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Abstract The ultimate goal of regenerative medicine is to regain or restore the damaged or lost function of tissues and

organs. Several therapeutic strategies are currently being explored to achieve this goal. From the point of view of

regenerative medicine, extracellular vesicles (EVs) are exceptionally attractive due to the fact that they can overcome the

limitations faced by many cell therapies and can be engineered according to their purpose through various technical

modifications. EVs are biological nanoscale vesicles naturally secreted by all forms of living organisms, including

prokaryotes and eukaryotes, and act as vehicles of communication between cells and their surrounding environment. Over

the past decade, EVs have emerged as a new therapeutic agent for various diseases and conditions owing to their

multifaceted biological functions. This is reflected by the number of publications on this subject found in the Web of

Science database, which currently exceeds 12,300, over 85% of which were published within the last decade, demon-

strating the increasing global trends of this innovative field. The reviews collected in this special issue provide an overview

of the different approaches being explored in the use of EVs for regenerative medicine.
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EVs, the ubiquitous particles once considered as an elim-

ination apparatus for cellular waste [1]. have added an

additional layer to the conventional modes of intercellular

communication, including direct cellular contact via

adhesion molecules and soluble mediators (hormones,

growth factors, cytokines and chemicals). It has become

evident that these membrane-enclosed nanoscale particles

(40–1000 nm), secreted by donor cells, exchange biologi-

cal information between cells and participate in a diverse

array of physiological and pathological processes [2]. The

composition of these subcellular particles includes growth

factor receptors, ligands, adhesion proteins, mRNAs,

microRNAs (miRNAs), long non-coding RNAs

(lncRNAs), second messengers, metabolites, and lipids that

reflect their cellular origin. The decorating proteins on the

surface of EVs may serve as a type of postal code that

delivers membrane-enclosed messages. In general, EVs are

commonly divided into two major subgroups according to

their size and biogenesis: microvesicles (MVs) and exo-

somes. MVs are 100–500 nm in diameter, are generated by

budding off from the plasma membrane, and represent a

subgroup of larger vesicles. Exosomes, which are much

smaller vesicles with a diameter of approximately

40–150 nm, are formed by the reverse budding of endo-

somal multivesicular bodies and are secreted from cells

upon the fusion of these bodies with the plasma membrane.

It is difficult to obtain pure vesicle fractions of

microvesicles and exosomes because of the size, density,

and protein marker overlaps between microvesicles and
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exosomes. Due to the methodological difficulties associ-

ated with distinguishing these sub-groups, it has also been

proposed to substitute the term ‘‘extracellular vesicles

(EVs)’’ in accordance with ISEV 2018 guidelines [3].

Mesenchymal stem cells (MSCs) can be applied in

regeneration, and have a long history of extensive basic

research and beneficial results in clinical trials. Many

preclinical studies have reported paracrine factors as key

therapeutic agents for MSC-based cell therapies [4].

Among these paracrine factors, the therapeutic roles of EVs

in regenerative medicine have been elucidated by studies

utilizing animal disease models of kidney, musculoskeletal,

cardiovascular, hepatic, neurological diseases and hair loss

[5–10]. A recent study showed that MSCs-EVs ameliorated

LPS-induced acute respiratory distress syndrome (ARDS)

in a mouse model, indicating their utility in the control of

the inflammatory response and fibrotic events following

Covid-19 infection [11]. In addition to MSCs, embryonic

stem cells, induced pluripotent stem cells, tissue-specific

stem cells, progenitor cells derived from stem cells, and

even terminally differentiated cells may also be success-

fully used in tissue regeneration as EV producers [12–14].

Accumulating evidence of preclinical therapeutic effi-

cacy and their versatility in tissue repair and regeneration

has brought attention to EVs as a potential regenerative

substance. Although recent studies have shown that the

regulation of apoptosis, cell proliferation, differentiation,

migration, angiogenesis, oxidative stress, aging, and

inflammation are mainly attributed to the action of EVs

[15], the molecular biological mechanisms involved in EV-

mediated tissue repair and regeneration have not been fully

elucidated. Studies have suggested that three molecular

entities in the EV composition play key roles in EV-me-

diated tissue repair and regeneration processes: miRNAs,

mRNAs, and proteins. To date, several specialized sig-

naling pathways related to regenerative processes, such as

mitogen-activated protein kinase, Wnt/b-catenin, PI3K/

Akt, Notch, TGF-b/Smad, STAT and Hedgehog signaling,

CaMKII, and Efna3 signaling, have been identified upon

EV stimulation [16–19]. EVs can deliver key proteins

directly or control their upstream or downstream compo-

nents by regulating gene expression with mRNAs or

miRNAs [20], a subtype of small (19–24 nucleotides), non-

coding RNA molecules that target mainly mRNA mole-

cules to regulate gene expression at the post-transcriptional

level. Many studies have evaluated the miRNA cargo of

EVs and proposed their regulatory roles in cell prolifera-

tion, differentiation, and apoptosis during tissue regenera-

tion. Several miRNAs act as potential contenders for

tissues and organ-specific tissue regeneration. For example,

miR-124 and miR-9/9* induce the direct conversion of

fibroblasts into neuron-like cells by modulating chromatin

remodeling complex [21], and miR-1 and miR-133a pro-

tects the myocardium against apoptosis, oxidative stress,

and fibrosis and promotes cardiac regeneration [22]. Fur-

thermore, the immunomodulatory role of EVs has been

demonstrated by miR-146a in BM-MSC-derived MVs in

allogenic kidney transplantation [23].

