
Published online 15 March 2017 Nucleic Acids Research, 2017, Vol. 45, No. 8 4315–4329
doi: 10.1093/nar/gkx174

Mocap: large-scale inference of transcription factor
binding sites from chromatin accessibility
Xi Chen1, Bowen Yu2, Nicholas Carriero3, Claudio Silva2 and Richard Bonneau1,2,3,*

1Department of Biology, New York University, New York, NY 10003, USA, 2Department of Computer Science, New
York University, New York, NY 10003, USA and 3Center for Computational Biology, Flatiron Foundation, Simons
Foundation, New York, NY 10010, USA

Received June 20, 2016; Revised February 28, 2017; Editorial Decision March 05, 2017; Accepted March 06, 2017

ABSTRACT

Differential binding of transcription factors (TFs) at
cis-regulatory loci drives the differentiation and func-
tion of diverse cellular lineages. Understanding the
regulatory interactions that underlie cell fate deci-
sions requires characterizing TF binding sites (TFBS)
across multiple cell types and conditions. Tech-
niques, e.g. ChIP-Seq can reveal genome-wide pat-
terns of TF binding, but typically requires laborious
and costly experiments for each TF-cell-type (TFCT)
condition of interest. Chromosomal accessibility as-
says can connect accessible chromatin in one cell
type to many TFs through sequence motif mapping.
Such methods, however, rarely take into account that
the genomic context preferred by each factor differs
from TF to TF, and from cell type to cell type. To ad-
dress the differences in TF behaviors, we developed
Mocap, a method that integrates chromatin accessi-
bility, motif scores, TF footprints, CpG/GC content,
evolutionary conservation and other factors in an en-
semble of TFCT-specific classifiers. We show that in-
tegration of genomic features, such as CpG islands
improves TFBS prediction in some TFCT. Further, we
describe a method for mapping new TFCT, for which
no ChIP-seq data exists, onto our ensemble of clas-
sifiers and show that our cross-sample TFBS pre-
diction method outperforms several previously de-
scribed methods.

INTRODUCTION

A diverse host of regulatory factors bind to DNA to reg-
ulate gene expression and modulate the accessibility, func-
tional status and structure of chromatin (1,2). These fac-
tors form complex regulatory networks that underpin di-
verse patterns of cellular phenotypes (3,4). Understanding
the mechanistic basis of this regulatory, and ultimately phe-
notypic, diversity has remained a fundamental pursuit in

biology and requires complete and accurate mapping of TF
binding sites. Learning the patterns and processes of TF
binding in a condition/cell type-specific manner is a critical
step in identifying multi-factor targeted cis-regulatory mod-
ules (CRM) that are important in cell fate decisions (4,5),
and in understanding the causes and consequences of cellu-
lar rewiring in gene regulatory networks (6).

Most TFs are sequence specific (7) and TF sequence
preferences are known (and readily available from multiple
databases) in the form of position weight matrices (PWMs)
(8–12). Today’s databases of PWMs cover a large number
of factors spanning a multitude of species (8,10,11,13). But
TFBS identification based solely on PWM sequence match-
ing is known for a number of problems (14). First, the length
of a derived PWM is limited by experimental design, mak-
ing it, in many cases, insufficient in describing the entirety
of binding sequence environment. This is especially true in
short probe-based technologies, such as protein binding mi-
croarrays, which often lead to the identification of incom-
plete sites or half sites (technology-dependent biases) (15).
Shorter PWMs are invariably statistically more prone to
false positive discoveries. Another concern is that degen-
erative sequences are known to be common among TFBS
(16), but they are sometimes unaccounted for in classical
PWMs, where terminal degenerative regions of a binding
motif are removed. Additionally, motifs derived from in
vitro high-throughput methods for binding site discovery
do not capture patterns in the larger region surrounding
motif sites that have recently been shown to be of impor-
tance for the bindings of a variety of TFs (17,18). Lastly,
high-throughput binding analyses carried out in vitro neces-
sarily lack cell-type specificity, thus the binding profiles de-
rived from such in vitro analyses do not reflect the dynamic
chromatin landscape that promotes biologically meaningful
binding events.

The lack of cell-type specificity in many TF binding as-
says is ameliorated by in vivo studies, such as ChIP-Seq.
However, ChIP-Seq is carried out one TF and cell-type con-
dition at a time, and its feasibility is often limited by factors
such as the requirement to obtain high number of cells as
input materials and the availability of high quality antibod-
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ies (19,20). With the large number of factors and cell types,
and the dynamic nature inherent in all TF binding events, it
is challenging to capture the full scope of regulatory inter-
actions for all factors and conditions with ChIP-Seq or any
similar single-TF directed experiment.

Eukaryotic transcriptional regulation is shaped by chro-
matin dynamics, where accessible chromatin sets the stage
for various types of regulatory interactions. Experiments
that interrogate chromatin accessibility, such as digital ge-
nomic footprinting (DGF), DNase-Seq, ATAC-Seq and
FAIRE-Seq have been used as promising alternatives to
factor-specific ChIP-Seq for the identification of TFBS (21–
24). Because chromatin accessibility and nucleosome po-
sitioning are critical players enabling both the binding of
TFs and the subsequent relay of regulatory information,
such as co-factor recruitment and transcriptional machin-
ery assembly, chromatin accessibility-based TFBS predic-
tion methods has allowed cell type-specific predictions of
binding sites for many TFs with a single experiment per cell
type (25–30). In spite of these advantages, the size and com-
plexity of the mammalian genome, the diversity of TF be-
haviors (some TFs bind exclusively to nucleosome-free re-
gions while others pioneer nucleosome-bound regions) and
the large range of cell types (cell types modulate TF activ-
ity, TF-TF interactions and chromosome structure) make
large-scale multi-cell type multi-TF binding site inference
difficult, especially in a manner that balances method sen-
sitivity and selectivity (31–33).

To address these challenges, we designed a TFBS predic-
tion method that uses sequence-derived genomic features
and one chromatin accessibility experiment per cell type
to profile TFCT-specific binding activities. Our method
has three components: (i) MocapG, a generic unsupervised
method that ranks binding probabilities of accessible mo-
tif sites based on local chromatin accessibility, (ii) MocapS,
which integrates the motif-associated accessibility scores of
MocapG with additional genomic features, such as TF foot-
prints, CpG/GC content (sequence features including CpG
content, GC content and CpG island), evolutionary con-
servation and the proximity of TF motifs to transcription
start sites (TSS) to train TFCT-specific predictive models
under the supervision of ChIP-Seq data and (iii) MocapX,
which extends the selectivity of MocapS to more factors and
cell types by mapping new TFCT conditions based on ge-
nomic feature distance to a nearest TFCT neighbor trained
MocapS model using weighted least squares regression.
The similarity-weighted ensemble prediction method, Mo-
capX can connect TFCT-specific TFBS prediction models
to TFCT pairs not directly queried using ChIP-seq or re-
lated methods. This cross-sample prediction framework, al-
though limited to the scope of factors and cell types mod-
eled, addresses the differences between TFCT conditions in
TFBS prediction in a data-driven manner, and has the po-
tential to expand the repertoire of putative TFBS with im-
proved accuracy to any factors we have motif information
for and in any cell type where chromatin accessibility data
is obtainable.

