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Abstract

Somatic mutations promote the transformation of normal cells to cancer. Accurate identifica-

tion of such mutations facilitates cancer diagnosis and treatment, but biological and techno-

logical noises, including intra-tumor heterogeneity, sample contamination, uncertainties in

base sequencing and read alignment, pose a big challenge to somatic mutation discovery.

A number of callers have been developed to predict them from paired tumor/normal or

unpaired tumor sequencing data. However, the small size of currently available experimen-

tally validated somatic sites limits evaluation and then improvement of callers. Fortunately,

NIST reference material NA12878 genome has been well-characterized with publicly avail-

able high-confidence genotype calls, and biological and technological noises can be compu-

tationally generalized to the number of sub-clones, the VAFs, the sequencing and mapping

qualities. We used BAMSurgeon to create simulated tumors by introducing somatic small

variants (SNVs and small indels) into homozygous reference or wildtype sites of NA12878.

We generated 135 simulated tumors from 5 pre-tumors/normals. These simulated tumors

vary in sequencing and subsequent mapping error profiles, read length, the number of sub-

clones, the VAF, the mutation frequency across the genome and the genomic context. Fur-

thermore, these pure tumor/normal pairs can be mixed at desired ratios within each pair to

simulate sample contamination. This database (a total size of 15 terabytes) will be of great

use to benchmark somatic small variant callers and guide their improvement.

Introduction

Somatic mutations promote the transformation of normal cells to cancer [1–3]. Like germline

mutations, the length of affected nucleotide sequences exclusively in cancer cells ranges from

one nucleotide to entire chromosomes [4, 5]. The ultimate goal of cancer research is precise

therapeutic targeting. To achieve the goal, a series of studies have been conducting, including

but not limited to: identifying genes that drive cancer progression [6–8]; classification of can-

cer subtypes to establish the correlation between molecular properties and clinical outcomes

[9, 10]; and linking environmental factors to mutational patterns in cancer genomes [11, 12].

PLOS ONE | https://doi.org/10.1371/journal.pone.0202982 August 30, 2018 1 / 14

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Meng J, Chen Y-PP (2018) A database of

simulated tumor genomes towards accurate

detection of somatic small variants in cancer. PLoS

ONE 13(8): e0202982. https://doi.org/10.1371/

journal.pone.0202982

Editor: Alvaro Galli, CNR, ITALY

Received: May 21, 2018

Accepted: August 13, 2018

Published: August 30, 2018

Copyright: © 2018 Meng, Chen. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: This work was supported by La Trobe

University full fee scholarship.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0202982
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202982&domain=pdf&date_stamp=2018-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202982&domain=pdf&date_stamp=2018-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202982&domain=pdf&date_stamp=2018-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202982&domain=pdf&date_stamp=2018-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202982&domain=pdf&date_stamp=2018-08-30
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0202982&domain=pdf&date_stamp=2018-08-30
https://doi.org/10.1371/journal.pone.0202982
https://doi.org/10.1371/journal.pone.0202982
http://creativecommons.org/licenses/by/4.0/


Accurate identification of somatic mutations is the first step to therapeutic precision, which is

followed by the aforementioned studies, and plays a key role in clinical diagnosis.

In an ideal error-free situation, it is not difficult to call somatic mutations from paired

tumor/normal next generation sequencing data, as only at somatic sites are there bases differ-

ent from the reference alleles in the tumor genome, but not in the matched normal genome.

However, biological and technological factors, including intra-tumor heterogeneity, sample

contamination, uncertainties in base sequencing and read alignment, pose a big challenge to

somatic mutation discovery [13–15]. Specifically, studies on tumor clonal and sub-clonal

structures revealed that tumor cells vary in the way they are abnormal, and some mutations

may be observed in only a small fraction of tumor cells in a patient [16, 17]. Furthermore, it is

very hard to obtain absolutely pure tumor and normal samples by current experimental tech-

nologies, which may result in underestimated variant allele fractions (VAF) in tumor or over-

estimated VAFs in normal. In addition, technological limitations bring uncertainties in base

calling and read alignment. These uncertainties complicate the transformation from aligned

data to allelic counts.

