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Abstract: A facile method for the preparation of microwave absorbers with low density, high
microwave absorptivity, and broad band is of paramount importance to the progress in practical
application. Herein, commonly-used metal organic frameworks (MOFs) prepared just by mechanical
stirring in methanol at room temperature were chosen as sacrificial templates to synthesize porous
carbon composites with tunable dielectric and magnetic properties. With the replacement of Co atoms
on the surface of zeolitic imidazolate framework-67 (ZIF-67) by Zn atoms, a Co-doped porous carbon
composite with a low-dielectric amorphous carbon/Zn shell was constructed after annealing, leading
to excellent impedance matching condition. Consequently, the as-obtained composite (Co/C@C-800)
shows marvelous microwave absorption properties with an absorption capacity of −43.97 dB and
a corresponding effective absorption bandwidth of 4.1 GHz, far exceeding that of the traditional
porous carbon and composites directly derived from ZIF-67. The results provide a convenient way
to modify MOFs for enhanced microwave absorption materials from the synergy of dielectric and
magnetic losses.

Keywords: MOFs-derived carbon composites; porous structure; impedance match; microwave
absorption

1. Introduction

To meet the ever-increasing demand for electronic communications, microprocessors, and digital
systems, as well as the increasingly more severe electromagnetic pollution, extensive endeavors of
scientists and engineers have been devoted to developing high-performance microwave absorbers [1,2].
Microwave absorbing materials are mainly used in the following areas: military stealth; electromagnetic
radiation protection of radio and television stations; electromagnetic radiation protection of industrial,
scientific, and medical equipment; electromagnetic radiation protection of household appliances;
and electromagnetic radiation protection of office and residential areas. Among varieties of
conventional absorbers—ferrite, carbonyl iron powder, magnetic metal nanoparticles, carbon materials,
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and conductive polymer, for instance—carbon composites absorbers are one of the most cost-effective
microwave absorbers because of their chemical and thermal stability, low price, light weight, and
controllable micro-structure [3–5]. In particularly, materials with a porous multi-interface structure
have been considered as potential candidates in many fields owing to their multiple interfaces [6–10].
However, carbon materials’ application is limited by the cumbersome multistep operations.

According to the microwave absorbing theory, the microwave absorbing performance is extremely
dependent on the dielectric and magnetic loss, as well as the impedance matching of the microwave
absorbers [11,12]. Synthesizing composites doped with other materials [13,14], like magnetic metal
nanoparticles, by incorporating magnetic elements to precursors, is a recommendable strategy to
prepare carbon composites with enhanced microwave absorption performance. Currently, the research
of the most commonly used metal organic frameworks (MOFs) in the field of catalysts has provided
inspiration for our work. In particular, the carbonized MOFs can directly obtain porous carbon
materials with regular morphology, which simplifies the preparation process, thereby causing great
concern in terms of microwave absorption research.

The three-dimensional crystalline networks and metal ions are the keys to the formation of the
metal-doped nanoporous structure, leading to better impedance matching and impressive microwave
absorption properties [15–17]. In our previous work, composites derived from ZIF-67 composites
exhibit good magnetic properties with highly porous microstructure, but show exorbitant dielectric
constant because of the excessive graphitization [18]. Here, in order to properly weaken the dielectric
constant, a porous carbon composite with uniformly-dispersed Co nanoparticles wrapped by a
low-dielectric carbon/Zn shell was successfully designed for high-performance microwave absorbers
through a simple liquid method using only zinc nitrate methanol solution to generate a shell on
ZIF-67. Benefiting from the unique evaporation of zinc metal under high pyrolysis temperature [19–21],
as expected, a porous low-dielectric amorphous carbon/Zn shell derived from the chelation of zinc
ions and 2-methylimidazole was formed to decrease the permittivity for a better impedance match.
The detailed data analysis and plenary microscopic morphology characterization demonstrated that the
synergistic effect of the low-dielectric shell, internally uniformly-dispersed magnetic Co nanoparticles,
high porosity, and large specific surface endows this particular composite with superior microwave
absorption performance.