Additionally, we established a cross-assay comparison
between model-based predictions using DNase-Seq and
ATAC-Seq, in an effort to enable similar binding-site pre-
dictions from both of these widely adopted genomic tech-

Figure 1. Our TFBS prediction pipeline. We compiled a non-redundant
set of TF binding motifs, and compute genomic features for all candidate
motif sites. We trained sparse logistic regression models to predict binding
sites (MocapS) for 98 TFCT conditions, for which ChIP-Seq data is avail-
able in ENCODE cell type K562, A549 and Hepg2. True binding sites are
defined as motif sites that overlap ChIP-Seq peaks. For a new TFCT con-
dition, binding sites are inferred from either the unsupervised accessibility
classifier (Mocap) or a trained sparse logistic regression classifier accord-
ing to sample mapping using weighted least squares regression (MocapX).
Shaded area stands for supervised training steps; unshaded area are steps
for data acquisition (top) and making predictions (bottom).

nologies. In building a TFBS prediction method that learns
and uses the differences between TF-chromatin interac-
tion patterns, we hope to provide tools that help reveal the
mechanistic complexity of mammalian gene regulation and
chart the mammalian regulatory landscape spanning multi-
lineage differentiation (Figure 1).

MATERIALS AND METHODS

Obtaining candidate binding sites from motif collections

Human TF motifs (PWMs) were downloaded from the EN-
CODE motif collection (http://compbio.mit.edu/encode-
motifs) and the CisBP motif database (http://cisbp.ccbr.
utoronto.ca) (9,10). We combined information from the
two motif collections and filtered PWMs representing the
same TF using pairwise comparisons based on normal-
ized Euclidean distance (detailed in supplemental materi-
als). The resulting non-redundant set of PWMs was then

http://compbio.mit.edu/encode-motifs
http://cisbp.ccbr.utoronto.ca
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used to scan the human genome (hg19 assembly) to ob-
tain candidate motif sites genome-wide using FIMO from
the MEME Suite with options –max-strand –thresh 1e–3
(34). Overlapping motif sites (where at least half of a mo-
tif site overlaps with an adjacent motif of greater or equal
length) are further cleaned to keep the motif site with a
more significant matching score. Additionally, we excluded
motif sites that overlap an ENCODE blacklisted region
from downstream analyses (ftp://hgdownload.cse.ucsc.edu/
goldenPath/hg19/encodeDCC/wgEncodeMapability/).

Chromatin accessibility and ChIP-Seq data processing

DGF and DNase-Seq data were downloaded from EN-
CODE as aligned reads (35). We filtered out reads with
mapping quality <25 and limited the number of mapped
cuts per base pair to 50 to reduce the duplication effect
caused by technical artifacts. DNase cut counts centered
around each motif site were extracted from the processed
BAM files with customized scripts (36), and all sites were
cleaned with ENCODE mappability tracks prior to mod-
eling to exclude unalignable regions of the genome from
downstream analyses.

ATAC-Seq data for Gm12878 was obtained from Buen-
rostro et al. (23). We selected the experiment with the high-
est sequencing depth (SRR891268) to allow for sufficient se-
quencing depth for footprint detection. Reads were aligned
using Bowtie with the option –best -X2000 -m1. As men-
tioned in (23), to extract the cut sites from ATAC-Seq BAM
files, we offset the + strand read fragment by +4 bp, and
the––strand by –5 bp. Similar mapping quality, mappabil-
ity and 50 reads per base pair upper limit constraints were
applied to the ATAC-Seq dataset.

ChIP-Seq broadpeak and narrowpeak tracks were down-
loaded from ENCODE. In case of multiple ChIP-Seq ex-
periments for the same factor and cell type, tracks were
merged to keep the intersections of all available experi-
ments. Tracks flagged based on the quality metrics pro-
vided by the ENCODE consortium were excluded (https:
//genome.ucsc.edu/ENCODE/qualityMetrics.html) (37).

The MocapG model

To obtain cell type-specific accessibility features associated
with each motif site, we built a probabilistic model that clas-
sifies motif regions with a given number of cuts as either ac-
cessible or inaccessible. Briefly, we fit genome-wide accessi-
bility cut count as a mixture of two negative binomial distri-
butions and an additional zero component representing, re-
spectively, accessible, inaccessible and zero-inflated regions
of the chromatin.

P(c) = π1 P(c|s = 1) + π2 P(c|s = 2) + π0 P(c|s = 0)

where

P(c|s = 1) = F(c|α1, τ1) = �(c+α1)
c!�(α1) τ

α1
1 (1 − τ1)c

P(c|s = 2) = F(c|α2, τ2) = �(c+α2)
c!�(α2) τ

α2
2 (1 − τ2)c

P(c|s = 0) = 1(c = 0)

c is the number of DNase I cut count 100 bp upstream and
100 bp downstream of a specific motif site excluding the mo-
tif site itself. �, � are the mean and dispersion parameters of
negative binomial distributions respectively. �0, �1 and �2
correspond to the probability of the zero (s0), inaccessible
(s1) and accessible (s2) component, where �0 + �1 + �2 =
1. Model parameters were estimated with an Expectation-
Maximization (EM) algorithm, which takes a set of random
initial parameter values (where �1 � �2 and �1>�2 to avoid
label switching) and genome-wide cut count in 200 bp win-
dows as input and outputs model parameters that maximize
the log-likelihood function log(P(c)). Each motif region was
then assigned a binary accessibility indicator S and a log
likelihood score L based on the probability ratio of the re-
gion being accessible to inaccessible.

L(c) = log
π2 P(c|α2, τ2, π2)
π1 P(c|α1, τ1, π1)

S(c) =
{

1 exp(L(c)) ≤ 2
2 exp(L(c)) > 2

An S(c) of 2 corresponds to a likelihood ratio where a motif
region is at least twice as likely to be accessible than inac-
cessible.

Calculating other motif-associated genomic features

For all accessible motifs, we assessed the probability that
a footprint profile exists around the motif site using a pair
of binomial tests adapted from (28). For DNase-Seq, the
binomial tests yield scores for strand-imbalance and deple-
tion of DNase I cuts at motif sites. For ATAC-Seq, strand-
imbalance is insignificant because of the absence of a size
selection step. We merged strand information to assess if a
motif region is depleted of cuts as compared to the left and
right flanking region respectively. Detailed footprint score
calculations are provided in the supplemental methods.

PhastCons and PhyloP scores were calculated for each
motif region from conservation tracks downloaded from
USCS (ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19).
TSS proximity features were calculated based on RefSeq
Genes. Repeats were labeled for each motif region based
on RepeatMasker calls (38). Mapability tracks were down-
loaded from ftp://hgdownload.cse.ucsc.edu/goldenPath/
hg19/encodeDCC/wgEncodeMapability/ ENCODE and
selected based on corresponding DNase-Seq/ATAC-Seq
sequencing length. Mapability scores, GC and CpG content
were computed for a region 100bp upstream and down-
stream of each motif site. CpG islands were calculated as
defined in (39,40) (detailed in the supplemental methods).
We provide customized scripts for all motif-associated
feature calculations.