mRNAs are another prime messenger in EVs in tissue

regeneration. In particular, the horizontal transfer of

mRNAs from donor cells to recipient cells is evident in

studies utilizing MSC-derived EVs [18]. The therapeutic

action of MSC-EV-delivered mRNAs related to Gene

Ontology terms of immune regulation and damage repair to

recipient cells have already been documented in several

studies [24]. For example, Choi et al. [25] found that MSC-

EVs containing mRNA of vascular endothelial growth

factor (VEGF-A), basic fibroblast growth factor (bFGF),

and insulin-like growth factor 1 (IGF-1) induced the pro-

liferation of peritubular capillary endothelial cells in acute

renal ischemic mice. Additionally, the horizontal transfer

of neuregulin 1 mRNA in adipose stem cell (ASC)-derived

EVs diminished muscle damage and inflammation in a

mouse model of hind limb ischemia [26]. However, it

should be noted that the regenerative effect observed in this

study is not solely manifested by the horizontal transfer of

mRNA species by EVs. Proteins in EVs are known to

modulate the intracellular and extracellular microenviron-

ment of recipient cells. Proteome studies of MSC-EVs have

identified proteins associated with tissue repair and

regeneration via angiogenesis, coagulation, apoptosis,

inflammation, and extracellular matrix remodeling [27, 28].

The accumulation of knowledge regarding EVs using

disease models has provided potential opportunities for

their clinical applications in a variety of diseases [29, 30].

Based on their compact size, collection efficiency, bio-

compatibility, and engineered production, EVs have many

advantages as a therapeutic delivery tool for regenerative

medicine. However, several regulatory hurdles and tech-

nical challenges must be addressed for the successful

clinical translation of these remarkable biological particles.

These include defining therapeutically active sub-popula-

tions of EVs among heterogeneous vesicles, the opti-

mization of the purification step, scale-up production,

dosage, route of administration, safety of EVs (toxicity,

immune response, and pharmacodynamics), regulation of

complications, and quality management [31, 32]. Although

several clinical trials of EVs are in progress, majority are

focused on biomarkers, pathological mechanisms, and

cancer treatment, and only a few studies have focused on
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tissue repair and regeneration. The EV clinical studies in

the field of regenerative medicine that are ongoing are

summarized in Table 1.

In just a few years, several biotech companies have

developed EV-based therapeutic agents from different cell

sources, and have attempted to enhance the therapeutic

potential of EVs using various strategies, including tech-

nology related to enhanced isolation efficiency, character-

ization, large-scale production, and loading cargo with a

combination of other biomaterials. Commercial EV-based

products for tissue repair and regeneration of other organs

in human clinical settings have already been developed and

registered (Table 2). Although EVs have shown potential

as a new biological therapeutic agent in the field of

regenerative medicine, and their effectiveness has been

verified through in vivo and in vitro studies, the mecha-

nisms by which the biological components of EVs promote

tissue repair and regeneration remain unknown. However,

once the relative contributions of specific molecules

become clear, researchers will be able to enhance the

Table 1 Lists of clinical trials using EVs for tissue repair and regeneration

Target tissue Disease Intervention Trial purpose Trial phase Contry

Lung Bronchpulmonary Dysplasia BMMSC-EVs (UNEX-42) NCT03857841 Phase I USA

Pneumonia by COVID-19 MSC-CM NCT04798716 Phase I,

Phase II

USA

Acute Respiratory Distress

Syndrome

ADMSC-EVs NCT04602104 Phase I,

Phase II

China

Pneumonia by COVID-19 ADMSC-Evs NCT04798716 Phase I USA

Pneumonia by COVID-19 COVID-19 Specific T cell-derived

exosomes (CSTC-Exo)

NCT04389385 Phase 1 Turkey

Bone and

cartilage

Osteoarthritis ADMSC-EVs NCT04314661 Phase I Indonesia

Low back pain PRP-EXSOME NCT04849429 Phase I India

Periodontitis ADMSC-EVs NCT04270006 Early Phase

1

Egypt

Muscle Muscular dystrophy Cardiosphere-derived Cells-Evs(CAP-

1002)

NCT03406780 Phase 2 USA

Brain Acute ischemic stroke MSC-EVs NCT03384433 Phase I,

Phase II

Iran

Alzheimer Disease MSC-EVs NCT04388982 Phase I and

II

China

Brain injury, Cognitive

disorder

M2 macrophage-derived bioactive factors Phase I and

II

Craniofacial neuralgia Exosome NCT04202783 N.A USA

Cardiovascular Heart attack PEP (EV-based product) NCT04327635 Phase I USA

Aortic dissection (Multiple

organ failure)