2. Experimental Section

2.1. Materials

All chemicals in the experiments in were purchased from Aladdin Industrial Co. (Shanghai,
China), including cobalt nitrate hexahydrate (Co(NO3)2·6H2O, ≥99.0%), zinc nitrate hexahydrate
(Zn(NO3)2·6H2O, ≥99.0%), 2-methylimidazole (≥98.0%), methanol (CH3OH, ≥99.9%), and paraffin.

2.2. Preparation

As shown in Figure 1, 2.5 g of Co(NO3)2·6H2O, 2.5 g of Zn(NO3)2·6H2O, and 5.64 g
2-methylimidazole were dissolved in 135 mL of methanol solution, respectively. Subsequently,
2-methylimidazole methanol solution was slowly and continuously dropped into cobalt nitrate
methanol solution, while stirring for 4 h to obtain ZIF-67 methanol solution. Then, the solution of zinc
nitrate in methanol was added to the above ZIF-67 methanol solution and stirred vigorously for 30 min.
The purple product was collected by centrifugal washing with methanol three times and dried in a
vacuum oven at 60 ◦C for 24 h to obtain ZIF-67@Zn precursor. At last, the prepared precursor was
placed in a tube furnace and heated with the heating rate of 5 ◦C min−1 to a set temperature for 2 h
under a nitrogen atmosphere (40 mL min−1), and finally slowly cooled to room temperature naturally
within the tube furnace. Carbonization temperature was carried out at 700 ◦C, 800 ◦C, and 900 ◦C, and
the corresponding products were labeled as Co/C@C-700, Co/C@C-800, and Co/C@C-900, respectively.
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The control group samples were prepared as the above procedure without the addition of
Zn(NO3)2·6H2O, and the carbonization temperature was set at 800 ◦C, marked as Co/C-800.
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2.3. Electromagnetic Parameter Measurements

Generally speaking, hysteresis loss, domain wall resonance loss, eddy current loss, and natural
resonance loss are the main sources of magnetic loss. The hysteresis loss occurs only at a low frequency
and domain wall resonance has an obvious effect under a strong applied field [22,23]. Therefore, eddy
current loss and natural resonance are the main forms of magnetic loss in GHz. For eddy current
loss, it occurs as the C0 maintains a constant with the increasing frequency, which can be expressed
according to the following equation [24]:

C0 = µ′′ (µ′)−2 f−1 =
2
3
πµ0d2σ (1)

where µ0, µ′, µ′′, σ, d, and f are the relative complex permeability, relative complex permeability,
conductivity, sample thickness, and frequency electromagnetic wave, respectively.

The reflection loss (RL) is usually adopted to evaluate the electromagnetic absorption capacity.
On the basis of transmission line theory, RL can be expressed by the following formula [25]:
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where Z0 is the free space impedance; Zin is the input impedance; f is the frequency; d is the
thickness of absorber; c is the light speed; and ε and µ are the relative complex permittivity and
permeability, respectively.

The attenuation factor (α) and impedance match are the two most important factors determining
the absorbing properties. The attenuation factor (α) can be calculated by the following equation [26]:
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Meanwhile, the impedance matching condition can be evaluated by the impedance matching
ratio |Zin/Z0|, based on the former calculated input impedance Z0.

2.4. Characterizations

The morphology was characterized by scanning electron microscopy (SEM, S-4800, HITACHI,
Tokyo, Japan) and transmission electron microscopy (TEM, JEM-2100F, JEOL, Beijing, China). The crystal
phrase structure was analyzed by powder X-ray diffraction (XRD, D8 Advance) in the range of 10–80
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degrees with the scan rate of 5◦/min. The degree of graphitization of carbon was collected by Raman
spectroscopy (INVIAINVIA, RENISHAW, Gloucestershire, UK) with a 633 nm laser. The chemical
composition was tested by X-ray photoelectron spectroscopy (XPS, ESCALAB 250XiESCALAB).
The vibrating sample magnetometry (VSM, JDAW-2000D, YingPu, Wuhan, China) was used to study
the magnetic properties. The N2 adsorption/desorption isotherm and pore size distribution were
measured at 77 K with ASAP 2020M. Materials’ parameters of standard coaxial ring samples mixed
with paraffin were recorded by vector network analyzer (VNA, N5247A, Agilent, Shanghai, China).