A collection of callers and ensembles emerged to detect somatic small mutations from

matched tumor/normal, or unmatched tumor sequencing data [18–23]. Designed for the same

purpose, callers and ensembles are different in the diversity level of noises taken into account,

in the way noises are modelled, in the threshold used to report a mutation as well as in the

stringency level to define a false positive in post-call filtering. Validated somatic mutations are

valuable resources to evaluate the performance of these callers and guide their improvement.

However, it is resource intensive and time consuming to generate ground truth somatic sites

[24, 25]. As different sequencing platforms have their own error patterns, multi-platform data

from the same sample are needed to complement each other. Standard 30x-50x depths for

whole genomes and 100x-150x depths for exomes are not adequate for detection of somatic

events in tumors consisting of genetically heterogeneous tumor cells. Deep sequencing is

required to offer the desired sensitivity to sub-clonal events. Arbitration is essential for sites

whose genotypes disagree between callers or datasets. For the currently available small-sized

validated events of individual tumors, they may suffer bias towards one particular validation

technology.

Fortunately, simulation of genomic data enables us to generate in silico tumors with

completely known somatic mutations. Compared with wet-lab validation, computer simula-

tion is much more flexible. Simulated mutations can happen at any genomic site, with any

VAF, in any genomic context, and have no limitation in their mutation spectrum. Such flexi-

bilities facilitate characterization of somatic mutation callers and interrogation of their weak-

nesses. BAMSurgeon is a tool to simulate tumor genomes from normal ones, which was

developed by ICGC-TCGA DREAM Somatic Mutation Calling Challenge [26]. It randomly

modifies reads spanning the desired sites in the normal or pre-tumor BAM files based on the

specified VAFs, and then realigns the modified reads before merging them back into the origi-

nal BAMs. The modified BAMs serve as tumors with successful spike-in mutations. This kind

of simulated tumors are more realistic compared with those from a reference genome assem-

bly, as the underlying biases and error profiles resulting from sequencing technologies and

library construction methods are maintained [27]. HapMap/1000 Genomes CEU female

NA12878 is the first well-characterized whole-genome reference material from the National

Institute of Standards and Technology (NIST) [24, 28]. Its high-confidence genotype calls that

include single nucleotide polymorphisms (SNPs), small (1–50 bp) insertions and deletions

(indels) and homozygous reference sites have been developed and are publicly available. Fur-

thermore, a large set of sequencing data of NA12878 are freely accessible to researchers [29].

All these lay a foundation for the work presented here.

A database of simulated tumor genomes
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Our work generated a database of 135 simulated tumor genomes for public use. These sim-

ulated tumors were created by BAMSurgeon that introduced small variants (single nucleotide

variants (SNVs and small indels) into homozygous reference sites of high confidence of the

well-characterized NA12878 genome. To increase the diversity level of sequencing and subse-

quent mapping errors, we used the NA12878 data (four whole genomes and one exome) from

three sequencing centers with different library designs and sample preparations as pre-tumor

or normal. Starting with each pre-tumor, 27 increasingly challenging tumors were simulated.

The data complexity is displayed in the mutation frequency across the genome, the number of

sub-clones and the VAFs. Since local copy number variation (CNV) and tumor ploidy can be

computationally generalized to the factor of VAF at each genomic site, we did not include

them as factors of data complexity. These pure tumor/normal pairs can be mixed at desired

ratios within each pair to further simulate sample contamination. Together, this database of

diverse simulated tumors is of great use to benchmark somatic small variant callers’ perfor-

mance and improve their accuracy metrics.

Materials and methods

Data sets

We show the procedure about how to develop simulated tumors from pre-tumors/normals

in Fig 1. To enhance analysis of different sequencing and subsequent mapping error pro-

files, we used four whole genomes and one exome Illumina data for NIST reference material

NA12878 as pre-tumor. Table 1, S1 Table and section of Pre-tumor/normal sequencing

data of NA12878 in S1 File give detailed information about these five pre-tumor/normal

sequencing data. Two whole genomes are part of a deep depth (~300x) dataset of 2x148

paired end reads (which is available at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/

NA12878/NIST_NA12878_HG001-HiSeq_300x/) [29]. This dataset was made from 14

libraries in total, and two whole genomes in our work each contained 4 libraries. The other

two whole genomes are from a high depth (more than 200x) dataset of 2x100 paired end

reads (http://www.ebi.ac.uk/ena/data/view/ERS179577) [28]. The exome data is of 2x100

paired ends and accessible from ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/data/NA12878/

Garvan_NA12878_HG001_HiSeq_Exome/. We did not directly use the BAM files provided.

