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Abstract

Data normalization is a crucial preliminary step in analyzing genomic datasets. The goal of normalization is to remove global
variation to make readings across different experiments comparable. In addition, most genomic loci have non-uniform
sensitivity to any given assay because of variation in local sequence properties. In microarray experiments, this non-uniform
sensitivity is due to different DNA hybridization and cross-hybridization efficiencies, known as the probe effect. In this paper
we introduce a new scheme, called Group Normalization (GN), to remove both global and local biases in one integrated
step, whereby we determine the normalized probe signal by finding a set of reference probes with similar responses.
Compared to conventional normalization methods such as Quantile normalization and physically motivated probe effect
models, our proposed method is general in the sense that it does not require the assumption that the underlying signal
distribution be identical for the treatment and control, and is flexible enough to correct for nonlinear and higher order
probe effects. The Group Normalization algorithm is computationally efficient and easy to implement. We also describe a
variant of the Group Normalization algorithm, called Cross Normalization, which efficiently amplifies biologically relevant
differences between any two genomic datasets.
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Introduction

Recent advances in high-throughput technologies such as

massively parallel sequencing and microarrays have allowed

contemporary biological experiments to routinely measure chang-

es in molecular binding or transcription throughout the genome.

These experiments generate large scale genomic datasets whose

accurate interpretation requires a preliminary normalization step.

For example, DNA-protein interactions are commonly measured

by quantifying the amount of isolated labeled target DNA by

hybridization to complementary oligonucleotide probes on high

density tiling microarrays (ChIP-chip), or by sequencing (ChIP-

seq). In ref. [1], Affymetrix tiling arrays consisting of over 2 million

oligonucleotides of 25 base pairs (bp) each, have been used to

evaluate the genome wide nucleosome positioning in yeast. Our

interest in the normalization problem arose from our analysis of

this data. We noticed that the tiling array signal is generally highly

reproducible; however, it suffers from high probe to probe

variation. This is most strikingly shown when randomly sheared

genomic DNA is hybridized to a tiling microarray (as a control). In

this case, one expects to see a flat, or uniform, hybridization signal,

as genomic DNA and tiling probes are present in equal amounts.

In this experiment, shown in Figure 1, however, the signal deviates

significantly from the expected flat curve, but is highly reproduc-

ible. Figure 1 shows the probe level signal for two independent

genomic DNA hybridizations from ref. [1]. Similar results for

ChIP-seq occur because of sequence dependencies of the

sequencing assay, as shown in Figure 2a of ref. [2]. For clarity

of presentation, we will focus our description on the case of

microarray hybridization, and we will refer to the phenomenon of

sequence specific assay efficiency as the probe effect, which causes

probes with identical input DNA concentration to display

differential hybridization intensity. This behavior can partially

be explained by the fact that individual probes bind their target

DNA with varying hybridization efficiency (for example because of

their different GC content), but non-specific binding (NSB) and

cross hybridization also contribute to differences in observed probe

signals. In this paper we propose a novel method to infer the

normalized input DNA levels from microarray data and correct

for these probe effects. Most other genomic data sets involve

similar probe or target sequence dependencies on assay sensitivity.

For example, the sensitivity of massively parallel sequencing in a

ChIP-seq or RNA-seq experiment might depend on the GC

content at the 59 end of the sequence. In addition to varying

sequencing or hybridization efficiencies, the DNase or MNase

assays used to prepare DNA may have subtle sequence affinity

biases. While our method was developed by our interest in

modeling Nucleosome positioning data, which will be the primary

example throughout the paper, a similar approach could be

applied to other genomic datasets. For example, detecting

differential genomic binding of TFs due to natural variation [3]

or differential gene expression from RNA-seq data [4] could

benefit from our nonparametric normalization method. Improving

the signal quality in genomic datasets strongly affects the accuracy

and consistency of predictive models trained on this data (e.g. ref.

[5]).

Another consideration is that most genomic experiments involve

several conditions and/or replicates. There are usually at least two

conditions: treatment and control, and for each condition there

may be one or multiple replicates. Different arrays might have

slightly different global experimental biases (due to image

scanning, variable concentrations, etc.) which are conventionally
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removed by a global normalization using one of the several available

methods (see ref. [6] for a comparison of different methods). After

global normalization, the data are then corrected for probe effect.

