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Islet xenotransplantation is one prospective treatment to bridge the gap between avail-
able human cells and needs of patients with diabetes. Pig represents an ideal candidate
for obtaining such available cells. However, potential clinical application of pig islet still
faces obstacles including inadequate yield of high-quality functional islets and xenorejec-
tion of the transplants. Adequate amounts of available islets can be obtained by selection
of a suitable pathogen-free source herd and the development of isolation and purifica-
tion method. Several studies demonstrated the feasibility of successful preclinical pig-
islet xenotransplantation and provided insights and possible mechanisms of xenogeneic
immune recognition and rejection. Particularly promising is the achievement of long-term
insulin independence in diabetic models by means of distinct islet products and novel
immunotherapeutic strategies. Nonetheless, further efforts are needed to obtain much
more safety and efficacy data to translate these findings into clinic.
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INTRODUCTION
Diabetes is one of the most dangerous threats to human health.
However, pancreatic islet transplantation has gradually showed
satisfactory and prospective application in the treatment of type 1
diabetes mellitus (T1DM) (1). In the year 2000, Edmonton pro-
tocol (2) demonstrated that islet allotransplantation had achieved
a remarkable success, but shortage of donors still prevented the
progression of clinical islet transplantation. Xenotransplantation
provides an effective and appropriate solution for this limitation.
Among the potential candidates for islet xenotransplantation, pig
is considered as the most ideal donor for future clinical applica-
tions (3–8). Although encouraging findings have been obtained
in pig-to-primate islet xenotransplantation (9–11), the potential
clinical application of pig islet still faces two major challenges:
inadequate supply of islet cells with high-quality and xenorejec-
tion. This review will discuss the current approach and progress
in pig donor selecting, isolation and preparation of pig-islet
grafts, prevention of xenorejection, microbial safety, and obtained
findings of clinical trials.

Abbreviations: α1,3GT, α1,3-galactosyltransferase; α-Gal, Galα1–3Galβ1–
4GlcNAc-R; APCs, antigen presenting cells; APIs, adult pig islets; CMS, Chicago
Medical School; CTLA4Ig, cytotoxic T lymphocyte antigen 4-immunoglobulin;
ECs, endothelial cells; GMP, good manufacturing practices; GT-KO, α1,3-
galactosyltransferase gene-knockout; HAR, hyperacute rejection; H–D antigen,
Hanganutziu–Deicher antigen; IBMIR, instant blood-mediated inflammatory
reaction; ICCs, islet-like cell clusters; IE/mm2, islet equivalents per mm2; IEQ,
islet equivalents; MSCs, mesenchymal stem cells; NK cell, natural killer cell;
NHPs, non-human primates; NPIs, neonatal pig islets; PERV, porcine endogenous
retroviruses; SPF, specific pathogen-free; T1DM, type 1 diabetes mellitus; TCR,
T-cell receptor; WIT, warm ischemia time.

ORIGINAL OF PORCINE ISLETS
Islets obtained from embryonic, fetal, neonatal, young, or adult
pigs have been selected as the grafts for xenotransplantation.
Despite several years of study, no exact consensus has been
achieved about the selection of the most optimal pig to supply ade-
quate viable isolated islet cells for preclinical xenotransplantation
(11, 12). Only islet xenografts harvested from neonatal (2–3 days
old) and adult (>6 months) pigs have been shown to correct
diabetes in non-human primates (NHPs) or humans (13–16).

Fetal pig islet-like cell clusters (ICCs) and neonatal pig islets
(NPIs) are immature cells, which can be easily obtained by enzy-
matic digestion and simple culture. Other advantages of ICCs and
NPIs are their apparent resistance to ischemic and inflammatory
damage during isolation that makes islet recovery more efficient.
However, several studies suggested that ICCs had poor insulin
response to glucose (17–21), Typically, ICCs requires 2–3 months
for maturation to achieve in vivo functionality (22). Additionally,
in diabetic monkeys, transplanted pig ICCs were almost com-
pletely destroyed within 12 days post-transplantation (23). All the
disadvantages restrict the potential clinical application of pig ICCs.