Instead, we downloaded the FASTQ format files first, used BWA to map the reads to the

human reference genome hg38/GRCh38 with default settings [30], marked PCR and optical

duplicates with Picard, realigned the raw gapped alignment and adjusted base quality scores

with GATK [31]. The resulting pre-tumor BAM files are NA12878_HiSeq1_normal.bam,

NA12878_HiSeq2_normal.bam, NA12878_Exome_ normal.bam, NA12878_Illumina1_nor-

mal.bam and NA12878_Illumina2_normal.bam.

The high-confidence genotype calls for NA12878 are contained in two files: the BED format

file that includes the genomic regions whose genotypes were identified confidently and the

VCF file for small variants. The genomic sites that are in the BED file and not in the VCF file

are homozygous reference allele sites. Such sites have a possibility to get mutated to harbor

somatic mutations in the simulated tumors by BAMSurgeon. Currently, two resources of

high-confidence genotype calls for NA12878 are available: NIST Genome in a Bottle (GIAB)

and Illumina’s Platinum Genomes (PG) [24, 28]. We used the latest GIAB version v3.3.2 call

set under GRCh38 available at ftp://ftp-trace.ncbi.nlm.nih.gov/giab/ftp/release/NA12878_

HG001/NISTv3.3.2/GRCh38/. For the PG call set, we used the v2016-1.0 under hg38/GRCh38

at ftp://ussd-ftp.illumina.com/2016-1.0/hg38/. We also note the availability of PG v2017-1.0

call set, however, it was not released at the time of preparing our work.
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Fig 1. The procedure about how to create simulated tumors by BAMSurgeon from pre-tumor/normal BAM files to benchmark and tune callers of somatic small

variants. It started with PG and GIAB high-confidence genotype calls of NIST reference material NA12878. To further eliminate possible biases towards any particular

sequencing technology, read mapper and variant caller used for identifying NA12878 genotype calls, we took only the genomic sites that are shared by both GIAB and

PG BED files, and the resulting file is called the intersect BED file. We obtained the target regions with homozygous reference genotypes by masking out the genomic

sites with small variants and SNVs in the intersect BED file. Next, for each pre-tumor/normal BAM file, BAMSurgeon randomly selected sites from its target regions for

SNV and small indel spike-in. These selected genomic sites in BED format and pre-tumor specific BAM files were provided to BAMSurgeon to yield simulated tumors

and ‘truth’ VCF files with successfully spike-in somatic sites. To benchmark and tune somatic small variant callers, a pair of synthetic tumor and its pre-tumor/normal

acts as input to return a VCF file with predicted somatic sites, and accuracy metrics are obtained by evaluating the predicted VCF file against its corresponding ground

truth VCF file and the benchmark BED file.

https://doi.org/10.1371/journal.pone.0202982.g001

Table 1. Description of pre-tumor/normal sequencing data of NIST reference material of NA12878 for our simulation work. The pre-tumors/normals are showed

by their corresponding BAM file names without extension.

Pre-tumor (BAM) Sequencing machine (Illumina) depth Read length Sequencing

content

NA12878_HiSeq1_normal HiSeq 2500 50 148 Genome

NA12878_HiSeq2_normal HiSeq 2500 50 148 Genome

NA12878_Exome_normal HiSeq 2500 230 100 Exome

NA12878_Illumina1_normal HiSeq 2000 50 100 Genome

NA12878_Illumina2_normal HiSeq 2000 50 100 Genome

https://doi.org/10.1371/journal.pone.0202982.t001
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Generating target regions to receive spike-ins

Given two sources of the BED format file consisting of genomic regions with highly confident

genotype calls, we used the simple consensus approach to further exclude possible uncertain-

ties, that is, we chose only the genomic sites that are both an element of GIAB and PG BED

file. The result is referred to as the intersect BED file here. We then transformed the VCF file

from GIAB and PG into the BED format. This step generated the BED file called VCF2BED

for each source. The genomic regions that are present only in the intersect BED file and not in

the GIAB and PG VCF2BED files have homozygous reference genotypes. They are target

regions from which we can randomly select to receive spike-in somatic mutations.