Each of the normalization and probe effect correction

algorithms makes assumptions about the distribution of probe

signals that limits their general application. Quantile normaliza-

tion [7], imposes identical probe signal distributions across

conditions. This is achieved by replacing the probe signal in each

condition by the mean value of probes at the same rank. Hence

after quantile normalization all conditions will have the same

histogram of probe signal and the Quantile-Quantile Plot (Q-Q

Plot) will be a straight line. Although the assumption of identical

distributions roughly holds in many cases, there are cases where it

is clearly inappropriate. For example in case of nucleosome

positioning, about 75–80% of the genome is nucleosome bound;

hence the distribution of the probe values for a nucleosome

enriched condition should be significantly different than that of the

genomic control.

The rank-invariant set method [8], selects a set of probes with

similar rank in all conditions. This set of probes identifies regions

that do not vary significantly across the different microarray

conditions; for example, they may be housekeeping genes whose

expression levels vary only slightly in different conditions. A

nonlinear model (e.g., splines) is then fitted to the variation among

the invariant set probes and used to normalize the value of all

other probes. Although the assumption of invariant activity of

housekeeping genes may be valid in certain cases, in many other

cases it can be difficult to define a suitable invariant probe set

[9,10]. This limits the application of this normalization method.

In more recent work, Sun, et al. [11] have used a mixture model

approach for ChIP-chip analysis that uses LOESS curve fitting for

normalization. They perform separate LOESS fitting for probes

with similar GC content to better model the nonlinear relationship

between probe signal on different arrays. Although this method

gives promising results in a variety of ChIP-chip experiments, the

strength of their method lies in its robust estimation of the null

distribution. The validity of this approach is based on the

assumption that the majority of probes are null, which while

often the case, is not valid for nucleosome positioning data where

over 70% of the genome is nucleosome enriched. Moreover,

relying only on GC content limits the flexibility of their

normalization algorithm.

Figure 1. Genomic assays are often highly reproducible, but have significant efficiency variation across the genome. (A) Two
genomic hybridization signals (biological replicates) from (Lee et al., 2007) shown along a portion of Chr III are highly reproducible, but deviate
significantly from the expected constant signal. (B) Across the whole genome, these variations are highly reproducible. Two genomic hybridizations
for the entire yeast genome are highly correlated (Pearson C = 0.966).
doi:10.1371/journal.pone.0038695.g001
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After performing a global condition-to-condition normalization,

it is important to account for the probe effect. Earlier Affymetrix

array designs attempted to correct for the probe effect by

estimating non-specific binding signal (NSB), and by controlling

for efficiency by choosing probes with constrained GC content. To

estimate the amount of the non-specific binding signal (NSB), on

some Affymetrix microarrays, there exists a mismatch probe (MM)

for each perfect match probe (PM). The MM sequence is identical

to that of the PM with the exception of the central base which is

complementary to the central base of the PM probe. Although

having a MM probe for each PM probe can help to estimate the

NSB signal in some cases, in many cases MM probes does not give

a direct measure of the NSB and their successful use is limited in

practice. Usually, for a significant fraction of probes, the MM

signal is even higher than the PM, which may be caused by the

different hybridization efficiencies of the PM and MM probes. The

distribution of probe signals for PM and MM probes are shown in

Figure S1 for the data in ref. [1], showing that they have

significantly different distributions for the nucleosome enriched

and genomic control conditions.

Since probe efficiency is mainly dependent on the sequence of

the probes, some authors have proposed methods to directly

estimate the hybridization signal (both the NSB and also the gene

specific signal (GSB)) from the probe sequence [12,13]. In ref.

[12], the binding energies are approximated from a position

dependent weighted summation of the dinucleotide stacking

energies, and least squares fitting algorithms are used to estimate

the parameters. In ref. [13], a sequence-based model for the probe

affinity, called MAT, is proposed that includes a position

dependent weight for each nucleotide. It also includes a nonlinear

term proportional to the count of each nucleotide. It is shown that

MAT can be effectively used to capture most of the probe to probe

variability [13], however, even after MAT correction, the probe

effect is not completely removed [14]. The reason for this is that

MAT is not comprehensive enough to fully model the probe

dependent effects which are known to be significantly nonlinear.

More recent work [14] has proposed a new method called

TileProbe, that employs publicly available data from the GEO

database [15] to further remove the probe effect from MAT

corrected intensities. TileProbe uses the median of the MAT

corrected probe intensities over all samples as a model for the

magnitude of the residual probe effect. Similar to ref. [11], it relies

on the assumption that most of the probe signals are generated by

the null distribution. This limits the application of this method for

nucleosome positioning data, where most probes have signal.