3. Results and Discussion

The morphology of Co/C-800, Co/C@C-700, Co/C@C-800, and Co/C@C-900 was demonstrated
by SEM, as shown in Figure 2a. Co/C-800 prepared without the addition of Zn(NO3)2·6H2O shows a
collapsed structure. Significantly, the samples (Co/C@C) prepared with the addition of Zn(NO3)2·6H2O
maintain the precursor cubic octahedral structure and are accompanied by a small amount of tubular
material anchored on the surface (Figure 2b–d). As the Zn2+ is an ideal substitute for Co2+ on the
surface of ZIF-67, the external surface formed on ZIF-67@Zn can effectively inhibit the collapse of
the outer surface carbon skeleton and the destruction of the porous carbon structure during the
carbonization. In addition, because of the enrichment of Zn2+ on the surface of ZIF-67@Zn, graphitized
carbon is not easily formed without sufficient Co catalyst. Therefore, the bubble structure existing on
the surface of Co/C@C is formed by low-dielectric carbon/Zn. Notably, the difference in temperature
has an obvious effect on the morphology of the product. Co/C@C-700 has the largest particle size of
about 350 nm, but as the carbonization temperature gradually increases from 700 ◦C to 800 ◦C and
900 ◦C, the particle size of samples gradually decreases to 300 nm and 270 nm, respectively. Besides,
the bubble-like bulges on the surface gradually increase with the increasing carbonization temperature,
and finally fall apart without obvious shrinkage or collapse.

The TEM test was then conducted to further investigate the microstructure of Co/C@C-800.
The outer layer of Co/C@C-800 is a translucent carbon layer of about 40 nm with a small amount
of carbon nanotubes, while larger solid nanoparticles are confined to the internal carbon structure
(Figure 2e). The additional supplementary enlarged TEM images and EDX images are shown in
Figures S1 and S2, respectively. Moreover, the entire composite can be confirmed as a porous structure
by N2 adsorption–desorption isotherms in Figure S3. The specific surface area of the Co/C@C-800
porous carbon composite is 513.6 m2g−1 and the average pore size is 5.8 nm. Furthermore, the solid
particles with a size of about 15 nm in the composite have characteristic lattice fringes with a spacing
of 0.2 nm, and are wrapped by a graphitized carbon layer with a lattice spacing of 0.34 nm (Figure 2f).
The element mapping analysis shows that C, N, and Zn are uniformly distributed on the surface of
Co/C@C-800 composite, while Co is mainly concentrated inside the composite, indicating that the
interior aggregates in the composite are Co nanoparticles (Figure 2g–j). Owing to the limited catalytic
activity of metallic Co nanoparticles on amorphous carbon [27,28], few carbon nanotubes are generated
and the graphite carbon layers around Co nanoparticles are very thin. The presence of graphitic carbon
layer prevents further agglomeration of Co nanoparticles and inhibits the cross-connection between
graphitic carbon, so they can be stably and uniformly dispersed in porous carbon [29,30].

In order to further explore the phase transition process of C and Co elements in the carbonization
process of ZIF-67@Zn, all the carbonized samples were characterized by XRD. In Figure 3a, three strong
diffraction peaks appear at 2θ = 44.2◦, 52.6◦, and 76.0◦ in all samples, indexing to the face-centered
cubic Co metal (111), (200), and crystal faces (220), respectively, based on the PDF card, indicating
the conversion of Co2+ into Co nanoparticles. The weak diffraction peak at 2θ = 25.2◦ belongs to a
highly graphitized face-centered cubic carbon peak, corresponding to the (002) graphite carbon crystal
plane. With the increase of carbonization temperature, the graphite carbon peak intensity gradually
increases from 700 ◦C to 900 ◦C, demonstrating that high temperature condition is beneficial to the
graphitization of carbon.
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Figure 3. X-ray diffraction (XRD) patterns (a) and Raman spectra (b) of Co/C@C-700, Co/C@C-800, and
Co/C@C-900 composites.