Training sparse logistic regression classifiers to predict TFBS
(MocapS)

We built sparse logistic regression models using the LIB-
LINEAR package in R to classify motif sites as true (over-
lapping with ChIP-Seq peaks) or false (not overlapping with
ChIP-Seq peaks) binding site based on a list of genomic fea-
tures and their interaction terms (41).

ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
https://genome.ucsc.edu/ENCODE/qualityMetrics.html
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19
ftp://hgdownload.cse.ucsc.edu/goldenPath/hg19/encodeDCC/wgEncodeMapability/
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For all the motif-associated genomic features, we apply
a correlation filter to retain, for each trained TFCT con-
dition, 10 features that are most highly correlated with the
ChIP-Seq signals based on the Pearson correlation coeffi-
cient (PCC). A second correlation filter was applied to the
top 10 features and their second-order interaction terms to
retain 30 most correlated features. Each TFCT condition
was trained on a stratified sample of motif sites represent-
ing data from all except the hold-out chromosomes.

We adopt L1 regularization and tune the shrinkage pa-
rameter for each TFCT condition by performing 10-fold
cross validation to optimize the area under the precision
and recall (AUPR) curve. To avoid overfitting, the shrinkage
parameter was further tuned such that the resulting classi-
fier is sparser than an optimally performing classifier and
still yields a near-optimum (within one standard error of the
optimum) cross-validation performance. The final model
parameters are estimated by aggregating over 100 bootstrap
runs of such sparse logistic regression model fitting for each
TFCT condition to reduce estimator bias. Model perfor-
mance was assessed with data from the held-out chromo-
some. More details are provided in the supplemental meth-
ods.

Cross-sample TFBS prediction (MocapX)

To expand binding site prediction to TFCT conditions
where ChIP-Seq data is unavailable, we use robustly
weighted least squares regression to derive mapping vec-
tor � to match new samples (samples without ChIP-Seq) to
trained models for TFBS predictions. The regression prob-

lem is such that the derived sample weight
−
w and mapping

vector
−
β minimize the following error function

min
n∑

i=1

n∑
j=i+1

wi j (γ log
Yi j + Yji

2
−

p∑
k=1

Xi j,kβk)2

= min
n∑

i=1

n∑
j=i+1

wi j (ei j )2

where n is the number of TFCT conditions; p is the num-
ber of features; Xij, k is the binary probability that feature k
from TFCT i and TFCT j are derived from the same distri-
bution based on KS test for continuous features and Chi-
square test for categorical features; Yij is the predictive per-
formance (AUPR) of model trained in TFCT i when ap-
plied to classify motifs in TFCT j; � is a hyperparameter
that binarizes the target variable Y into sample pairs that
cross-predict well and ones that cross-predict poorly; sam-
ple pair weight $w$ij is fitted through iteratively re-weighted
least squares regression using the rlm function in the MASS
package in R with the Tukey’s bisquare family psi functions
(42,43).

We use ŵ and β̂ to compute a sample mapping i → j that
maximizes Ŷ as below

Ŷ = arg max
i→ j

ŵi j

p∑
k=1

Xi j,kβ̂k

Mapping is then assigned if and only if Ŷ compares favor-
ably with YMocapG in TFCT i. More implementation details
are provided in the supplemental methods.

Comparison to other TFBS prediction methods

PIQ and CENTIPEDE were given the same motif input
and accessibility data (25,26). We also obtained, for CEN-
TIPEDE, PhastCons conservation scores (based on 46-
way alignment of placental mammals) and distance to TSS
for prior calculations. Because PIQ only makes predictions
to sites that carry significant footprint profile, to allow a
more complete comparison, we assign unpredicted sites the
lowest posterior scores in PIQ. Excluding the unpredicted
sites from comparison yields similar results (Supplementary
Figure S7E-G). Comparisons are based on three metrics:
AUPR, sensitivity at 1% false positive rate (FPR) and areas
under the receiver-operating characteristic (AUROC) curve.
A peak-level performance comparison is also done to mea-
sure the areas under the precision-peak recall curves.

RESULTS

Compiling a large unbiased set of candidate motif sites im-
proves the sensitivity of TFBS prediction

The initial step of our computational pipeline involves the
use of a large set of motifs from multiple sources to scan
the genome to obtain TF-specific candidate binding sites.
There is a many-to-many relationship between TFs and
motifs representing them, as some motifs are derived us-
ing DNA-binding domains that are shared among several
TFs (e.g. the motif for SP7 and SP9 are directly transferred
from SP8 because of deep DNA-binding domain homol-
ogy), whereas some TFs show diverged binding preferences
that are matched by two or more distinct motifs (many TFs,
e.g. NFKB, have a shared canonical motif accompanied by
several non-canonical motifs) (10,15,44,45).

Among the 857 TFs represented by the motif collection,
over half have three or more motif representations. The
large number of motifs representing the same TF is resulted
from either the intrinsic diversity in binding preferences or
simply the differences in techniques used to derive them.
For example, widely studied TFs, such as REST and CTCF,
also tend to have large sets of motif representation, and
consequently a large amount of redundancy between mo-
tifs (Supplementary Figure S1B). To remove redundancy
and resolve these many-to-many mappings prior to predict-
ing binding sites, we introduced a similarity index based on
normalized Euclidean distance. We compared the distance
between vectorized motifs that represent the same TF and
then kept the motifs from each similar cluster as described
in the methods section (Supplementary Figure S1).

We used a loose threshold (P-value < 1e–3) to scan for
candidate binding sites. This lower threshold does incur
a sizable computational cost, but we have found that this
high level of inclusiveness is important for the following
reasons. First, well-matched motifs only imply TF binding
in a minority of cases. Non-concensus, low-affinity binding
sites are sometimes required for proper functional readouts
(46,47). We found for the majority of TFs, motif match-
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ing scores only weakly correlate with ChIP-Seq signal (av-
erage PCC is 0.05) (Figure 3A). It was also shown through
various studies for many different TFs that PWM match-
ing score is a poor predictor of binding selectivity (25,48).
Thus using motif score to preselect for candidate bind-
ing sites will lead to sampling bias. Secondly, the number
of motif occurrences or the occurrence of clustered mo-
tif sites are often important indicators of functional and
tissue/cell type-specific binding. Many functional regula-
tory sites, especially in higher eukaryotes are found in clus-
ters, either of themselves (homotypic clusters) or with each
other (e.g. super enhancers) (47,49–51). The fact that de-
generacy within a binding site is often tolerated through
evolutionary reshuffling, whereas the prevalence of fusion
sites and larger functional CRMs persists suggests that the
complexity of mammalian TF binding lies, not in the qual-
itative matching of individual site, but likely emerges from
the grammatical arrangement of sites (e.g. enhancer units)
(47,52–54). Lastly, not all binding events require the phys-
ical interaction between TF and DNA molecule, thus a
sequence-specific binding site may be absent at various sites
when instead of binding directly and individually to the
DNA, TF binds as a part of a protein complex or inter-
acts with parts of the chromatin via chromatin-modifying
enzymes (55,56). For all of these reasons loosening the mo-
tif scan threshold can help achieve more complete coverage
of binding sites on a genome scale (Supplementary Figure
S2) and subsequently allow more relevant genomic features,
such as chromatin accessibility patterns, to drive the bind-
ing site prediction (Figure 3).