Neonatal pig islets consist of differentiated pancreatic
endocrine cells (about 35%) and primarily epithelial cells (about
57%), which is also considered as islet precursor cells (24, 25). NPIs
are more responsive to high glucose than ICCs and subsequently
have a powerful functional ability to restore normoglycemia in
diabetic animals, which are mainly due to β cell expansion and
the striking differentiation of epithelial cells into β cell (26–
29). NPIs clearly express xenoantigens including sialic acid anti-
gens, Hanganutziu–Deicher (H–D) antigens, and Galα1–3Galβ1–
4GlcNAc-R (α-Gal) epitopes (30). However, with the development
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of genetic engineering technology, stable gene transferred NPIs
can therefore effectively attenuate the xenoantigenicity (30–32).
In pig-islet xenotransplantation, several studies suggested that cell
numbers in the range of 25,000–100,000 islet equivalents (IEQ)/kg
recipient body weight were required to achieve insulin indepen-
dence in diabetic NHPs (13, 16, 33–35). Usually, after in vitro
culture, tissue from one neonate pancreas yields about 50,000 NPI
aggregates (24); thus, at least four neonate pig donors are required
to treat a diabetic primate weighing 6–8 kg.

Adult pig is regarded as the major donor source of islet
xenografts, which can supply a sufficient number of viable islet
cells and start functioning immediately after transplantation.
More than 255,000 adult pig islets (APIs) with high purity (80–
95%) can be isolated from an adult pig donor (36). Furthermore,
published study also reported an extremely high APIs yield, up
to 800,000 IEQ per pancreas after purification (37). The achieve-
ments make it possible to perform single pig donor clinical xeno-
geneic transplantation. Additionally, in comparison with young
pig (<6 months) pancreas, a great number of large (150–200 µm)
and well-structured islets can be obtained from adult pig donors
(38–40). In large islets, the centralized structure for both colla-
gen and capillaries could reduce enzymatic digestion-induced islet
damage and subsequently facilitate post-transplant revasculariza-
tion (38, 41). Consequently, APIs possess a better potential for
cellular engraftment in xenotransplantation.

The breed and strain of donor pigs have a vital impact on
the outcome of islet isolation. Previous studies suggested that
German Landrace and Large White pigs appeared to be more
suitable islet donor breeds than Duroc, Pietrain, Hampshire, Bel-
gium Landrace, local farmers (hybrid), and wild-type pigs (42,
43). The German Landraces showed the highest numbers of large
islets (150 µm) and islet volume density (%) (43). In contrast,
Heiser et al. reported that Pietrain pig could produce more islet
yields than purebred German Landrace, Munich minipig “Troll,”
and hybrid pigs (44). The variability of results in different labo-
ratories was possibly related to alterations in islet isolation and
preparation procedure. Recently, very high islet yields (up to
9,589± 2,838 IEQ/g pancreas) with large size and well-function
were harvested from adult Chicago Medical School (CMS) minia-
ture pigs (45). The CMS miniature pigs can be bred under spe-
cific pathogen-free (SPF) conditions. All these making this pig
breed potentially a better donor candidate for future clinical islet
xenotransplantation.

ISOLATION AND PREPARATION OF PORCINE ISLETS
Islet-like cell clusters and NPIs can be easily obtained by simple
enzymatic digestion and subsequent pre-transplantation culture
due to relative lack of exocrine tissues and concomitant relative
abundance of endocrine tissues (23, 24, 46). Briefly, the pancreas
from fetuses or neonates is surgically removed in sanitary environ-
ments, chopped into small fragment measuring 1–2 mm3, digested
by collagenase, washed, and then explanted in Petri plate for cul-
turing. Normally, a culture time of 4–9 days is required to clear
exocrine cells and facilitate islet cell re-aggregation. The isolation
and preparation of APIs grafts from adult pigs is similar to that of
humans. Factors including quality status of donor pancreas, blood
exsanguinations, warm ischemia time (WIT), perfusate, types of

digestive enzyme, and isolation/purification process will affect the
islet yield and function (47–49).

SELECTION AND PROCUREMENT OF PANCREAS
Morphological screening before isolation process is necessary to
obtain amounts of islet cells with high-quality, decrease variance
in islet yield and viability, and reduce economic costs. A rapid
and inexpensive strategy for assessment of pig donor pancreas
was established in 1994 (50), which indicated that a pancreas
containing round or oval islets with compact borders would pro-
vide successful islet isolation. Meanwhile, islet size in situ was also
regarded as another important parameter for successful isolation.
A donor pancreas with predominantly large islets (>200 µm) gen-
erally yielded significantly higher numbers of cell grafts (51, 52).
Additionally, a recent study indicated that only islet equivalents
per mm2 (IE/mm2) in splenic lobe of pancreas could dramatically
predict an accurate islet yield, while variables such as pig donor
age, gender, ischemic time, and enzyme lot were not significantly
correlated with islet yield (53).