Figure 3b shows the Raman spectra of Co/C@C-700, Co/C@C-800, and Co/C@C-900. All samples
have two typical D and G peaks at 1351 cm−1 and 1586 cm−1, respectively. The D peak mainly represents
the disordered structure caused by the amorphous carbon and graphite lattice defects [31]. The G peak
stands for a regular ordered state of graphitized carbon and the sp2 stretching vibration [32]. In general,
the degree of graphitization is closely related to the carbonization temperature, and increasing the
carbonization temperature can effectively increase the degree of graphitization [33–35]. The presence
of the D peak indicates the existence of a certain degree of amorphous carbon except for graphitized



Nanomaterials 2020, 10, 330 6 of 13

carbon. The peak of amorphous carbon at 2θ = 44.0◦ in the XRD spectrum is hidden by the strong
peak of Co at 44.2◦. The degree of graphitization can be characterized by the proportion of carbon
in the ordered state, generally by the peak intensity ratio of the D peak and G peak (ID/IG). The ID/IG
values of Co/C@C-700, Co/C@C-800, and Co/C@C-900 are 1.21, 1.13, and 1.1, respectively.

The surface elemental analysis of the sample Co/C@C-800 was carried out by XPS. The XPS
spectrum survey is shown in Figure S4. The peak of C 1s was subjected to peak deconvolution at
first (Figure 4a). The three peaks located at 284.6 eV, 284.9 eV, and 286.1 eV correspond to C-sp2,
C-sp3, and C-N bonds, respectively [36]. The peaks of Co 2p include not only Co 2p1/2 (796.2 eV),
Co 2p3/2 (780.9 eV), and two satellite peaks located at 804.1 eV and 788.4 eV, but also the peaks of
metallic Co (777.8 eV, 792.5 eV) (Figure 4b) [37]. The energy peaks of N 1s can be divided into three
peaks with binding energies of 398.2 eV, 400.1 eV, and 401.1 eV (Figure 4c), corresponding to pyridinic
nitrogen, pyrrolic nitrogen, and graphitic nitrogen, respectively [38]. Both pyridinic nitrogen and
pyrrolic nitrogen provide a pair of π electrons for the conjugated orbital, and are connected to two
carbon atoms in the six-membered ring and five-membered ring, respectively. The graphitic nitrogen
directly replaces the carbon atom in the graphene layer. As graphitic nitrogen is highly ordered,
nitrogen-substituted atom in the carbocyclic ring can improve the conductivity together with graphitic
carbon. Furthermore, graphitic nitrogen, pyridinic nitrogen, and pyrrolic nitrogen as defects can
provide polarization sites for electromagnetic waves, thereby further promoting dielectric resonance.
As a consequence, the presence of an appropriate N element improves the microwave absorption
capacity. Besides, Zn 2p can be divided into Zn 2p1/2 and Zn 2p3/2, as shown in Figure 4d. However,
because the Zn2+ is reduced and most of them can be volatilized under a high temperature, the small
amount of Zn species remaining in the composite cannot be detected by XRD. Interestingly, the Zn
atom content (4.06%) on the surface of Co/C@C-800 is almost three times that of the Co atom (1.47%)
according to the quantitative analysis of the XPS results, which indicates that the outer surface of
Co/C@C-800 has formed a thin layer, leading to the detected Zn atom content being higher than that of
the Co atom.
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(b) Co 2p, (c) N 1s, and (d) Zn 2p. (e) Magnetization hysteresis loops and (f) Ms and Hc of Co/C@C-700,
Co/C@C-800, and Co/C@C-900.