Moreover, although the above mentioned sequence-based models

are based on physical quantities such as stacking energies, the

actual parameters are obtained by curve fitting and least square

optimization, which may lead to values that are not consistent with

the original model. For example in Zhang’s model [12], in some

cases, the coefficients for some dinucleotides are estimated to be

positive for NSB, but negative for GSB; further evidence that the

sequence-based model is overconstrained.

A comprehensive model that can explain all of the probe

variations at different conditions (DNA concentrations and

temperatures) would be very complicated. In this paper, instead

of using a model-based approach, we propose a data-based

approach that integrates the normalization and probe effect

correction steps and eliminates the need for an explicit underlying

hybridization model. Instead, we estimate the parameters of a

probe’s response from the response of a similar set of probes. The

proposed method has the advantage of being robust and simple

(no curve fitting to estimate parameters) and can effectively be

used to normalize probe values. The proposed method can also be

used for microarray data at two different experimental conditions

to differentially amplify regions that have changed from one

condition to another. We demonstrate that this method can clearly

and effectively identify the biologically relevant regions in the

Figure 2. Flowchart of Group Normalization. Control arrays are used to generate reference probe sets for each probe. Then we use the
reference probe sets to estimate the probe parameters in the treatment arrays and to generate the normalized signal. We propose two distinct
methods to normalize the arrays: a Binary method which parameterizes high and low signal for each probe (mlow, mhigh); or a Quantile-based method
which uses the rank of each probe in the reference set.
doi:10.1371/journal.pone.0038695.g002
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genome which respond to an experimental stimulus, and that these

regions are frequently difficult to distinguish from noise using

alternative approaches.

Methods

Group Normalization
We model the observed signal yi for a given probe i as linear

combination of three terms: first, the signal yi is proportional to the

desired biological signal, xi, with a probe specific efficiency, Ai.

Second, each probe has a background signal independent of xi

which we model as a constant signal, Bi (a combination of non-

specific binding and other target independent signals), and a

contribution from random noise, ei.

yi~BizAixizei ð1Þ

The normalized desired biological signal xi is unitless, and can be

scaled arbitrarily. In the case of nucleosome positioning, we will

use xi = 0 for fully unbound regions and 1 for fully nucleosome

bound regions. The random noise, ei, represents all factors that

cannot be modeled by Ai and Bi. The goal of normalization is to

determine xi from the observed signal yi, and we do so by

estimating Ai and Bi for each probe. Although we will focus on

tiling array signals for nucleosome positioning as an example, the

model given in (1) is quite general and the normalization scheme

proposed in this paper can be straightforwardly adapted to a

variety of genomic assays, including Chip-seq.

As briefly discussed in Introduction, the relation between the

probe effect and the probe sequence is a nonlinear and relatively

complicated relation. Instead of trying to develop a physically

motivated model of this relation, in our approach, Group

Normalization, we model this relation implicitly from the data.

This is in contrast to most model based approaches, where an

explicit model is assumed, and the model parameters are estimated

by fitting to the data (e.g. [12,13]). Our method relies on the fact

that on each high density microarray, there exist a very large

number of probes (in a typical Affymetrix oligonucleotide tiling

array, there are more than 2 million probes). Figure 2, shows a

flowchart of the proposed method. In this method, for each probe

pi, we find a set of reference probes, denoted Ref(pi), that have

similar probe effects to pi (i.e. for all the probes pj in Ref(pi), Aj is

similar to Ai and Bj is similar to Bi). The key to our Group

Normalization is a ranking method to define such a reference

probe set. If Ref(pi) is large enough, (we typically use N = 1000

probes for the reference set) despite random variation in individual

probes, the probe dynamic parameters Ai and Bi can be robustly

estimated from the reference set probe intensities. Figure 3 outlines

this idea for Group Normalization for a single reference condition;

below we will also consider the case of multiple reference

conditions. In Figure 3 we highlight this process for two probes,

one with high signal and one with low signal, but the procedure

illustrated here is applied to all probes. First, all probes are sorted

by their intensity in a reference condition, e.g., a genomic DNA

reference hybridization. For each probe i, the 1000 probes with

similar rank in the reference condition define the reference set

Ref(pi), shown in light blue. Then the reference set probes are

sorted again by their value in a second condition, the experimental

condition, e.g., nucleosome bound DNA. After sorting, the 1000

reference set probes define a mean for low signal probes, mi,low, and

high signal probes, mi,high, within this reference set. The range of

probe ranks which will define mi,low and mi,high are parameters

chosen to be appropriate for the given application. In the case

shown in Figure 3, we use the 30% lowest and highest ranking

probes to define mi,low and mi,high, i.e., ranks 1–300 define low signal

probes and 701–1000 define high signal probes within the

reference set. Finally, the normalized probe value in the

experimental condition is given by:

xi,normalized~
yi{mi,low

mi,high{mi,low

ð2Þ

Our final results are insensitive to the definition of the high and

low probe ranges. The simple procedure in Eq. (2) estimates the

dynamic parameters Ai and Bi through mi,low and mi,high, and explicit

values for Ai and Bi are not directly required. The basic idea is that

within each reference set, there are probes with high signal in the

experimental condition, and there are probes with low signal in

the experimental condition, and these probes effectively determine

Ai and Bi for the probe pi. We refer to the method explained above

as the binary group normalization method since we estimate two

signal levels (high and low) for each probe. In the following we

explain an alternative approach, that does not involve estimation

of mi,low and mi,high.

Instead of specifying a range of probes to determine mi,low and

mi,high, a related approach would be to assume that the reference

probes have the same distribution of the biological signal xi.

Instead of defining the ranges for low and high probes, we apply

Figure 3. Overview of Group Normalization. Probes are shown
sorted by on their values in a genomic hybridization (reference
condition, black). For each probe, N = 1000 probes with closest signal
in the genomic hybridization are assigned as reference set (dashed
boxes) for each probe. Then high (red) and low (green) signal levels in
the experimental condition (grey) are estimated from high and low
probe signal ranges for each set of reference probes.
doi:10.1371/journal.pone.0038695.g003
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quantile normalization, and use the signal in the quantile

normalized average distribution as the normalized signal. In other

words, we take the average of the reference set distribution for all

the probes to find an average reference set distribution, then for

each probe, the rank in the reference set is calculated and the

normalized signal would be the value of the average reference set

distribution corresponding to that rank. We have implemented this

more general approach, which we refer to as quantile-based group

normalization. Compared to binary group normalization, this

method gives slightly better results with spike-in ChIP-chip

dataset, but we get less signal to noise improvement in nucleosome

positioning data.

Copy number variation
In the definition of the reference set, we are implicitly assuming

that all regions of the genome are responding to the same input

DNA. But probes within repetitive regions may be responding to

multiple copies of identical DNA throughout the genome, as

shown in Figure S2 for the response of a region containing a Ty1

transposon in yeast to a genomic hybridization. Therefore, for

purposes of defining the reference set probes, we explicitly ignore

repeats, as these regions could reduce the accuracy of our

estimation of the probe parameters.

Reference group assignment
Group Normalization is based on finding a set of reference

probes that have similar probe effects for each probe. In principle,

this set could be found with high precision and provided by the

chip manufacturer. But in practice, each laboratory’s hybridiza-

tion protocols might be applied under somewhat different

conditions, and probes that have similar dynamic parameters in

one lab might have different dynamic parameters in another lab.

Or more generally, a good locally linear estimation of the probe

parameters under some conditions might not apply to all

conditions. We therefore recommend that individual users use a

control ‘reference condition’, as described above, or a set of

control ‘reference conditions’. Here we propose three methods to

find such reference sets: 1) a single reference method, 2) a sorted

average method for multiple reference conditions, and 3) a

minimum distance method for multiple reference conditions.

1- Single reference method:

In this approach we perform one genomic hybridization

experiment (the reference condition), as described above. In this

experiment, every probe should measure an equal amount of

DNA. However, since oligonucleotide probes have different

affinities and dynamic properties, the measured signal is not

uniform (see Figure 1). To define the reference set we simply sort

all the probes based on their value in the reference condition and

for each probe we assign the N neighboring probes as the reference

set (Figure 3).

2- Sorted average method.

Since any single hybridization is susceptible to some amount of

random noise, using multiple reference hybridization may provide

a more robust estimation of an appropriate reference set. When

multiple reference hybridizations (conditions) are available, we

propose using the sorted average method, where we sort all probes

by their average signal in multiple reference hybridizations. We

then assign N neighboring probes as the reference set for each

probe.

3- Minimum distance method.

The sorted average method minimizes the bias in estimation,

but by only using the average signal, we are losing data about the

variance of the probe values in the multiple reference conditions,

which also gives us information about a probes’ reliability and our

confidence in our estimation of its parameters. To improve the

reference set assignment, the minimum distance method selects N

nearest probes in the multidimensional reference condition space.

For example, say we have performed M genomic control

hybridizations, then the distance between two probes i and j in

M-dimensions is defined to bed2
ij~(1=M)

PM
m~1 (X m

i {X m
j )2,

where X m
i is the i’th probe signal in the m’th reference condition.