Warm ischemia time during pancreas procurement should be
reduced as much as possible to prevent autolysis of pig donor
pancreas and apoptosis in islet cell, reduce expression of inflam-
matory mediators, and improve islet survival rate during culture
(54, 55). However, there is still lack of uniform standards of
safe WIT for pig-islet preparation. It is considered that WIT
within 10 min was essential for successful pig-to-primate islet
xenotransplantation (48).

ISOLATION OF PORCINE ISLETS
Although several major improvements or modifications have been
made in the field of pig pancreas digestion and islet isolation
(56–58), there is still a need for better isolation methods. Usu-
ally, immediately after harvesting of intact pig pancreas under
sterile conditions, the pancreatic duct is cannulated and then col-
lagenase is delivered by syringe or controlled perfusion after cold
preservation (<2 h of cold ischemia time is advisable). Currently,
a novel good manufacturing practices (GMP) grade bovine ner-
vous tissue-free enzyme, Liberase MTF C/T, which contains lower
endotoxin content (<10 EU/mg), is recommended for success-
ful pancreas digestion (59, 60). Following the step of collagenase
injection, the pancreas is placed in a new re-circulating diges-
tion/filtration chamber (called Oxford chamber), which is similar
to standard Ricordi chamber. The Oxford chamber results in less
destruction of tissue, greater yield of islets, as well as improved cell
viability (61). With the new device, up to 5,000 islets/g pancreas
can be obtained from juvenile pigs. During this digestion process,
another study recommended that digestion time should be lim-
ited to 35 min and temperature in the chamber should not exceed
35°C (62). The limited time and lower temperature avoid the dele-
terious impact of overdigestion and oxidative stress induced islet
damage, respectively (45, 63). Once the islets are dissolved from
collagen matrix, the freshly isolated cells are immediately removed
from digest/filtration chamber and then placed in a cell processor
(COBE 2991) for purification.

PURIFICATION OF PORCINE ISLETS
Purification is the next necessary process to completely separate
islets from acinar tissues, especially for islet preparation from
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young or adult pigs. The classical purification method is based
on a density gradient centrifugation, taking advantage of the fact
that the density of islet is lower than that of exocrine tissue. The
final purity of islet products mainly depends on the characteristics
of density gradients (64). At present, Ficoll is the most commonly
used reagent for islet purification (56, 65), and usually a purity of
70–90% (islets/whole pancreas) can be achieved (66). However,
this reagent has disadvantages of hypertonicity, high viscosity, and
possible endotoxin content, which are harmful to pig-islet viability
and function (67). In contrast, Iodixanol is widely used in clinical
examination as an iso-osmotic contrast medium (approximately
290 mOsm/kg), which is free of endotoxin. Compared with Ficoll
solution, Iodixanol can significantly improve pig-islet yield and
viability, reduce cytokine/chemokine generation, and prevent islet
mass loss during pre-transplantation culture. (67–69).

In general, freshly obtained islets from adult pigs are often
of heterogeneous constitution, culturing provides a valuable tool
to improve xenograft quality and homogeneity (70). Although
islet recovery decreased dramatically after prolonged culture (7–
14 days), the APIs displayed shorter time-to-normoglycemia and
reversed hyperglycemia in all recipients.

IMMUNOLOGICAL REJECTION OF PORCINE ISLET
XENOTRANSPLANTATION
INSTANT BLOOD-MEDIATED INFLAMMATORY REACTION
Immunological rejection, which poses negative impacts on islet
engraftment as well as function, is still a major obstacle for success-
ful clinical application of pig-islet xenotransplantation (71, 72).
Several studies showed that after intraportal injection, tissue factor
(TF) produced and expressed on the transplanted pig islets would
first trigger platelet accumulation, coagulation, and complement
activation, neutrophil infiltration, as well as graft dysfunction and
destruction when exposed to fresh recipients’ blood; this phe-
nomenon was described as instant blood-mediated inflammatory
reaction (IBMIR) (73–75). Generally, IBMIR contributes to a con-
siderable early pig-islet xenograft loss (estimated up to 60–80%)
in diabetic primate (71, 76). Thus, effective treatments target-
ing IBMIR response provide promise for minimizing the critical
islet dose to restore normoglycemia and insulin independence.
After IBMIR has emerged, other subsequent immune responses
intervene more specifically in relation to pig-islet xenografts.