Classifying chromatin accessibility landscape with a mixture
model of zero-inflated negative binomials recovers patterns of
multilineage differentiation

Chromatin accessibility data are rich in cell type-specific
regulatory information. To create a baseline method to rank
motif sites based on chromatin accessibility (MocapG),
we modeled chromatin accessibility states as a mixture of
zero-inflated negative binomials, where two distributions
for both accessible and inaccessible components of the chro-
matin are approximated with an EM algorithm. The nega-
tive binomial distribution was chosen because it models well
the overdispersion commonly found in next-generation se-
quencing data (25,57,58), and has the flexibility to be ap-
plied to genomic regions of various sizes. This choice of
distribution is also general enough to describe the signal-to-
noise patterns associated with different experimental proto-
cols for measuring accessibility (DGF, DNase-Seq, ATAC-
Seq and FAIRE-Seq) (Supplementary Figure S3). Further,
we added a zero component into the mixture to assess the
amount of zero inflation due to the lack of sequencing
depth, e.g. those often found in FAIRE-Seq experiments.
For a given accessibility experiment, we learned the compo-
nent parameters from a cut count (for DGF, DNase-Seq or
ATAC-Seq) or fragment count (for FAIRE-Seq) distribu-
tion randomly sampled from the mappable regions of the
genome. The accessibility for a given genomic region (e.g.
a motif region) is then decided based on the log likelihood
ratio between the accessible and inaccessible components
inferred (Figure 2A).

To test the mixture model’ s ability to classify chro-
matin accessibility and distinguish between developmen-
tal cell types, we obtained ENCODE chromatin accessibil-
ity data (DGF or DNase-Seq) for 41 normal human cell
types at various stages of development. For each cell type,
we binned the genome into 400 bp windows, and used our
model to classify regions of the genome into a binary pro-
file of ones (accessible) and zeros (inaccessible). We then
calculated pair-wise Euclidean distance between cell types
and performed hierarchical clustering on the resulting ac-
cessibility profile. As shown in Figure 2B, cell types fall into
clusters based on germ layer origin, confirming the utility of
the classification method across experiments with various
sequencing depth. The result also exemplifies the key role
chromatin accessibility plays in coordinating cellular differ-
entiation and directing cell fate decisions (59). MocapG was
then used to generate our main motif-associated accessibil-
ity features in logistic regression training.

TF footprint profiles are condition-dependent

Because of the overarching role of chromatin accessibility
in directing TF regulation and distinguishing cell type iden-
tity, we next sought to model footprint patterns surround-
ing accessible motifs to determine if there is evidence of di-
rect physical binding of a TF to each candidate motif site.
Using a pair of binomial tests, we assessed whether a foot-
print profile exists (if the motif site is depleted of cut count
as compared to its left and right flanking regions respec-
tively). To examine the strand-specific patterns of footprint
scores across TFCT conditions, we plotted the averaged cut
count profile surrounding motifs found in ChIP-Seq peaks
(Supplementary Figure S6, Appendix). Due to the occlu-
sion of the immediate flanking nucleosomes, the 5′ cut dis-
tribution at binding sites tend to be strand-biased, with the
positive-strand cuts more likely to accumulate on the left
flanking region of a site, while negative-strand cuts more
on the right (28). The fragment size selection step in DGF
protocol further accentuate this strand imbalance towards
the center of binding sites when compared to ATAC-Seq
(size selection step is absent from a typical ATAC-seq pro-
tocol) (21,23). We thus adopted a strand-specific footprint
detection method for DNase I footprints detection and a
non-strand-specific method for ATAC-Seq footprint detec-
tion (see Materials and Methods).

Previous work has pointed out limitations in footprint
modeling, showing that the footprint signature is subject to
several systematic biases including enzyme cutting and se-
quence bias (30,60–64). Corroborating these observations,
we found that DNase I cuts tend to result in more conspicu-
ous footprint than Tn5 transposon insertion cuts, as shown
in the differences in cut count profiles of factors, such as
CTCF and RAD21 (Supplementary Figure S6A-B). As the
behavior of these two factors does not vary significantly
among cell types measured by DGF (K562, A549 and
Hepg2), the observed differences between DGF-measured
and ATAC-Seq-measured cell types are likely bona fide dif-
ferences between the enzymatic activities of DNase I used
in DGF and Tn5 transposase used in ATAC-Seq (60).

Aside from technical complications, we observed high
variability in the shapes and patterns of DNase I footprints
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Figure 2. Modelling DNase I cut count as a mixture of negative binomial distributions. (A) Distribution of DNase I cut count simulated using zero-inflated
negative binomial model parameters derived using an EM algorithm (n = 100 000). Red: cut count from inaccessible regions of the chromatin; blue: cut
count from accessible regions of the chromatin. Inset: Cutoff point is determined by the probability ratio between accessible and inaccessible components.
X and Y axes are in log scales. (B) Hierarchical clustering of the accessibility landscape of ENCODE cell types. Genome is binned into 400 bp (overlapping
by 200 bp) windows, and the accessibility of each genomic window is classified using the zero-inflated negative binomial mixture model as 1 s (accessible)
and 0 s (inaccessible). Cell types cluster in accordance with their developmental origins.

across factors and cell types. Some factor-specific signa-
tures are attributed to the sequence properties of the mo-
tif and/or the binding behavior of the TF. For example,
FOXA1, FOXA2, MXI1, CEBPB, NFYA and RFX5 show
DNase I footprints that are center-inflated rather than ex-
hibiting a canonical center-depletion (Supplementary Fig-
ure S6, Appendix). These factors tend to have A/T rich mo-
tifs and three out of the six TFs (FOXA1, FOXA2, NFYA)
have been previously implicated as pioneer factors (26,65–
68). These inflated footprints might suggest transient bind-
ing dynamics, due to the competition between destabilized
nucleosome and TFs, or between interacting TFs. Some
TFs, e.g. ZNF384 and ARID3A have highly noisy cut pat-
terns surrounding motifs. This transient binding might be
due to either poor motif/ChIP-Seq quality or the absence
of consensus sequence preference, as these motifs also cor-
respond to the samples with incomplete ChIP-Seq coverage
(Supplementary Figure S2). Differences in footprint profiles
can also result from cell type-specific TF activities, e.g. due
to the presence or absence of a co-binder. Because ChIP-Seq
cannot distinguish direct from indirect binding, a TFCT
condition lacking an average footprint profile might sug-
gest the dominating effect of indirect binding or low affinity
binding of the TF in the tested cell type.