So for each probe pi, we assign the N probes with minimum

distance to pi to the reference set. This way, the probability that a

highly variable probe (unstable from dataset to dataset) might

mistakenly be assigned as a reference probe is decreased. Figure S3

depicts an example where the sorted average method and min

distance methods give different results.

Cross Normalization
In many applications, we are interested in detecting significant

differences between two conditions, neither of which is a genomic

control. For example, we may be interested in comparing the early

and late response to a stimulus, comparing pre- and post-stimulus,

or comparing the response to two different stimuli. If a genomic

hybridization is available, we could separately normalize pre- and

post-stimulus to the genomic control, as described above, and then

compare the two normalized signals. However, we are really

interested in detecting changes between the two conditions, not

changes relative to the genomic control. In this case, a more

sensitive method to detect the relevant changes between the two

conditions would be to directly apply the normalization algorithm

described above to the two conditions, i.e. use the pre-stimulus

data as the reference condition for the post-stimulus data, and use

the post-stimulus data as the reference condition for the pre-

stimulus data. This amplifies the differences between the two

signals. Then the correspondence between these asymmetric

approaches is a measure of the reliability and significance of the

detected changes in normalized signal.

Figure 4. Signal Quality measure. Two tiling array signals
corresponding to nucleosome occupancy at two different experimental
conditions are shown for the HXT3 locus. We use two conditions and a
replicate to determine signal and noise, as follows. In condition A (with
glucose), the highlighted region is nucleosome free, and in condition B
(no glucose), it is nucleosome bound. S is the difference of the tiling
array signal at two different conditions and reflects the signal strength.
N is a measure of noise and is estimated by comparing the signal of two
replicate microarrays at similar experimental condition. We evaluate S
over a set of significantly changed probes (indicated with open circles)
and N over all the probes as described in the text. The ratio S/N is a
genome wide measure of Signal Quality.
doi:10.1371/journal.pone.0038695.g004
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Signal Quality Measurement
In the following, we describe a method to quantitatively

evaluate the performance of the proposed normalization methods.

We define the Signal Quality measure as shown in Figure 4. We

assume that biologically significant changes between any two

arrays will have significantly different signal, but will also have a

spatial extent that covers many adjacent probes. To define a set of

probes whose signal is significantly changed in two conditions, we

use the top 2% of probes sorted by the difference in signal between

the two arrays spatially averaged over a window of 147 bp. To

avoid biasing the results toward one normalization approach, we

use the intersection of the top 2% probes from each approach

being compared (say, Group Normalization, Affymetrix MAS5

[16], MAT [13], and quantile normalization [7] of raw data, for

which there was a 61% overlap between the top 2% probes using

the four methods). These significantly changed probes are

indicated by open circles in Figure 4. Then the signal power, S,

is defined to be the mean square change of the signal on these

probes between conditions A and B. The noise power, N, is the

mean square change of the signal on entire probes between

condition B and a replicate of condition B, as depicted in Figure 4.

Using data from [17], three tiling arrays at T = 0 (prior to

glucose addition) and three tiling arrays at T = 60 mins (after

glucose addition) were independently normalized against four

separate genomic controls using Group Normalization (binary

method with four sets of low and high probe ranges as described

above, and quantile based method), MAS5, MAT, and quantile

normalization of raw data. To make a fair comparison between

MAS5 and the other methods, we used a running average window

of 20 bp to match the 20 bp bandwidth in MAS5. Then the Signal

Quality, S/N, over the significantly changed probe set in dB was

calculated as 10*Log10(S/N), for all 36 combinations of conditions

A, B and replicates. We use these combinations to estimate the

mean and standard deviation of the improvement in Signal

Quality.

Detecting enriched regions in a Spike-in Benchmark
dataset

To compare the performance of the group normalization, with

some other existing methods, we applied this method on the

Affymetrix and Agilent arrays data in the benchmark spike-in

dataset [18]. For Affymetrix arrays, among the methods compared

in [18] MAT gives the best performance. To compare our method

with MAT, we substituted the probe standardization step in MAT

with group normalization and used the same method to detect

enriched regions. We used rMAT [19] with the following

parameters: dMax = 600, dMerge = 300, nProbesMin = 8, meth-

od = ‘‘pValue’’, threshold = 0.0001. For Agilent arrays, among the

methods compared in [18] Splitter gives the best performance. To

compare our method with Splitter, we substituted the normaliza-

tion step in Splitter with group normalization and used the same

method to detect enriched regions. We used the online

implementation of Splitter (http://zlab.bu.edu/splitter) with the

following parameters: maxgap = 200, minrun = 2, mean, Signal

cutoff = 2.5s.d.