The hysteresis loops and partial enlargements are shown in Figure 4e, and the enlarged images
are shown in Figure S5. The coercive force gradually increases with the carbonization temperature
and three samples exhibit superparamagnetism at room temperature. As carbon in the components is
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a non-magnetic substance, the magnetic properties dominantly originate from magnetic substance
metal Co. Therefore, the content, crystal form, and particle size of metal Co are three critical factors
for the magnetic Co-doped porous carbon composites. Figure 4f shows the magnetic saturation
strengths (Ms) of Co/C@C-700, Co/C@C-800, and Co/C@C-900, which are 54.1 emu g−1, 70.4 emu g−1,
and 86.6 emu g−1, respectively. The values of coercivity (Hc) are 100.9 Oe, 132.1 Oe, and 188.6 Oe,
respectively, higher than that of the bulk cobalt metal. Graphitized carbon on the surface of the main
Co nanoparticles can effectively inhibit the agglomeration of the Co nanoparticles, and the size of the
Co nanoparticle is about 70 nm, so that there is barely a magnetic domain in a single Co nanoparticle.
As the carbonization temperature promotes the growth of the Co nanoparticles, the particle size of the
Co nanoparticles becomes larger as the temperature increases, so the magnetic saturation strength
increases. Researchers have found that the coercivity Hc of magnetic nanoparticles has a boundary
grain size effect [39,40]; when the grain size is less than 70 nm, Hc increases as the magnetic metal
nanoparticles size increases. In contrast, when the size of the magnetic metal nanoparticles is larger
than 70 nm, Hc decreases as the magnetic metal nanoparticles size increases. At present, the particle
size of Co nanoparticles is less than 70 nm, so the particle size and Hc gradually increase with the
increase of the carbonization temperature.

In order to measure the electromagnetic parameters, paraffin samples with loading of 15 wt%
as-synthesized composites were prepared. The complex permittivity and complex permeability of
Co/C@C-700, Co/C@C-800, and Co/C@C-900 composites are shown in Figure 5. The real part of complex
permittivity and complex permeability corresponds to the storage capacity of absorbers for the electric
and magnetic fields, while the imaginary part represents the loss of the electric and magnetic fields.

Figure 5a,b show the relative complex permittivity of Co/C@C-700, Co/C@C-800, and Co/C@C-900,
which presents a tendency to decrease with several fluctuations in the measure frequency range.
Co/C@C-700 has the lowest dielectric constant among the three samples, and the real part ε′ decreases
from 8.7 to 7.1, while the imaginary part ε′′ is maintained at approximately 1.6. As the carbonization
temperature increases, the dielectric constant increases gradually. ε′ of Co/C@C-800 gradually decreases
from 13.7 to 6.1, as does the imaginary part from 7.8 to 3.6. With the carbonization temperature
further increasing, the sample Co/C@C-900 has the highest dielectric constant among the three samples.
The corresponding ε′ reduces from 19.8 to 6.8 and ε′′ from 10.1 to 5.7. According to the theory of
free electrons, the complex permittivity is in connection with electrical conductivity, and higher ε′

corresponds to larger conductivity. As the Co nanoparticles are encapsulated by graphitized carbon
and uniformly dispersed in porous carbon, the conductive network cannot be formed effectively.
Therefore, the dielectric constant of the material is mainly determined by the graphitized carbon in the
sample. The degree of graphitization increases with the carbonization temperature, resulting in the
increase of the dielectric constant. In addition, the increasing temperature leads to the formation of
more carbon nanotubes on the outer surface, which makes it easier to form an enhanced conductive
network by carbon nanotubes between the nanoparticles and increases the electrical conductivity and
dielectric constant.

Figure 5c shows the dielectric loss tangent (tanδe = ε′′/ε′) of Co/C@C-700, Co/C@C-800, and
Co/C@C-900. tanδe of Co/C@C-700, Co/C@C-800, and Co/C@C-900 is 0.19–0.20, 0.51–0.55, and 0.47–0.58,
respectively, indicating stable dielectric loss in all three samples. Multiple vibrations due to multiple
polarizations present in the material are responsible for fluctuations in the curve [41]. The graphitized
carbon, amorphous carbon, carbon nanotubes, and Co nanoparticles can form a large number of
interfaces with each other. In addition, the defects generated by the nitrogen-doped graphitized carbon
and the lattice defect of Co particles also provide the polarization site for applied electromagnetic wave,
leading to enhanced dielectric loss. Dielectric loss of the three samples shows a similar increasing
trend with increasing carbonization temperature. Because of the lack of shell structure limitation,
the probability of cross-linking contact between graphitized carbon and Co nanoparticles in the
nanoparticles increases, so the dielectric constant of ZIF-67 derived Co/C-800 is much higher than that
of Co/C@C-800, as shown in Figure S6.
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The complex magnetic permeability curves of Co/C@C-700, Co/C@C-800, and Co/C@C-900 are
shown in Figure 5d–e. It can be seen that the magnetic permeability fluctuates in a small part of the
frequency range with a tendency to increase firstly and then decrease as the carbonization temperature
increases from 700 ◦C to 900 ◦C. The real part µ′ and the imaginary part µ′′ of the magnetic permeability
show a decreasing trend with increasing frequency, and µ′ and µ′′ fluctuate between 1.14 and 1.26 and
−0.14 and 0.06, respectively.