In addition, the lack of an obvious footprint could also
be due to the fact that our motif-centric method, by def-
inition, requires footprint discovery be anchored around
the center of a known motif, which might not apply to all
TF motifs. This is especially true for clustered binding sites
where the occurrence of multiple motifs (10–30 bp) within
one ChIP-Seq peak region (∼200 bp) makes it difficult to
pinpoint with either motif matching, accessibility level or
footprint profiling which narrow region corresponds to the
actual physical binding of the TF (69). Although centering
footprint detection around motifs can absorb part of the
variation seen across factors and cell types, the diversity of

TF-specific footprint profiles necessitates developing more
flexible and condition-specific footprint detection methods,
especially for ATAC-Seq footprints.

Building TFCT-specific binding site models

To build condition-specific TFBS prediction models, we
selected 19 motif-associated genomic features and trained
sparse logistic regression classifiers (MocapS models) un-
der the supervision of ChIP-Seq for 98 TFCTs (representing
52 TFs). Across the samples, local chromatin accessibility
scores are the most consistently correlated with ChIP-Seq
signal (Supplementary Figure S4) and also the most con-
sistently chosen by our model selection procedure. Here we
defined local chromatin accessibility as a relatively small re-
gion 100 bp upstream and 100 bp downstream of a motif
site, excluding the motif site itself, as we found chromatin
accessibility tends to taper off after 100 bp and the motif
site itself tends to be depleted of DNase I cuts because of
TF footprint (Supplementary Figure S6). In comparison to
local chromatin accessibility scores, our binary accessibility
feature based on the negative binomial mixture model and
footprint scores correlate to ChIP-Seq in a less consistent
manner (Supplementary Figure S4).

GC/CpG content-associated features, namely, GC con-
tent, CpG count and CpG islands also exhibit more diver-
gence among TFCTs, with TFs, such as E2F6 and HEY1
showing ChIP-Seq correlation to GC/CpG content com-
parable with accessibility features, while GC/CpG content
around MAFK and MAFF motifs are barely correlated
with ChIP-Seq (Figure 3A and B, Supplementary Figure
S4). Additionally, a binary feature separating motif site
based on TSS proximity (1kb) tends to be more correlated
with ChIP-Seq signal than the continuous feature distance
to TSS (Figure 3A and B, Supplementary Figure S4). This
suggests a non-linear relationship exists between the dis-
tance of cis-element to a nearest TSS and its regulatory
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Figure 3. Feature selection and classifier training. (A) Genomic features ranked by their correlation to the ChIP-Seq signal. Barplot showing the average
correlation for each genomic feature over 98 TFCT samples. Error bars mark average ±- one standard deviation. (B) Clustering heatmap showing PCC
between genomic features across motif sites. Red: positive correlation, white: no correlation, blue: negative correlation. (C) Ten-fold cross-validation
performance (AUPR) while adopting different shrinkage parameters �. We tune the shrinkage parameter to approach maximum AUPR. Red dot marks
the shrinkage level (sparsity) that corresponds to the maximum 10-fold cross-validation performance. Green dot corresponds to our selected feature
combination–the sparsest model that achieved a near optimum (within one standard error of maximum) cross-validation performance. Example TF:
SMC3, cell type: K562. (D) Barplot showing the number of times each feature is selected in the 98 trained models. Bar colors are scaled. Red and blue
corresponding to more and less commonly selected features respectively.

activity, and that for some TFCT conditions, a dispropor-
tional majority of regulatory interactions take place in TSS
proximal sites.

Evolutionary conservation scores only weakly correlate
with ChIP-Seq signal, despite the common assumption that
functional cis-regulatory elements are more likely to be con-
served (Figure 3A and B and Supplementary Figure S4).
Among the two types of conservation scores and three dif-
ferent evolutionary distances we tested, phastCons scores,
which measure the probability of a motif site belonging to
a conserved element seemed to be more predictive of TFBS
than phyloP scores that attempt to capture accelerated rate
of evolution. Compared to vertebrate and primate conser-
vation scores, mammalian evolutionary conservation scores
were found to be the most correlated with and predictive
of TF binding (Figure 3A and D). Mapability scores and
repetitive sequences both appeared to correlate with CpG

features and accessibility and likely confound binding site
predictions (Figure 3B).

To incorporate relevant features in binding site prediction
and preclude spurious signals, we filtered genomic features
based on their correlation to ChIP-Seq signal (detailed in
Materials and Methods) before subjecting them to the spar-
sity constraints in logistic regression (Figure 3A). Further,
we included interaction terms, reasoning that less directly
correlated features, such as TSS proximity and evolution-
ary conservation scores could have modulating effects on
TF binding. We used L1-regularization to constrain model
sparsity, selecting models that achieve good cross-validation
AUPR but also have the potential to generalize well out-of-
sample (Figure 3C). For the 98 samples we trained on, there
is a general agreement between a feature’s correlation with
target variable (ChIP-Seq) and the likelihood of the fea-
ture being selected into the final model (Figure 3A and D).
Among the individual and interaction features, we found
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features involving local chromatin accessibility to be the
most widely selected predictor of TF binding across TFCT
conditions (Figure 3D, Supplementary Figure S5).

GC/CpG content surrounding TF motifs modulates TF bind-
ing

Sequence features affect TF binding through mechanisms
such as altering local DNA shape, affecting nucleosome po-
sitioning, DNA methylation and/or influencing co-binding
sites (17,70–72). In contrast to the good generalization
properties of chromatin accessibility features, sequence fea-
tures tend to influence TF binding in a TFCT-dependent
manner (17). Among all possible k-mers, the most promi-
nent sequence features with predictive power are GC con-
tent, CpG dinucleotide frequency and stretches of CpG
islands. We reason that the incorporation of key features
as such can provide quantitative descriptions of the local
sequence/chromatin environment. For example, GC/CpG
content can act as a proxy for nucleosome occupancy and
DNA methylation, both of which are known regulators of
TF binding (73–75).

As we observed high between-sample variation in cor-
relations between GC/CpG features and ChIP-Seq signal
(Supplementary Figure S4), GC/CpG feature usage varied
across factors and cell types (Supplementary Figure S5C).
Among the 98 trained TFCT experiments, we found that
GC/CpG sequence features emerge, most frequently, as an
interaction term with accessibility features (Supplementary
Figure S5B). Given the dominant and relatively univer-
sal usage of accessibility features, GC/CpG sequence fea-
tures seemed to play a modulating role boosting the predic-
tive performance of chromatin accessibility for some TFCT
conditions. For example, E2F family factors appeared to
prefer CpG rich sequence environment almost universally,
whereas the Forkhead family factors, such as FOXA1 and
FOXA2, tend to make use of the GC/CpG features in a less
straightforward manner.