To compare the performance of the methods, we plotted the

ROC-like curves similar to [18] and used area under the ROC-

like curves as a measure to compare different methods. For a

perfect classifier this area is 1, and for random it is near zero.

Results

We applied the proposed Group Normalization method on

published genome-wide nucleosome positioning data in yeast

[1,17,20]. The joint distribution of probes in the experiment

(nucleosome enriched tiling array) and control (genomic hybrid-

ization) before and after normalization is depicted in Figure 5A.

Before normalization, there is a high correlation between signal in

the experiment and in the control, which reflects the strong probe

effect. This correlation between treatment and control is almost

completely removed by our Group Normalization. Figure 5B

Figure 5. Group Normalization results for nucleosome positioning in yeast. (A) probe distribution before (left) and after (right) Group
Normalization. (B) Inferred nucleosome pattern at HXT3 promoter before (blue ovals) and after (red ovals) glucose addition. HXT3 is upregulated at
high glucose levels and repressed at low glucose levels. (C) Differential nucleosome occupancy in yeast in response to glucose addition: cells are
grown on glycerol and then 2% glucose is added. Nucleosome positioning is measured before and 60 min after glucose addition (Zawadzki et al.,
2009). The top curves show the spatially averaged raw tiling array data, at time zero (gray dotted) and t = 60 (magenta). The lower plot shows the
result of our normalization method. The red curve is the normalized differential nucleosome occupancy for t = 60 min compared to t = 0 (high values
imply increase in nucleosome occupancy in response to glucose). The blue dotted curve is the reverse analysis, comparing t = 0 to t = 60. The yellow
diamonds indicate ADR1 binding regions from ChIP.
doi:10.1371/journal.pone.0038695.g005

Group Normalization for Genomic Data

PLOS ONE | www.plosone.org 6 August 2012 | Volume 7 | Issue 8 | e38695



shows normalization results for nucleosome occupancy near the

HXT3 promoter before, and 60 minutes after, glucose addition.

The array signal changes significantly between the two conditions,

with a spatial scale of ,150 bp, indicating that nucleosomes at the

promoter are removed after glucose addition. Figure 5C shows the

results for the cross normalization algorithm along the broader

HXT locus on chromosome 4. The top row shows the 20 bp

running average of the raw data and the bottom row shows the

results using the cross normalization procedure described above.

Cross normalization highlights the regions of differential nucleo-

some occupancy across this locus much more clearly than can be

detected from the raw data. Specifically, it is clear from the cross

normalization that while nucleosomes are depleted from HXT3

promoter upon glucose addition, new nucleosomes have been

placed at HXT6 and HXT7 promoters. These changes are

consistent with the expression level changes for these genes, and

with the facts that HXT3 is a low affinity glucose transporter and

its expression is up-regulated upon addition of glucose [21], and

that HXT6 and HXT7 are high affinity glucose transporters.

We next applied our Group Normalization method to another

nucleosome occupancy dataset, measuring nucleosome occupancy

in a histone H3 mutant strain [20]. Figure 6 depicts the results of

[20], who used Affymetrix Tiling Analysis software (TAS) provided

by Affymetrix. We reproduced the nucleosome occupancy profile

in the AGE1 locus over the same region shown in Figure 8 of ref.

[20], shown in Figure 6A. We also used Group Normalization to

process the data for the same region, shown in

Figure 6B. The most significant change in nucleosome

occupancy near AGE1 is that nucleosome binding has been

reduced in the histone H3 mutant compared to wild type strain.

While this is barely detectable in Figure 6A, and somewhat more

evident with Group Normalization in Figure 6B, cross normali-

zation differentially amplifies these differences in nucleosome

occupancy in the two strains, as shown clearly in Figure 6C,

highlighting the significant difference in occupancy upstream of

AGE1.

To quantitatively compare the genome-wide performance of the

proposed normalization method with existing methods, we defined

a Signal Quality measure (see Methods), the difference of the

signal of two microarrays at two different experimental conditions

(Signal) divided by difference of two microarrays at similar

condition (Noise). Following refs. [1,17,20], who used the

Affymetrix MAS5.0 algorithm to process their tiling array data,

we compared our Group Normalization method with MAS5.0.