The aforementioned file with target regions was generated without considering the specific

sample BAM files. It needs to be modified when it comes to the different pre-tumor sequenc-

ing data. For each pre-tumor BAM file, we first calculated the depth of each genomic site

within the target regions by SAMtools depth (v1.3.1) [32]. The target regions were filtered by

excluding the genomic sites with the depth of lower than 10. The remaining regions were

merged by BEDtools merge (v2.26.0) to combine book-end sites or intervals [33], which are

the final targets to be played with in the simulation step. The pre-tumor BAM files in the same

order as detailed in the subsection of Data sets contain 2295167652, 2294894981, 86922743,

2295481015 and 2296634693 target sites respectively.

Selecting from target regions for BAMSurgeon spike-in

From each file with final target regions, we used the python script randomsites.py in the BAM-

Surgeon distribution to randomly select genomic sites for SNV spike-in. Then BEDtools sub-

tract (v2.26.0) was performed to extract the genomic sites that are within the final target

regions and not selected for SNV spike-ins. The genomic regions from the subtract step were

fed into the randomsites.py script for BAMSurgeon addindel input this time. For the input to

BAMSurgeon, the randomsites.py generates a list of genomic sites with four columns for

addsnv and two more columns for addindel. We filled the fourth column (1-based) with our

specified values and kept the other columns untouched. We also kept the default mutated

bases returned by BAMSurgeon.

For each pre-tumor, we simulated three types of mutation loads across the genome for SNV

spike-ins: 2 mutations per MB (2/MB), 5 mutations per MB (5/MB) and 10 mutations per MB

(10/MB). The mutation load for small indel spike-ins was 10% of that of SNVs. There were

three types of cell sub-population composition to each mutation load: 2 sub-populations (sub-

clone_2, expected VAFs of 0.5 and 0.35), 3 sub-populations (subclone_3, expected VAFs of

0.5, 0.35 and 0.2) and 4 sub-populations (subclone_4, expected VAFs of 0.5, 0.35, 0.2 and 0.1).

Within a tumor, each sub-population took the same weight. For instance, for a simulated

tumor with four sub-populations, four types of mutations in terms of the VAF each repre-

sented 25% of the total number. To create mutations in a diversity of genomics contexts, we

performed three random selections for the same characteristics (mutation frequency across

the genome and the number of cell sub-populations). These parameters gave 27 simulated

tumors in total from each pre-tumor.

Simulating somatic small variants with BAMSurgeon

We fed pre-tumor BAM files and their corresponding addsnv input to BAMSurgeon, and this

step created simulated tumors with somatic SNVs. The simulated tumors from this step have

some records that do not respect the sorting order of BAM file. So we resorted by position and

indexed the BAM files by SAMtools (v1.3.1). Then they were fed into BAMSurgeon as the

value of option -f with their corresponding addindel input to receive somatic small indels. The
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resulting BAM files were resorted and indexed before they could be used for benchmarking

somatic small variant callers. The parameters used when running BAMSurgeon to generate

addsnv input, addindel input and simulated tumors are provided in section of Commands

running BAMSurgeon in S1 File.