Figure 5f shows the variation of the magnetic loss tangent (tanδm = µ′′/µ′). The curve of tanδm

is similar to the imaginary part of complex permeability, and the vibration decreases between −0.13
and 0.06 as the frequency increases. There is no significant difference in the magnetic loss tangent
of the samples, indicating the similar properties of electromagnetic waves loss. The magnetic Co
nanoparticles in the sample are all coated with non-magnetic graphitized carbon, which inhibits
the interaction between the magnetic crystals of the magnetic Co nanoparticles, and reduces the
synergistic loss of electromagnetic waves in the internal magnetic domains. Although the individual
magnetic Co nanoparticles size can be improved by increasing the temperature, the formation of
graphitized carbon on the Co surface further suppresses the interaction between the neighbouring Co
nanoparticles. Thus, samples carbonized at different temperatures have similar magnetic permeability
and magnetic loss. In comparison with Co/C-800 in Figure S5, the complex permeability of Co/C@C-800
is similar with Co/C-800, which can be attributed to the low loading of magnetic particles and the same
carbonization temperature.

Figure S7 shows the C0 value of Co/C@C-700, Co/C@C-800, and Co/C@C-900. It is obvious that
C0 is an approximate constant within 6–18 GHz, indicating the eddy current loss in high frequency.
In addition to the eddy current loss, there is a tiny peak around 1.5 GHz, corresponding to the natural
resonance loss in low frequency.

Figure 6a–c shows the 3D map RL of Co/C@C-700, Co/C@C-800, and Co/C@C-900 composites.
From the above analysis of the significant effects of carbonization temperature on the composition,
structure, and electromagnetic parameters, the carbonization temperature is a decisive factor for the
microwave absorbing ability. It is obvious that Co/C@C-800 shows the strongest absorbing ability, while
Co/C@C-700 exhibits the weakest. The maximum reflection loss of the three samples moves toward a
low frequency as the thickness of the sample increases, in accordance with the quarter-wavelength
matching model [42]. Although the sample Co/C@C-900 has the largest ε′ and ε′′, the absorbing
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performance is still weaker than that of Co/C@C-800. The excessively higher dielectric constant
of Co/C@C-900 than that of Co/C@C-800 accounts for the poor impedance match of Co/C@C-900.
The proper carbonization temperature leads to the proper dielectric constant and simultaneously
maintains the carbon skeleton structure of the cubic octahedron. The low degree of graphitization of
carbon in the shell structure has a lower dielectric constant, which effectively reduces the dielectric
constant of the ZIF-67 derived composites and is beneficial to the impedance match. In addition, the
presence of the shell structure enables as-prepared composites to maintain a complete cubic octahedral
morphology, allowing incident electromagnetic waves to be multiple-reflected within the porous
structure. Because of the excessive dielectric constant generated by a lack of low dielectric shell
structure, the absorption ability of Co/C-800 composites in Figure S8 is significantly inferior to that of
Co/C@C-800 composites.Nanomaterials 2020, 10 10 of 14 
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Figure 6e–f show the attenuation constant α and impedance matching ratio of the Co/C@C-700,
Co/C@C-800, and Co/C@C-900 composites. It is apparent that the α values of the three samples become
larger as the frequency increases. Co/C@C-900 exhibits the largest attenuation factor, indicating that
Co/C@C-900 has the highest electromagnetic wave loss property. In order to explain the phenomenon
that the absorbing loss of Co/C@C-800 is stronger than that of Co/C@C-900, the impedance match should
be taken into consideration. The impedance matching condition determines whether electromagnetic
waves can enter the interior of the material. If electromagnetic waves cannot enter the interior, the
attenuation factor has no effect on the absorbing properties. As the input impedance Zin is equal to
the free space impedance Z0, zero reflection generates with a perfect impedance match. It is distinct
that the impedance match of Co/C@C-900 is poor compared with Co/C@C-800 composites. Figure 7
exhibits the microwave absorption mechanisms of Co-doped porous carbon composites. In general,
there are three main reasons for the excellent microwave absorption performance of Co/C@C-800
composites: (1) the appropriate carbonization temperature can regulate the graphitized carbon content
to obtain an appropriate dielectric constant, leading to an improved impedance match; (2) the shell
structure facilitates as-synthesized composites to maintain a porous carbide cubic octahedral structure,
which is good for multiple reflection and scattering of incident electromagnetic waves [43,44]; (3) the
incorporation of magnetic Co nanoparticles with dielectric carbon improves the impedance match
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and enhances the microwave energy loss ability, including conductive loss, magnetic loss, dipole
polarization, and interfacial polarization loss [45].Nanomaterials 2020, 10 11 of 14 