We also computed the MAT [13] normalized signal and quantile

normalized signal [7] for comparison. We measured the Signal

Figure 6. Group Normalization results for histone H3 mutant
dataset. Nucleosome occupancy in wild type (HHT2) and histone H3
mutant (hht2-AG) near AGE1 on yeast chromosome IV is show for
region plotted in Figure 8 of (He et al 2008). A) Nucleosome occupancy
plots using Affymetrix TAS software as was used by (HE et al 2008). The
dotted box shows the location for the change in nucleosome
occupancy. (B) Group Normalization makes it somewhat easier to
detect the differentially occupied promoter and clearly identifies the
bound regions, but (C) cross normalization more strongly amplifies the
differentially occupied region.
doi:10.1371/journal.pone.0038695.g006

Figure 7. Signal Quality comparison of Group Normalization to
other methods. We applied different normalization methods to the
nucleosome positioning data and measured the Signal Quality using
MAS5, quantile normalization (Q-Q), and MAT. Binary Group Normal-
ization (GN-binary) has higher Signal Quality than all other approaches
tested. Quantile normalization (GN-quant) outperforms MAS5 and Q-Q
but not MAT on this dataset. We also examined the sensitivity of binary
Group Normalization to different choices of low and high probe ranges
used to estimate mlow and mhigh: (mlow, mhigh) = a: (.10–.40,.60–.90), b: (.05–
.50,.80–.95), c:(.10–.50,.50–.90), and d:(.10–.30,.70–.90). All of these
choices give virtually identical Signal Quality improvement.
doi:10.1371/journal.pone.0038695.g007
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Quality for regions of the genome that are differentially occupied

before and after addition of 2% glucose [17] across the whole

genome. As shown in Figure 7, Signal Quality was significantly

improved from 8.8(0.7) dB using MAS5 to 10.5(0.6) dB using

binary group normalization, showing 1.7(0.4) dB improvement in

Signal Quality compared to MAS5.0 and 1.1(0.8)dB improvement

Figure 8. Comparison with spike-in benchmark data of Johnson et al. (2008). A) We compare ROC-like curves for different platforms and
algorithms: Splitter, which had the best performance on Agilent data, and MAT, which had the best performance on Affymetrix data. Area under the
ROC-like curve (AUC) is shown for B) Agilent and C) Affymetrix datasets. Except for the diluted Affymetrix spike-in data, which had poor performance
with all methods, Group Normalization (both GN-binary and GN-quant) consistently performs better than previous methods, and has a higher
sensitivity to recover spike-in regions at the same false positive rate.
doi:10.1371/journal.pone.0038695.g008
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compared to MAT. The numbers in parenthesis are the standard

deviation for thirty six different data sets as explained in the

methods section. Also as shown in this figure, using different

ranges for low and high probe didn’t result in a significant

difference in binary group normalization method performance.

When we used the alternative quantile-based group normalization

method (see Methods) we found a Signal Quality of 9.2(0.6) dB, so

the improvement is 0.4(0.3) dB compared to MAS5 but

significantly less than binary method.

The performance of group normalization is not very sensitive to

the definition of high and low probe ranges. Considering the probe

signal model of Equation (1), if the reference set probes are

independent of the biological signal, xi, then for all reference sets,

the observed signal yi, would have a similar expected distribution

to xi, scaled by Ai and shifted by Bi. Therefore, using different

ranges for low and high signal, would give the same normalized

signal, except for a constant shift and scale factor, which are

functions of the ranges used for low and high signal estimation. To

examine the sensitivity of the method to the choice of the low and

high probe ranges, we used four different sets of ranges for low and

high probes: a) 10%–40%, 60%–90%, b)5%–50%, 80%–95%,

c)10%–50%, 50%–90%, d)10%–30%, 70%–90%, and compared

the performance of the method using each set of ranges for the

nucleosome positioning data, also shown in Figure 7. Since as

expected, the performance was very similar for all the four

different ranges, we only used one set of ranges, 10%–40% to

define mi,low and 60%–90% to define mi,high for the spike-in ChIP-

chip analysis.