Further, we saw a moderate correlation between
GC/CpG sequence features and TSS proximity (Figure
3B), as well as a significant overlap between the usage of
these two types of features across factors and cell types
in our trained models (Supplementary Figure S5C). This
is consistent with the fact that most promoter regions are
GC-rich. In FOXA2 and ZBTB7A, for example, the effect
of GC content on nucleosome occupancy and TF binding
appears to depend on TSS proximity, with TF binding
at TSS proximal sites featuring a more positively corre-
lated relationship with GC/CpG content than TSS distal
sites (positive coefficient for interaction features between
GC/CpG and TSS proximity and negative coefficient for
GC/CpG feature). This is reminiscent of what is observed
in macrophage pioneer factor PU.1, where high GC content
promotes the stable positioning of nucleosomes and leads
to greater nucleosome occupancy at PU.1 sites, but very
high GC content (e.g. CpG islands) disfavors nucleosome
assembly at proximal sites and low GC content at distal
sites (76).

Overall, our trained models show diverse usage of GC
and CpG sequence features across factors and cell types
(Supplementary Figure S5). Because GC content surround-

Figure 4. Heatmap clustering TFs based on the Euclidean distance be-
tween cross-TF prediction performances (AUPR). Red indicates large Eu-
clidean distance and relatively poor cross-prediction performance between
TFs; Blue indicates smaller Euclidean distance and good cross-prediction
performance (where cross-prediction is the use of TF’s MocapS model to
predict another TF’s binding). TFs are clustered together if they are more
likely to share the same sparse logistic regression models for predicting
TFBS. Data from multiple cell types, if available are averaged out for each
TF.

ing motif sites was shown to agree with core motif GC
content in a TF family-specific manner, the sequence fea-
ture preference could be an indirect result of a homo-
typic environment for binding and cooperativity (17). Also,
extremely GC-poor regions are thermodynamically disfa-
vored for nucleosome positioning due to the stiff property
of poly(dA:dT) sequences, so the wide-spread usage of GC
content feature could underlie a structural basis for TF
binding (77).

Cross-sample TFBS predictions

To extend the usage of our TFCT-specific logistic regres-
sion classifiers to new factors and cell types, we next tested
whether we can apply our trained models to the bind-
ing site predictions of TFCT conditions in the absence
of ChIP-Seq data. We first evaluated the extent to which
TFCT condition-specific models can cross-predict each
other, where cross-prediction is quantified by measuring
how well we can use model trained in TF i to predict binding
for candidate motifs of TF j, and vice versa.

To reveal the factor-specific contribution to cross-sample
TFBS prediction, we collapsed data for the same fac-
tor across cell types and generated a distance matrix be-
tween prediction performance across the 52 TFs (Figure
4). Among the TFs we have trained on, factors can be bro-
ken into three major clusters based on cross-sample predic-
tive performances (these clusters contain TFs that are well
predicted by similar sets of genomic, motif and accessibil-
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ity features). The largest cluster (red) has accessibility and
GC/CpG sequence feature as the most prominent predic-
tors. Cluster 2 (green) features the cohesion complex fac-
tors, CTCF, RAD21 and SMC3 together with MAF and
USF family factors that all tend to make significant use of
motif scores. Cluster 3 (blue) is comprised predominately of
enhancer-associated regulators, such as EP300 and TEAD4
whose binding sites are more likely to extend beyond TSS
vicinity, and pioneer factors, such as AP1 (JUN/JUND)
and Forkhead family factors. We found that, despite the
sparsity constraint, more complex multi-featured models
are preferred by factors in this cluster.

It is worth noting that part of the cross-sample predic-
tion performance trade-off stems from differing signal-to-
noise ratios between samples. There is a high level of cell
type-specificity even for the same TFs due to varying levels
of TF activities and multi-factored interactions. We found
that models trained in cell types where the TF show more
true binding sites (ChIP-Seq peaks) tend to be more robust
when applied to the same factor in another cell type. This
is because TFs with fewer binding sites across the genome
tend to produce more biased models. SIX5, for instance, has
a very small set of binding sites in K562. This small true
class of binding sites, although weight balanced with the
false class, can only give us partial information about the
factor’ s binding preference, so it is often difficult to infer
generalizable models or perform fair model evaluation on
such datasets. To circumvent this bias and down-weigh such
outlier samples, we used iteratively weighted least squares
regression to derive a feature mapping vector (Figure 5).
As the system is overdetermined (n � p), we reason that
down-weighing noisy outliers (samples with large residu-
als) can produce more robust sample mapping. Addition-
ally, because not all supervised MocapS models show sig-
nificantly improved performance over unsupervised Mocap,
we constrained the use of this weighted mapping (MocapX)
to models that showed significant improvement over unsu-
pervised MocapG to control for uninformative mappings.

The weight distribution in MocapX derived feature
vector suggests cross-sample mapping is predominately
driven by GC/CpG sequence feature similarities (Figure 5).
Among the 98 leave-one-out mapping experiments, we were
able to map 35 samples to another TFCT trained model
(the rest chose the generic method MocapG). Fourteen of
the 35 mappings were between cell types of the same TF,
the rest mapped cross-TF. Among the cross-TF mappings,
the most prominent one is between CTCF and RAD21
(Supplementary Table S1). This is consistent with the over-
lapping roles of these two factors in defining chromoso-
mal domains and in interactions with other cohesion com-
plex components, such as SMC3 (78–80). It was shown that
CTCF and RAD21 bind to a subset of their accessible mo-
tifs and a small number of these binding sites are further
influenced by cell type-specific DNA-methylation (72,81).
MocapG was found to be rather inaccurate when predict-
ing the binding of these factors. Incorporating motif scores
and footprint profiles significantly improves prediction ac-
curacy in these cases.

Other examples of cross-TF mappings are ETS1/YY1,
CEBPB/JUN, REST/SIN3A and MAX/MYC (Supple-
mentary Table S1). These factors were previously recog-

Figure 5. Cross-sample binding site prediction. Violin plot showing the
hold-one-out performance for MocapX in comparison to MocapS (with
MocapS models trained in the TFCT), MocapG (with local chromatin ac-
cessibility feature only) and randomly selected MocapS model (with ran-
dom mappings between leave-out TFCT and MocapS model ensemble)
performance. AUPR scores are normalized (centered at zero) across the
four methods in each TFCT condition Inset: Heatmap showing weighted
feature vectors that is used to compute distances between new TFCTs and
TFCTs for which MocapS models have been trained. If no fit model exists
in the trained model pool (no model is predicted to outperform unsuper-
vised MocapG), MocapX will use MocapG for TFBS prediction.

nized as binding partners, so their binding sites likely co-
cluster and thus share similar sequence environments and
model preferences (82–85). As a point of comparison, Fig-
ure 5 also demonstrates the peril of wrongly assigning
models to samples: randomly selecting MocapS models
for cross-sample predictions can negatively impact perfor-
mance. This underlies the importance of discriminating be-
tween condition-specific models. Further, we found that in-
ferring binding for TFs in conditions/cell types where they
are inactive, partially active or have altered binding activi-
ties tend to confound cross-sample TFBS predictions (Sup-
plementary Table S1 and Figure S7B), potentially high-
lighting the need to integrate alternate data-types, such as
TF expression or approaches that can explicitly account
for TF activity in different cell types (http://dx.doi.org/10.
1101/051847) (86). Taken together, we show that MocapX,
although limited by the number and diversity of TFCT-
specific models we have trained, presents a novel framework
to generalize trained sparse logistic regression models to an
increasing number of TFCTs with improved accuracy.