 

 

Figure 7. Microwave absorption mechanisms of Co-doped porous carbon composites. 

4. Conclusions 

In order to reduce the dielectric constant of ZIF-67-derived composites and improve the 
impedance matching condition, ZIF-67@Zn was prepared by substituting Zn2+ for the Co2+ on the ZIF-
67 surface, and the low graphitization carbon layer formed on the surface of Co/C@C after 
carbonization reduces the dielectric constant effectively. The carbonization temperature is the main 
influencing factor of the dielectric constant of Co/C@C composites. The low dielectric shell structure 
obtained at a high temperature is responsible for the enhanced microwave absorption performance. 
The resultant Co-doped porous carbon composites with low-dielectric amorphous carbon/Zn shell 
(Co/C@C-800) show the best RL of −43.97 dB at 10.86 GHz with an effective absorbing bandwidth of 
4.1 GHz. Therefore, this work shines a bright future in lightweight microwave absorption application. 

Supplementary Materials: The following are available online at www.mdpi.com/xxx/s1, Figure S1: The TEM 
image and HRTEM image of Co/C@C-800. Figure S2: The element mapping analysis of Co/C@C-800. 
Figure S3: (a) N2 adsorption-desorption isotherms and (b) pore size distribution of Co/C@C-800. 
Figure S4: XPS spectrum survey of Co/C@C-800. Figure S5: Enlarged magnetization hysteresis loops 
of Co/C@C-700, Co/C@C-800 and Co/C@C-900. Figure S6: Frequency dependency of (a) ε′, (b) ε″, (c) 
μ′ and (d) μ″ of Co/C-800 Co/C@C-800. Figure S7: The plot of C0 as a function of frequency for as-
prepared composites. Figure S8: Reflection loss curves of Co/C-800. 

Author Contributions: Q. W., H. J. and J. W. designed the project and performed the preparation of 
materials. B. Z., S. H., S. Y. and X. S. carried out measurements and data analyses. All authors 
discussed the results, analyzed the data, and drafted the manuscript. All authors reviewed the 
manuscript. 

Funding: This research was funded by the National Natural Science Foundation of China (Grant Nos. 51672201 
and 51373129). 

Conflicts of Interest: The authors declare no conflict of interest. 

 

Reference 

Figure 7. Microwave absorption mechanisms of Co-doped porous carbon composites.

4. Conclusions

In order to reduce the dielectric constant of ZIF-67-derived composites and improve the impedance
matching condition, ZIF-67@Zn was prepared by substituting Zn2+ for the Co2+ on the ZIF-67 surface,
and the low graphitization carbon layer formed on the surface of Co/C@C after carbonization reduces
the dielectric constant effectively. The carbonization temperature is the main influencing factor of
the dielectric constant of Co/C@C composites. The low dielectric shell structure obtained at a high
temperature is responsible for the enhanced microwave absorption performance. The resultant
Co-doped porous carbon composites with low-dielectric amorphous carbon/Zn shell (Co/C@C-800)
show the best RL of −43.97 dB at 10.86 GHz with an effective absorbing bandwidth of 4.1 GHz.
Therefore, this work shines a bright future in lightweight microwave absorption application.
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