradiated iPS cells and normalized using b-actin as

endogenous control.

Found at: doi:10.1371/journal.pone.0013410.s002 (0.15 MB TIF)

Figure S3 Induction of localized DNA damage in mouse

embryonic fibroblasts (MEF) and human embryonic stem cells

(hESC). A 405 nm laser was used at 25% intensity to induce DNA

damage in defined nuclear region of MEF and hESC. Thirty

minutes following DNA damage, cells were fixed and stained for

double strand break marker c-H2AX. Note that only cells affected

with laser show c-H2AX staining. Green - c-H2AX, Blue - DNA.

Scale bar = 10 mm.

Found at: doi:10.1371/journal.pone.0013410.s003 (1.26 MB TIF)

Figure S4 Gene expression comparison between pluripotent

stem cell lines. Volcano plots represent p-values (Y-axis) for

observed difference in gene expression (X-axis). Blue horizontal

line represents position of -Log10(0.05) for easier visualization of

significant (p,0.05) difference. Horizontal lines represent two fold

boundaries: on the left are genes with more than two fold

downregulation (green), and on the right are genes with more than

two fold upregulation (red) in comparison to the control line.

Genes in between vertical lines show a less than two fold difference

in gene expression and are depicted in black. Dots represent genes

on the array.

Found at: doi:10.1371/journal.pone.0013410.s004 (0.32 MB TIF)

Table S1 Detailed analysis of DNA Damage Signaling PCR

Array.

Found at: doi:10.1371/journal.pone.0013410.s005 (0.83 MB

DOC)

Table S2 p-values for fold difference in gene expression in

designated cell line relative to human embryonic stem cells.

Found at: doi:10.1371/journal.pone.0013410.s006 (0.10 MB

DOC)
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