HYPERACUTE REJECTION
Islet engraftment is a process of graft revascularization mainly by
recipients’ endothelial cells, very few endothelial cells from donors
can survive after pre-transplantation culture (77). In addition,
Gal molecules expressed on pig islets are lower than solid-organs,
only 5% of Gal is expressed on the surface of APIs and α1,3-
galactosyltransferase (α1,3GT) activity was also undetectable (78,
79). Hence, the pig-islet xenografts rarely undergo hyperacute
rejection (HAR) as observed in vascularized organ transplants.
Furthermore, in a study of pig-to-NPH islet xenotransplantation,
neither increase in Gal-specific IgG or IgM antibody levels nor Gal-
specific staining (isolectin B4) on islets was observed (16). All the
data indicate that natural anti-Gal antibodies do not appear to play
a major role in the immune rejection of APIs in diabetic NHPs.
Nevertheless, Gal expression on pig islets is age dependent, both

ICCs and NPIs clearly express a relatively higher level of Gal anti-
gens (up to 11–19% of total islets) (30, 78). Additionally, the Gal
expression remains positive with both small (<100 µm) and large
islets (>100 µm) after isolation procedure (41). Therefore, Gal
molecules are still considerable targets for humoral xenorejection.

CELLULAR REJECTION
Still, if the islet xenografts escape the acute damages due to
IBMIR and additional humoral response, they will be subject
to acute cellular rejection. Typically, in pig-to-rodent islet xeno-
transplantation, cellular rejection appears to be mainly a CD4+

T-cell-dependent process (80–82). In diabetic primates, the acute
cellular rejection takes place during the first 24 h to 20 days after
transplantation and is characterized by a massive infiltration of
macrophages and T cells (CD4+ and CD8+ T cells) in the periph-
ery of grafts (16, 83). Lindeborg et al. further demonstrated that
the CD4+ T cells were the major phenotype of activated T-cell
clones reactive against pig-islet antigens (84). Besides, the T-
cell-mediated response possibly induces numerous other cellular
responses such as natural killer cell (NK cell), B cell, and innate
responses. All these indicate that T cell plays a crucial and central
role in the cellular rejection against pig islets. Although pig-islet
cells are not believed to act as professional antigen presenting
cells (APCs), both direct and indirect pathways of antigen pre-
sentation appear to be involved in the xenogeneic T-cell response
(72). Usually, T cells require two signals to become fully acti-
vated, one is T-cell receptor (TCR) signaling, and the other is
co-stimulatory signal. Co-stimulation signal, which is provided
by interaction between co-stimulatory molecules expressed on
the membrane of APC and T cell, is very crucial to induction
and amplification of an effective immune response (85). Thus,
therapies targeting different pathways affecting T-cell activation
are believed to induce a long-term pig-islet survival and host
hyporeactivity.

METHODS TO RELIEVE XENOGENEIC REJECTION
ENCAPSULATED ISLETS
Immuno-isolation, hiding the islet grafts from recipients’ immune
system, has become an effective strategy to protect pig islets
from immune rejection (86). Till present, there are two types of
immune-isolation devices: microencapsulation and macroencap-
sulation. Microencapsulated islets are microcapsules containing
single islet or few islets, while the macrocapsules contain a few
islets. The sizes of encapsulated islet grafts should be chosen
according to implant sites as well as islet viability and func-
tion. Although the microcapsules are difficult to implant and
remove, the permeability of microcapsules are better than that
of macrocapsules. The ideal capsules should protect inner pig
grafts from attacks mediated by host’s immune cells and enable
free exchange of nutrients, oxygen, and wastes. Thus, the func-
tion of encapsulated islet is closely linked with biocompatibility
of materials. (87). In recent years, a variety of artificial materi-
als, including modified polysulfone, protamine–heparin complex,
cellulose, agarose, ethylene glycol, and alginate were used to form
macrocapsules or microcapsules, as a result, islet graft survival
time was significantly prolonged (88–92). Moreover, after subcu-
taneous transplantation of encapsulated pig islets (alginate based),
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a 6-month correction of hyperglycemia was observed in diabetic
NHPs without immunosuppression (14, 93).