Performance comparisons

We compared the performance of Mocap with two other
motif and chromatin accessibility-based TFBS prediction
methods CENTIPEDE and PIQ. As motif datasets show

http://dx.doi.org/10.1101/051847
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significant sample class imbalance, with true binding sites
taking up only a fraction of the total candidate sites in our
predictions (positive/negative ratio < 0.01), AUROC scores
are likely biased toward assessing correct classification of
the majority class (which in our case is the non-binding
sites that we are less interested in). Thus, we computed the
AUPR for each leave-out TFCT to compare the motif-level
predictive accuracy among methods (trade-off between pre-
cision and recall) (Supplementary Figure 6A and Supple-
mentary Table S1). Additionally, a peak-level performance
comparison using the areas under the precision-peak re-
call curves was also done to access how well each method
predicts ChIP-Seq peaks (Supplementary Figure S7D). We
also evaluated sensitivity at 1% FPR to evaluate binding
site prediction at a low false positive rate cutoff (trade-off
between sensitivity and specificity) (Supplementary Figure
6A and Supplementary Table S1).

When compared to CENTIPEDE and PIQ, both our
sparse logistic regression training-based MocapS and our
extended MocapX methods showed a good balance be-
tween sensitivity and specificity across factors and cell types
(Supplementary Figure S7A and B). MocapG, which uses
simple accessibility cut count ranking, although lacking in
the completeness of coverage, remained a robust prediction
method across factors and cell types (Figure 6A). But, Mo-
capG did tend to fall short in TFs such as CEBPB, E2F4,
RAD21 and MAFF where motif matching scores, sequence
features or TSS proximity played major roles (Supplemen-
tary Table S1). These cases clearly demonstrate the need to
build TFCT-tailored models that use a diverse collection of
features.

CENTIPEDE and PIQ both model footprints in great
detail. PIQ uses refined technique to model motif and
DNase I footprint. CENTIPEDE integrates motif scores,
TSS proximity and evolutionary conservation with DNase
I footprint in a hierarchical model. Overall, both methods
rely heavily on the modeling of footprint profiles. So, when
we apply these methods to TFBS prediction with a loos-
ened constraint on motif matching score to improve sensi-
tivity, they often fell short in ranking precision (poor AUPR
scores). This points us to the limitation of methods that rely
solely or heavily on footprint profiling. First, it is difficult
to profile TF footprints even with the aid of factor-specific
motifs, especially in a manner that balances specificity with
completeness of prediction (due, as we discuss above, to a
host of other influences like chromatin context and cell-type
specific co-factors). Footprint detection methods, although
descriptively useful, tend to be highly biased and condition-
specific, thus lack the ability to generalize across factors and
cell types and are often unfit for application on a global
scale, to facilitate efforts, such as genome-wide CRM de-
tection or gene regulatory network inference. Secondly, part
of the variation in footprint profile might be intrinsic to dif-
ferential TF binding activities. Although both deriving bet-
ter motif models and applying condition/protocol-specific
bias correction using naked DNA could help resolve foot-
print patterns and improve overall predictive performance,
the condition specificity of TF footprints both within and
across TFCTs will likely remain (27,30). This again signi-
fies the need for building predictive models that specifically
address the differences between TFCTs.

We also note that the poor performance of PIQ and
CENTIPEDE are partly due to the fact that both methods
are unsupervised learning methods and relied, to an extent,
on pre-selecting motif sites, e.g. with high motif matching
scores and/or footprint scores, to constrain their prediction
problems. Although useful, these pre-selection steps often
lead to sampling bias and thus limit their ability to general-
ize and achieve balanced precision-recall across TFCTs.

Adapting Mocap to predict TFBS using ATAC-Seq

ATAC-Seq has emerged in recent years as an efficient
method to assay chromatin accessibility and typically re-
quires much smaller cell sample than DNase-Seq to achieve
comparable sequencing depth. This has led to the wide
application of ATAC-Seq to clinically relevant rare cell
types and conditions that were previously inaccessible to
DNase-Seq due to limited cell numbers. The higher sen-
sitivity and stable nature of Tn5 also results in more
ambiguous/arbitrary footprint profiles in comparison to
DNase I (Supplementary Figure S6, Appendix).

To examine performance across assays, we applied Mo-
capG and MocapX to ATAC-Seq data in human Gm12878
cells and compared the performance of Mocap with that
of CENTIPEDE (Figure 6B and Supplementary Table S2).
MocapG, because of its simplicity, performs comparably
across assays, whereas the differences in footprint profiles
limit the specificity of MocapX when applied to ATAC-Seq.
This loss in predictive performance is more pronounced for
CENTIPEDE, which was designed specifically for DNase
footprints. Despite the differences in footprint profiles, Mo-
capX was shown to improve the performance of TFBS pre-
dictions for TFs, such as CTCF, RAD21 and USF1, where
MocapG tends to perform poorly. This represents, to our
knowledge, the first TFCT-specific effort to use ATAC-Seq
for TFBS prediction.

DISCUSSION

In this work, we developed a DNA binding motif and
chromatin accessibility-based method to predict cell type-
specific TF binding. In designing a generalizable TFBS pre-
diction method, we followed several key design principles:
(i) we address the differences in binding behaviors between
TF-cell type conditions, (ii) we predict TFBS in a manner
that balances method precision with recall, and (iii) we em-
ploy approaches that improve method scalability. To distin-
guish between TFs and cell types, we incorporated in our
analyses a range of motif-associated genomic features, in-
cluding motif matching scores, chromatin accessibility, TF
footprints, GC/CpG content, TSS proximity and evolu-
tionary conservation. We assessed each feature’s contribu-
tion to TFBS prediction, and applied model selection to the
training of an ensemble of TFCT-specific classifiers inte-
grating these genomic features. We show that incorporation
of sequence features, such as GC/CpG content surrounding
TF binding motifs, significantly improves predictive perfor-
mance and helps identify TFCT conditions sharing similar
predictive models. To improve the sensitivity of our predic-
tive method (recall), we start with a more complete coverage
of binding sites by loosening motif matching threshold; and
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Figure 6. Method comparison between Mocap, CENTIPEDE and PIQ (98 TFCT samples in hold-out chromosome 15). (A) Boxplot showing overall
performance of CENTIPEDE, PIQ, MocapS, MocapX, and MocapG method in predicting TFBS (n = 98). (B) Boxplot showing performance of Mocap
and CENTIPEDE applied to ATAC-Seq data in Gm12878 (n = 23). Performance metrics used are AUPR (top panel), Sensitivity at 1% FPR (middle
panel) and AUROC (bottom panel).

to provide more informative ranking of our predicted bind-
ing sites (precision), we set the objective function in sparse
logistic regression training to optimize AUPR.