Take the simulated tumor BAM file NA12878_1_snv_indel_sorted.bam for instance,

which has 2 sub-clones (expected VAFs of 0.5 and 0.35). Its somatic SNV and small indel

mutation frequency are 2/MB and 0.2/MB respectively. To generate this tumor, we used

BAMSurgeon to modify the pre-tumor/normal BAM file NA12878_HiSeq1_n ormal.bam

based on the output of the randomsites.py script for BAMSurgeon addsnv input. The output

was NA12878_1_snv.bam and snv_1.vcf. The BAM file was resorted and indexed to be

NA12878_1_snv_sorted.bam. Somatic small indels in the output of the randomsites.py

script for BAMSurgeon addindel input were added to it to yield NA12878_1_snv_indel.bam

and indel_1.vcf. The operations of resorting and indexing were performed on this BAM file

and made the final tumor NA12878_1_snv_indel_sor ted.bam available. The snv_1.vcf and

indel_1.vcf from BAMSurgeon were unordered, so we sorted them using natural ordering

by vcf-sort (v0.1.15) [34]. Then the sorted VCF files were bgzipped (v1.2. and tabix indexed

by SAMtools (v1.3.1) before being provided to vcf-merge (v0.1.15) to get merged by geno-

mic position. The resulting snv_indel_1.vcf file contains ground truth somatic SNVs and

small indels in the simulated tumor NA12878_1_snv_indel_sorted.bam. Researchers need

both of them and the matched pre-tumor/normal NA12878_HiSeq1_normal.bam for evalu-

ation and benchmark.

Benchmarking with simulated tumors

To accurately benchmark somatic callers, we need to focus on just the regions with highly confi-

dent genotype calls. Besides, to comprehensively benchmark somatic callers in terms of accu-

racy metrics, every genomic site in the focused regions should have one of the three genotype

calls: wildtype/reference site, germline site and somatic site. In the context of benchmarking

with simulated tumors, successfully spike-in somatic small variants are positives to calculate

sensitivity, and the rest of sites (germlines and wildtypes) are negatives to calculate specificity.

For each of the pre-tumors/normals, we generated a benchmark BED file named NA12878_Hi-

Seq1_bench mark.bed, NA12878_HiSeq2_benchmark.bed, NA12878_Exome_benchmark.bed,

NA12878_Illumina1_benchmark.bed and NA12878_Illumina2_benchmark.bed. The bench-

mark BED files were generated by intersecting the aforementioned intersect BED file with each

pre-tumor/normal BAM file. To benchmark and tune somatic small variant callers, a pair of

simulated tumor and its pre-tumor/normal are inputs to output a VCF file with predicted

somatic sites. Sensitivity is calculated by evaluating the predicted VCF file against its corre-

sponding ground truth VCF file, and the remaining sites that are in the benchmark BED file but

not in the ground truth VCF file are used to calculate specificity.

Results

Overview of the database of simulated tumors

Our work is motivated by the lack of ground truth somatic mutations to benchmark somatic

callers. It is the product of the characterization of NIST reference material NA12878 genome

and state-of-the-art simulation tool BAMSurgeon. Two projects have been working on identi-

fying genotypes of NA12878 with high accuracy: NIST GIAB and Illumina’s PG. Their own

version’s genotype calls are publicly available on their corresponding websites. These geno-

types calls include high-confidence SNPs, small indels and homozygous reference sites. BAM-

Surgeon simulates tumors by introducing synthetic mutations to original genomes. It modifies

A database of simulated tumor genomes
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the reads spanning genomic sites to get these sites mutated. The reads covering the desired

sites each have a probability that is equal to the user-specified VAF to be selected and get mod-

ified into the variant allele. This way, simulated tumors are realistic and keep error profiles

from library preparation and sequencing machines.

Our website contains 135 simulated tumors, which were yielded by introducing small vari-

ants into the homozygous reference sites or wildtype sites of NA12878 genome by BAMSur-

geon. Every 27 of them were created from one normal BAM file. Fig 2 shows the organization

of these simulated tumors on our website, and the file Simulated_tumor_information there

gives detailed information about the characteristics of these tumors. The fold Ground_-

truth_VCF_files comprises all the ground truth files with somatic SNVs and small indels. The

rest five folds are named after the pre-tumor/normal BAM file without the extension. Within

them are the pre-tumor/normal BAM file and 27 corresponding simulated tumors. These

tumor files have names from NA12878_1_snv_indel_sorted.bam to NA12878_135_snv_indel_

sorted.bam. To benchmark somatic callers, a pre-tumor/normal BAM file, one simulated

tumor from 27 files and the corresponding ground truth VCF file with the same index/number

as that of the simulated tumor are needed. Within one fold, these tumors are different in the

number of sub-clones, the VAF, the mutation frequency across the genome and the mutation

site. Between folds, simulated tumors are different in sequencing and subsequent mapping

error profiles, read length and capture content.