To further evaluate our proposed method against existing

methods we applied the group normalization method on the

benchmark spike-in dataset [18]. In this dataset, a known amount

of DNA from defined cloned regions was spiked in to genomic

DNA and performance of different platforms and algorithms was

assessed by comparing their ability to accurately recover the spike-

in regions. Compared to nucleosome positioning data, where a

significant fraction of the probes differ in treatment and control

conditions, in this data set the spike in regions only cover about

0.2% of the probes, which is similar to expected ChIP-chip data

with limited targets. We compare our method’s ability to detect

these spike-in regions to alternative methods in Figure 8. Group

Normalization using either the binary method (GN-binary) or

quantile method (GN-quant) detects more spike regions than

Splitter or MAT at the same false positive rate, as shown by the

ROC-like curves in Figure 8A, defined as in ref. [18]. The area

under these curves summarizes the performance of each

algorithm, as shown in Figure 8B and 8C. Except for the diluted

Affymetrix dataset, which had low signal quality for all normal-

ization methods, group normalization shows consistent improve-

ment over previous approaches.

Discussion

We have presented a new normalization procedure for genomic

datasets. Our approach is based on the idea that genomic data sets

have such a large number of sequences or probes that we can

estimate the sequence biases of hybridization or sequencing (the

dynamic parameters of the probes) from the response of probes

across datasets. Because this approach estimates the dynamic

parameters of a probe from a group of similar probes, we call our

method Group Normalization. We have also described an

approach based on this technique which highlights regions of

significant signal changes between two experiments (cross

normalization). We have shown that these normalization proce-

dures can significantly improve the signal quality relative to

existing normalization methods. We have shown that Group

Normalization improves signal to noise in nucleosome positioning

datasets and can more accurately identify spiked-in regions in the

benchmark data of ref. [18] in most cases.

While signal quality is a global measure which shows the benefit

of Group Normalization compared to other approaches, in some

cases, the biology under consideration can also show how Group

Normalization improves the analysis of the data. For nucleosome

positioning, the known spatial scale of DNA bound to the

nucleosome constrains the signal to vary on a scale of 150 bp. We

can use genome wide nucleosome occupancy data to construct the

autocorrelation of the nucleosome bound DNA signal for data that

has been normalized using Group Normalization or other

approaches. Because of nucleosome packing, we expect this

autocorrelation function to exhibit periodicity on a scale set by the

150 bp nucleosome bound DNA plus linker DNA. As shown in

Figure S4, the autocorrelation from group normalized data shows

a stronger recurrence at 170 bp in the autocorrelation function

compared to MAS5.

A possible extension of this model would incorporate an

estimate of the variance of the probe signal from the reference set,

and use that as a measure of the reliability of a probe. MAT uses a

similar approach when combining the signal of neighboring

probes.

While in this paper we have only presented results on tiling

microarray data, in principle, other high-throughput technologies

could benefit from a model-independent normalizationapproach

similar to Group Normalization. Our development of the Group

Normalization procedure was motivated by the observation that

tiling array probes exhibit widely varying hybridization efficien-

cies, presumably due to non-uniform variations in the local

sequence properties of the probes. We normalized these varying

hybridization efficiencies by finding a large set of similarly

responding probes in a reference condition. Most other genomic

technologies suffer from analogous sequence specific effects on the

assay efficiency. These could range from sequence dependent

shearing rates, endonuclease sequence cleavage preferences, or

sequence specific priming efficiencies in the case of massively

parallel sequencing assays (RNA-seq or Chip-seq). Because we do

not try to explicitly model the sequence specificity of the assay, but

instead infer (estimate) sequence specific probe effects from a

reference set of probes, our proposed approach should be useful in

these cases as well.

Supporting Information

Figure S1 Mismatch probe distributions vary signifi-
cantly in different conditions. Histograms for one treatment

(nucleosome enriched, top) and one control (genomic DNA,

bottom) microarray are shown. The histogram for PM (left) and

MM (right) probes are plotted separately.

(EPS)

Figure S2 Repetitive elements have large variations in
probe signal and are removed from the reference set
computation. Raw probe signals for genomic hybridization

(control) near YBLWTy1-1 locus on chromosome II in yeast are

shown.

(EPS)

Figure S3 When multiple conditions are available,
minimizing distance yields a more reliable reference
set assignment. Here for three different probes: p1 = (0.1,20.1),

p2 = (20.3,0.3), p3 = (0.15,20.20), the averages are Avg(p1) = 0;

avg(p2) = 0; avg(p3) = 20.025; but distances are d12 = 0.4,
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d13 = 0.1. So although probe 1 and 2 have more similar averages,

probe 1 and 3 have more similar responses, and probe 3 is

therefore a better reference probe for probe 1.

(EPS)

Figure S4 Comparison of autocorrelation of normalized
nucleosome occupancy using Group Normalization and
MAS5 algorithms for the (Lee et al 2007) data. Group

normalization shows a slightly higher recurrence in nucleosome

occupancy signal due to the periodic packing of nucleosomes.

(EPS)
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