Although many novel encapsulated pig islets have been devel-
oped and shown possible results in reducing xenogeneic rejec-
tion and prolonging functional graft survival time, several prob-
lems still exist before large-scale clinical, such as infectious
complications, low diffusion capacity, and pericapsular fibrotic
overgrowth.

CO-STIMULATORY BLOCKING
The engagement of TCR with foreign antigen without co-
stimulatory signal will render T cells unresponsive to the anti-
gen (known as T-cell anergy), thereby suppressing antigen
induced response. Our previous study showed that the survival
rate of donor-derived (pig) cytotoxic T lymphocyte antigen 4-
immunoglobulin (CTLA4Ig) gene-modified islet xenografts was
significantly prolonged in diabetic rats. The possible mecha-
nism was that the CTLA4Ig fusion protein blocked CD28/B7
co-stimulatory signaling of the primary pathway, which even-
tually induced differentiation bias of T helper cells (Th cells)
(94). When the direct and indirect pathways of T-cell activa-
tion were selectively blocked by pig CTLA4Ig modified immature
dendritic cells and murine CTLA4Ig protein, the survival time
of pig-islet xenografts was significantly prolonged (>100 days) in
diabetic mice (95). Anti-CD154 antibodies, known to be effective
in blocking indirect pathway of allorecognition (96, 97), is also a
critical component of effective immunosuppressive strategies in
preventing cellular rejection in pig-to-NHPs islet xenotransplan-
tation (16, 98). However, the clinical application of anti-CD154
antibodies is restricted due to its high risk of thromboembolic
complications (99). Notably, these co-stimulatory blockades have
not induced immune tolerance, in which they are included in long-
term immunosuppressive protocols. Similar to systemic immuno-
suppression, infection and morbidity are also detected in the
recipients treated by co-stimulatory blocking. More specific co-
stimulatory blockade should be conducted to improve the safety
profile of tolerance induction.

GENE-MODIFIED PIG IN ISLET XENOTRANSPLANTATION
Genetically modified pigs offer a number of potential advantages
in minimizing the risk of thrombosis, reducing rapid loss of trans-
planted islets, decreasing the number of required islets, mitigating
side effects of conventional/systemic immunosuppression, and
improving islets activity and survival (6, 100, 101). Transgenic
expression of human heme oxygenase-1 (HO-1) can effectively
protect pig xenografts from ischemia/reperfusion injury and acute
rejecting mediated by inflammatory cytokines (102) Humoral
rejection can be overcome in pig-to-NHPs islet xenotransplant by
crossbreeding of α1,3-galactosyltransferase gene-knockout (GT-
KO) pigs with transgenic pigs expressing human complement
regulators including CD46, CD59, and human decay-accelerating
factor (hDAF, CD55) (103–105). Additional pig genetic engineer-
ing, knockout of TF, and overexpressing of human antithrom-
botic genes (CD39/thrombomodulin), will certainly prevent the
occurrence of IBMIR and coagulation dysfunction (71). Pig islet
transgenic for a high-affinity variant of CTLA4Ig also displays
the potential to normalize glucose homeostasis and completely

prevents cellular rejection in humanized mouse model (106).
Recently, the development of RNA interference technology tar-
geting porcine endogenous retroviruses (PERV) has substantially
solved the possible problem of retrovirus contamination (107,
108). With the development and modification of genetic engineer-
ing, transgenic pigs will eventually drive islet xenotransplantation
into clinical application.

OTHER FACTORS INFLUENCING ISLET SURVIVAL
IMPLANT SITE
Successful pig-islet xenotransplantation is also closely related with
appropriate selection of implantation site. The ideal transplant
site should take into account: (1) surgical operation is simple and
safe, (2) the ability to maintain a stable glucose metabolism, and
(3) immune protection (109). Besides intrahepatic transplanta-
tion, renal subcapsular, subcutaneous, as well as omentum are
commonly used sites in both experimental and preclinical islet
xenotransplantation (110–112). Renal subcapsular and omen-
tum represent the interesting alternatives due to advantages of
relatively convenient and invasive process, sufficient blood and
oxygen supply (omentum), portal venous drainage (omentum),
and anatomical immune privilege.