Genomic features of spike-in somatic sites

Due to the parameters’ constrain in BAMSurgeon, not all chosen spike-ins can be successful.

S2 Table provides the successful rate of somatic SNV and small indel spike-ins for each simu-

lated tumor. The overall successful rate for somatic small indel spike-ins is higher than that of

somatic SNV spike-ins. We chose 1402598 somatic SNV sites and 141743 somatic small indel

sites respectively. 1285692 somatic SNV sites were mutated successfully (successful rate is

about 0.917). The successful rate is about 0.991 for somatic small indels. Of the 135 simulated

tumors, the minimum, median and maximum successful rate are 0.887, 0.932 and 0.960 for

somatic SNV spike-ins, and 0.889, 0.989 and 1 for somatic small indel spike-ins, respectively.

Considering the importance of genomic context in somatic SNV calling, we extracted the

three bases (from -1 bp to +1 bp) centered on the simulated somatic sites of hg38 reference

genome for successful and unsuccessful somatic SNV spike-ins. Fig 3 shows the fraction of 64

trinucleotide contexts for somatic SNV spike-ins. Successful and unsuccessful somatic SNV

sites display similar distributions of trinucleotide contexts. AAA and TTT have the highest

Fig 2. The organization of simulated tumors on our website. The file Simulated_tumor_information provides detailed information on the characteristics of these

tumors. The fold Ground_truth_VCF_files comprises all the ground truth files with somatic SNVs and small indels. The remaing five folds are named after the pre-

tumor/normal BAM files without the extension, and each of them includes the pre-tumor/normal BAM file, benchmark BED file and 27 corresponding simulated

tumors.

https://doi.org/10.1371/journal.pone.0202982.g002
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proportions for both types of somatic SNV sites. On the contrary, TCG, CGT, CGA and ACG

are the least contributors, with a proportion of approximately 0.005.

We next investigated the size distribution of successful somatic small indel spike-ins. Of the

140449 successfully simulated somatic small indels, insertions and deletions are 70484 and

69965 respectively. Fig 4 shows the size distribution of these two types of somatic events. The

size distributions for somatic small insertions and deletions are almost the same. The number

of somatic small indels decreases with their size. Somatic small indels with size equal to or less

than 5 represent 0.63 of the total somatic small indels, whereas only 0.007 of the total somatic

small indels are somatic small indels with size between 30 and 50.

Then to determine the category of known repeats to which the simulated sites belong, we

downloaded the RepeatMasker-masked regions rmsk.txt.gz from http://hgdownload.cse.ucsc.

Fig 3. The fraction of 64 trinucleotide contexts for successful somatic SNV sites (left panel) and unsuccessful ones (right panel). Three bases (from

-1 bp to +1 bp) centered on the simulated somatic sites of hg38 reference genome were extracted for successful and unsuccessful somatic SNV spike-ins

respectively. Then we calculated the proportion by dividing the number of somatic SNVs with a type of trinucleotide context by the total number.

https://doi.org/10.1371/journal.pone.0202982.g003
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edu/goldenpath/hg38/database, which contains a detailed annotation of the repeats present in

hg38 human reference genome and was generated by Arian Smit’s RepeatMasker Program at

http://www.repeatmasker.org/. The format description of file rmsk.txt is available at http://

genome.ucsc.edu/cgi-bin/hgTables. We mapped the genomic sites of successful and unsuc-

cessful somatic SNVs and small indels to the regions in rmsk.txt by BEDOPS bedmap [35].

Tables 2 and 3 give the detailed composition of 16 different types of repeat sequence and non-

repeat sequence (others). For successful somatic sites, approximately half of them occur at

regions of non-repeat sequence, 0.4374 for somatic SNV sites and 0.4120 for somatic small

indel sites. When it comes to unsuccessful somatic sites, only approximately 0.15 of them lie

within regions of non-repeat sequence, and almost half of them (0.5210 and 0.4814 for somatic

SNVs and small indels respectively) come from regions of LINE of repeat sequence.