MSC-EVs NCT04356300 N.A Fujian Medical

University

Skin Dystrophic Epidermolysis

Bullosa

MSC-EVs (AGLE 102) NCT04173650 Phase I/IIA N.C

Skin ulcer Plasma-derived EVs NCT02565264 Phase I Japan

Chronic ulcer Stem cell-conditioned media NCT04134676 Phase I Indonesia

Wound healing Platelet-EVs NCT02565264 Phase I Japan

Eye Macular holes MSC-EVs NCT03437759 Phase I China

Dry eyes UMSC-EVs NCT04213248 Phase I and

II

China

Pancreas Diabetes Mellitus Type 1 UMSC-EVs NCT02138331 Phase II

and III

Egypt

Pancreatic ductal

adenocarcinoma

MSC-EVs loaded KrasG12D siRNA NCT03608631 Phase I USA

Information obtained from https://clinicaltrials.gov/ on 28 April 2021

BMMSC, bone marrow-drived mesenchymal stem cells; CM, conditioned medium; ADMSC, adipose tissue-derived MSC; PRP, platelet-rich

plasma; PEP, purified exosome product; UMSC, umbilical mesenchymal stem cells
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Table 2 Lists of companies developing EV-products for regenerative medicine

Company EV-product Target Homepage

Codiak Biosciences (USA) exoSTINGTM

exoIL-12TM

exoASOTM-STAT6

Cancer

Neuronal disease

https://www.codiakbio.com/

Evox Therapeutics (UK) EVOX-101

EVOX-102

EVOX-103

Rare genetic disorder (Argininosuccinic aciduria,

Citrullinemia type I, Phenylketonuria)

https://www.

evoxtherapeutics.com/

Capricor Therapeutics

(USA)

CAP-2003

Engineered EVs

Duchenne muscular dystrophy

COVID-19

https://capricor.com/

Aegle Therapeutics (USA) AGLE-102 Epidermolysis bullosa

Burn

https://www.

aegletherapeutics.com/

index.html

ExoPharm (Australia) Engineered EVs Genetic diseases

Neurodegenerative diseases

Viral infections

Cancer

https://exopharm.com/

ReNeuron (UK) CTX-derived Exosomes Drug delivery http://www.reneuron.com/

Anjarium Biosciences

(Switzerland)

Hybridosomes� (lipid

synthetic particles ? EVs)

Cancer

Rare genetic diseases

http://www.anjarium.com/

Innovex Therapeutics

(Spain)

Exosomes Malaria

COVID-19

porcine reproductive and respiratory syndrome

virus (PRRSV)

https://innovexther.com/

Carmine Therapeutics

(USA)

REGENT� Genetic diseases https://www.

carminetherapeutics.com/

Evora Biosciences

(France)

EVOGEX Digestive fistula https://www.evorabio.com/

Vesigen Therapeutics

(USA)

Engineered

ARMMs((ARRDC1)

Neurologic diseases

Ophthalmologic diseases

Cancer

https://www.vesigentx.com/

programs/

Exogenus Therapeutics

(Portugal)

Exosomes Skin diseases

Autoimmune diseases

Aruna Bio (Greece) AB126 (exosomes)

AB127(siRNA)

AB128(protein)

AB129(mRNA)

Neurodegenerative diseases https://aruna-bio.webflow.io/

Organicell (USA) Zofin

Pure X

Musculoskeletal diseases

Chronic obstructive pulmonary disease (COPD)

Cardiac diseases

Autoimmune diseases

Neurologic diseases

COVID-19

https://organicell.com/

MDimune (South Korea) BioDrone� Osteoarthritis

COPD

Neurodegenerative diseases

http://www.mdimune.com/

ILIAS Biologics (South

Korea)

EXPLORTM

Exo-Target�
Inflammatory diseases

Metabolic genetic diseases

(Gaucher’s Disease; GD2 and 3)

http://iliasbio.com/

OmniSpirant (Ireland) Exosomes Cystic fibrosis

COPD

https://www.omnispirant.

com/
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therapeutic potential of EVs via biochemical or genetic

engineering for disease- and organ-specific repair and

regeneration.

The special issue ‘‘Current progress in extracellular

vesicles in stem cells and tissue regeneration’’ was enthu-

siastically released by the Editorial Board of Tissue Engi-

neering and Regenerative Medicine to identify unresolved

issues and report on cutting-edge developments in tissue

engineering and regenerative medicine. As reviewed in this

special issue, advances in the isolation and characterization

of EVs, along with their intrinsic capacity, clearly opens

new avenues for tissue repair and regeneration in humans.

We would like to thank all of the contributing authors of

the papers collected in this special issue and hope that the

readers will both enjoy and be inspired by this emerging

and state-of-the-art research topic.
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