ISLET GRAFT REVASCULARIZATION
Regeneration of optimal microvascular supply is a vital prerequi-
site for islet transplantation (113). However, isolated pig islets are
avascular and revascularization is generated 14 days after trans-
plantation (114), therefore, promoting revascularization process
and protecting newly formed microvasculature from rejection-
mediated damage will immensely contribute to the improvement
of islet function and survival. A recent study showed that, when
islets were coated with mesenchymal stem cells (MSCs) and
endothelial cells (ECs), the EC proliferation, sprout formation,
migration of ECs into the islets as well as subsequent vasculariza-
tion were significantly enhanced by MSCs (115). Similar findings
were also demonstrated in syngeneic islet transplantation (116).
Considering the powerful pro-angiogenic and immunomodula-
tory properties of MSCs, for pig-islet xenotransplantation, pre-
treatment of islet xenografts with recipient-derived MSCs will
be helpful to accelerate islet revascularization and improve islet
engraftment.

In addition, embryonic pig pancreatic tissue may also be
another good choice. Embryonic pancreatic implants predomi-
nantly induce host-type vasculature to support growth and sur-
vival in diabetic rodents or monkeys (112, 117), thereby evading
hyperacute or acute rejection.

CLINICAL STUDY
The systematic clinical application of pig islets was first performed
by Groth group (118). Between 1990 and 1993, 10 TIDM patients
with kidney allografts were transplanted pig ICCs either intrapor-
tally or under the capsule of renal graft. After transplantation, pig
C-peptide could be detected in the urine for 200–400 days in four
patients. The data suggest that pig islets can survive in the humans,
providing a good basis for clinical use of xenogeneic islet.

The long-term pig-islet viability and function was reported by
Elliott et al. (15). The blood glucose level of T1DM patient was
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significantly reduced when the alginate-encapsulated NPIs was
implanted intraperitoneally. After 10 years of follow-up, biopsy
showed that there were still a large number of functional islets
throughout peritoneal tissue. This single case study indicates that
pig islets may have a positive long-term safety and therapeutic
effect in the treatment of human T1DM, suggesting the necessity
to conduct more large-scale clinical studies.

Living Cell Technology Co., Ltd. (LCT) developed a commer-
cial encapsulated pig-islet product (Diabecell), which was tested
in phase I/IIa clinical study in Moscow since 2007 (119, 120). A
total of seven T1DM patients received Diabecell intra-abdominally
at a dosage of 5,000–10,000 IEQ/kg, no significant adverse reac-
tions were found post-transplantation. After 2-year follow-up,
five patient’s blood glucose levels decreased to a normal range
(5.8–8.2 mmol/L), two patients were independent with insulin
administration. Additional I/IIa trials are being conducted in New
Zealand.

SAFETY OF PORCINE ISLET XENOTRANSPLANTATION
Interspecies transmission of PERV is still a potential risk factor
in clinical pig-islet xenotransplantation. When human HK-293
cells were co-cultured with pig cells in vitro, PERV could infect
human cells (121). In addition, the possibility of cross-species
transmission of PERV was also confirmed in pig-to-SCID mice
islet xenotransplantation (122). In contrast, no evidence of PERV
activation was found in TIDM patients after long-term follow-up
(123). However, PERV remains a potential threat requiring long-
term follow-up in human clinical trials. Stringent PERV screening
should be conducted in clinical islet xenotransplantation. With the
emergence of PERV gene-knockout pigs, this bio-safety risk will
be eliminated completely.

Besides PERV infections, other pathogens including her-
pesvirus, pig cytomegalovirus, lymphotropic herpesvirus, as well
as bacterial pathogens also pose safety problems in pig-islet xeno-
transplantation, highlighting the importance of selecting of SPF
pigs and prescreening of donor pigs.

CONCLUSION
Building on the remarkable progress in the experimental/clinical
studies, it appears that pig islets have grateful potentiality to reverse
diabetes in NHPs and humans. With development of suitable
sources of genetically modified pigs and modification of isolation
technology, together with improvement of specific immunosup-
pressive methods, a tangible therapy will benefit the patients with
diabetes in the very near future. However, questions remain and
detailed problems need to be adequately addressed.
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