Benchmark BED files

Due to the limitations of current sequencing technologies, read mappers and variant callers, it is

impossible to identify the genotype call of every genomic site across the whole genome. Thus, to

accurately and comprehensively benchmark somatic small variant callers, we need to focus on just

the regions where every genomic site has one of the three high-confidence genotypes: wildtype or

reference site, germline site and somatic site. To meet the purpose, we created a benchmark BED

file for each of the pre-tumors/normals, named NA12878_HiSeq1_benchmark.bed, NA12878_Hi-

Seq2_ benchmark.bed, NA12878_Exome_benchmark.bed, NA12878_Illumina1_benchmark .bed

and NA12878_Illumina2_benchmark.bed, which contain 2302950972, 2302925972, 991374103,

Fig 4. The size distribution of somatic small indels. The distribution was evaluated by dividing the number of

somatic small insertions or deletions with a specified length by the total number of somatic events.

https://doi.org/10.1371/journal.pone.0202982.g004
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Table 2. The category of known repeats in RepeatMasker regions and non-repeat sequence to which the simulated somatic SNV sites belong. Others stands for non-

repeat sequence.

Type of genomic sequence Number Proportion Number Proportion

DNA 37192 0.0289 796 0.0068

LINE 240110 0.1868 60904 0.5210

Low_complexity 7498 0.0058 293 0.0025

LTR 102532 0.0798 7471 0.0639

RC 143 0.0001 0 0

Retroposon 3449 0.0027 3869 0.0331

RNA 44 3.4228e-05 3 2.5663e-05

Successful spike-in rRNA 68 5.2898–05 Unsuccessful spike-in 4 3.4217e-05

somatic SNV sites Satellite 3867 0.003 somatic SNV sites 494 0.0042

scRNA 68 5.2898–05 4 3.4217e-05

Simple_repeat 40715 0.0317 1949 0.0167

SINE 287069 0.2233 23541 0.2014

snRNA 141 0.0001 4 3.4217e-05

srpRNA 116 9.0238e-05 3 2.5663e-05

tRNA 37 2.8783e-05 3 2.5663e-05

Unknown 224 0.0002 2 1.7108e-05

Others 562218 0.4374 17561 0.1502

Short interspersed nuclear elements, which include ALUs; Long interspersed nuclear elements; Long terminal repeat elements, which include retroposons; DNA repeat

elements (DNA); Simple repeats (micro-satellites); Low complexity repeat; Satellite repeat; RNA repeat (including RNA, tRNA, rRNA, snRNA, scRNA, srpRNA); RC

(Rolling Circle).

https://doi.org/10.1371/journal.pone.0202982.t002

Table 3. The category of known repeats in RepeatMasker regions and non-repeat sequence to which the simulated somatic small indel sites belong. Others stands

for non-repeat sequence.

Type of genomic sequence Number Proportion Number Proportion

DNA 3821 0.0273 7 0.0052

LINE 29805 0.2127 647 0.4814

Low_complexity 817 0.0058 2 0.0015

LTR 11039 0.0788 46 0.0342

RC 20 0.0001 0 0

Retroposon 732 0.0052 31 0.0231

RNA 8 5.7103e-05 0 0

Successful spike-in rRNA 3 2.1414e-05 Unsuccessful spike-in 0 0

somatic small indel sites Satellite 453 0.0032 somatic small indel sites 1 0.0007

scRNA 11 7.8517e-05 0 0

Simple_repeat 4492 0.0321 7 0.0052

SINE 31119 0.2221 394 0.2932

snRNA 19 0.0001 0 0

srpRNA 11 7.8517e-05 0 0

tRNA 2 1.4276e-05 0 0

Unknown 22 0.0002 0 0

Others 57723 0.4120 209 0.1555

Short interspersed nuclear elements, which include ALUs; Long interspersed nuclear elements; Long terminal repeat elements, which include retroposons; DNA repeat

elements (DNA); Simple repeats (micro-satellites); Low complexity repeat; Satellite repeat; RNA repeat (including RNA, tRNA, rRNA, snRNA, scRNA, srpRNA); RC

(Rolling Circle).

https://doi.org/10.1371/journal.pone.0202982.t003
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2303071124 and 2303135374 genomic sites respectively. When doing benchmark, somatic small

variant callers take in a pair of simulated tumor and its pre-tumor/normal, and yield a VCF file

with predicted somatic sites. The VCF file and its corresponding ground truth VCF file are used to

calculate sensitivity. The negatives are the remaining genomic sites that are in the benchmark BED

file but not in the ground truth VCF file, which are used to calculate specificity.

Benchmarking somatic callers with simulated tumor

We used one of the most complicated simulated tumor NA12878_133_snv_indel_sorted.bam

(4 sub-populations, expected VAFs of 0.5, 0.35, 0.2 and 0.1) to benchmark the performance of

four somatic callers, VarScan2 [36], DeepVariant [37], Lancet [38] and Strelka2 [39]. There are

significant differences in accuracy measures between these four callers (Table 4). Lancet is the

best-performing caller in terms of sensitivity, but its high sensitivity comes at the cost of a high

false discovery rate. VarScan2 calls only 0.62 of the simulated somatic events, and has the low-

est false discovery rate. Sensitivity of these four callers on somatic indels and SNVs was broken

down by the size of somatic indels and tumor sample sequencing depth respectively (Fig 5).

Table 4. Comparison of accuracy metrics of somatic callers with simulated tumor.

Somatic caller VarScan2 DeepVariant Lancet Strelka2

True Positive 11023 13454 16477 16446

False Positive 1105 2347 3521 3200

False Negative 6631 4200 1177 1208

Sensitivity 0.62 0.76 0.93 0.93

FDR 0.09 0.15 0.18 0.16

https://doi.org/10.1371/journal.pone.0202982.t004

Fig 5. Performance of somatic callers on a simulated tumor. We evaluated the performance of somatic indel calling on the size of somatic indels (A), and

performance of somatic SNV calling on the tumor sample sequencing depth (B).

https://doi.org/10.1371/journal.pone.0202982.g005
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For somatic indels, the sensitivity of VarScan2 decreases with the size of somatic indels, and

the overall sensitivity of the other three callers increases with somatic indels’s size. When it

comes to detection of somatic SNVs, VarScan2 again displays opposite pattern compared with

the other three callers, and its overall sensitivity decreases with the tumor sample sequencing

depth of simulated somatic sites.

Conclusions

Accurate detection of somatic sites is critical to clinical diagnosis. A lot of somatic callers have

been developed so far to identify somatic small variants from matched tumor/normal, or

unmatched tumor sequencing data. However, the limited number of validated somatic sites

challenges the evaluation and then improvement of somatic callers. Fortunately, computing

simulation of genomic data makes it possible to create simulated tumors with ground truth

somatic mutations.

Genotype calls with high confidence of NIST reference material NA12878 genome are pub-

licly available. The genotype calls consist of SNPs, small indels and homozygous reference

sites. Also, different types of sequencing data of NA12878 are freely accessible to researchers.

Given these available resources corresponding to NA12878, our work introduced somatic vari-

ants into homozygous reference or wildtype sites of its genome. BAMSurgeon performed the

work of introducing somatic variants by modifying the reads covering the chosen genomic

sites. This way, simulated tumors are more realistic, as they maintain the underlying error pro-

files stemming from library construction methods, sequencing technologies and then mapping

algorithms.

We created 135 simulated tumors with somatic SNVs and small indels in total from 5 pre-

tumor/normal BAM files. These pre-tumors/normals are different from each other in sequenc-

ing and subsequent mapping error profiles, read length, the number of sub-clones, the VAF,

the mutation frequency across the genome and the genomic feature. Furthermore, to evaluate

somatic callers’ performance in the situation of sample contamination, contaminated samples

can be simulated by mixing these pure tumor/normal pairs at desired ratios. Together, this

database of simulated tumors with high diversity will be a valuable resource to benchmark

somatic small variant callers and guide their improvement.
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