Our TFCT-specific models perform favorably in bind-
ing site predictions for a range of TFs and in a multitude
of cell types in comparison to several previous methods.
We show that this specificity and performance can be ex-
tended to other TFs that lack ChIP-seq via cross-sample
TFBS prediction (MocapX) using condition-specific mod-
els trained in other TFCTs. Lastly, to promote scalability,
we focused on designing a method that is computationally
efficient and relies on only a single type of genomic assay,
either DNase-Seq or ATAC-Seq to capture the chromatin
dynamics around binding sites. Although a wide variety
of functional genomic assays, such as histone modification
ChIP-Seq, MNase-Seq and bisulfite sequencing could all
contribute to TFBS prediction (87,88), we chose to limit our
required inputs to chromatin accessibility experiments, be-
cause they remain, to our knowledge, the most generalizable
genomic assay in predicting cell type-specific binding sites
across factors and conditions. In particular, given that the
recent advances in genomic technologies continue to make
chromatin accessibility interrogation more widely applica-
ble, chromatin accessibility-based TFBS prediction meth-
ods will find more application in global-scale gene regula-
tion analysis, such as cell type-specific CRM identification,
multi-lineage regulatory landscape comparison and be used
as structural priors in global gene regulatory network infer-
ence (http://dx.doi.org/10.1101/051847). Our method com-
bined cell type-specific regulatory information in chromatin

accessibility data with a range of genomic evidences in cis
to drive more accurate binding site prediction. This less-
ened reliance on multiple expensive data-types in trans al-
lows our method to be more readily scaled to a larger num-
ber of TFCT conditions.

In addition to building useful classifiers for global-scale
TFBS mapping, our study aimed to identify factors that dis-
tinguish motif sites that are bound from the vast majority of
unbound motif sites and provide mechanistic insights into
TF binding dynamics and diversity. While chromatin ac-
cessibility assays allowed careful descriptions of the chro-
matin environment around TF binding sites, the sequence
environment that fosters TF binding specificity and coop-
erativity, in contrast, is arguably harder to unravel and has
thus remained by and large a conjecture that needs to be
disentangled and tested in a more systematic fashion (89).
Our trained sparse logistic regression models encapsulate
some of the diverse combinations of sequence features that
lead to TF-specific binding, such as GC/CpG content plays
in binding site prediction. Additional features that describe
motif-proximal sites, such as k-mer features and predictors
of DNA shape , need to be investigated in more diverse bio-
logical contexts (70,90,91). For CpG features in particular,
cell type-specific methylation assays, such as BS-sequencing
could bring more functional relevance to its predictive mod-
eling (48). Our study also provides a framework for ex-
amining co-clustered binding sites in a relatively unbiased
manner; a key avenue of investigation, as binding site clus-
tering is required for activation at many well studied loci
(4,49,92,93).

http://dx.doi.org/10.1101/051847
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Figure 7. Genome browser view of predictions made by different methods. Tracks highlight region 85081291–85557900 on chromosome 15 for binding
site predictions of ETS1 in K562. We standardized MocapG, MocapS and MocapX (modeled with YY1 in K562) prediction scores into z scores and used
a cutoff of z > 3. Cutoff for PIQ and CENTIPEDE are 700 and 0.99 as suggested.

Our definition of true binding sites might have included
motifs due to their proximity to an actual binding site, but
are not actually physically bound. Several reasons preclude
an accurate definition of true binding site in our current
data framework. First, the use of clustered or fused bind-
ing sites in mammalian species is prevalent. This means
that there are often times multiple motifs, slight variations
of known motifs, permuted arrangements of motifs clus-
tered under one ChIP-Seq peak, so it often requires the
support of new data evidence, such as higher resolution
ChIP-exo or ChIP-nexus and in-depth analysis of raw se-
quencing reads to deconvolve the exact bound sites from
ChIP-Seq enriched regions (94,95). Second, as our analyses
(Supplementary Figure S2) suggest it is common to observe
ChIP-Seq peaks that do not contain any high-quality motifs
due to indirect binding, non-specific binding or ChIP-Seq-
associated technical artifacts (19,96), so for most, if not all,
TFCTs, there is not a one-to-one correspondence between
known motifs and ChIP-Seq peaks. Lastly, methods that at-
tempt to preselect motif site with motif matching scores or
footprint patterns as a way to resolve closely spaced bind-
ing sites often risk missing bona fide binding sites due to the
rather frequent presence of fused or permuted motif sites
that deviate from canonical motif patterns or low-residence
time binding events that lack conspicuous footprint profiles.
As our study is not aimed at resolving closely spaced bind-
ing sites (under ChIP-Seq peaks), the motif regions iden-
tified in our study can be further refined by de novo mo-
tif discovery tools such as SeqGL, GEM and ChIPMunk
(94,95,97–99). Refined motif models could in turn facilitate
more accurate depiction of TF footprints and improve bind-
ing site predictions (Figure 7).

Evolutionary conservation represents yet another type of
data that has long been associated with functional TF bind-
ing. We tested a range of conservation features in this work,
including both measures of cross-species divergence and
population-level polymorphism (e.g. SNP density) from
ENCODE and 1000 genomes respectively (100). We found
that SNP density at motif sites appear to have a dimin-
ished effect on binding site prediction (unpublished data), in
comparison to cross-species divergence (101,102). Among
the cross-species conservation scores, mammalian conser-
vation (both phyloP scores and phastCons scores) seemed

the more relevant evolutionary distance than vertebrates or
primates conservation (as evidenced by their selection in
models for multiple TFs during MocapS training). This per-
haps suggests a shift in balance between the regulatory con-
servation within mammalian species and the site divergence
experienced among primates pointing to a precarious rela-
tionship between binding site conservation and divergence
during evolution (54,103).

As technical advances in genomics and statistics enable
the accurate and large-scale mapping of a large number of
TFBS, predictive methods that combine sequence features
with chromatin accessibility modeling represent a promis-
ing direction for resolving the myriad binding sites across
a diverse array of TFs and cell types. Large-scale mapping
of TFBS, when connected with gene expression data, will
in turn promote a better and more systematic understand-
ing of mammalian gene regulation and enable large scale
network inference via the generation of detailed structural
priors (53,86,104).

AVAILABILITY

Our core methods are freely available as an R package. De-
tailed implementation and example data can be found at
https://github.com/xc406/Mocap.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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27. Kähärä,J. and Lähdesmäki,H. (2015) BinDNase: a discriminatory
approach for transcription factor binding prediction using DNase I
hypersensitivity data. Bioinformatics, 31, 2852–2859.

28. Piper,J., Elze,M.C., Cauchy,P., Cockerill,P.N., Bonifer,C. and Ott,S.
(2013) Wellington: a novel method for the accurate identification of
digital genomic footprints from DNase-seq data. Nucleic Acids Res.,
41, e201.

29. Gusmao,E.G., Dieterich,C., Zenke,M. and Costa,I.G. (2014)
Detection of active transcription factor binding sites with the
combination of DNase hypersensitivity and histone modifications.
Bioinformatics, 30, 3143–3151.

30. Yardımcı,G.G., Frank,C.L., Crawford,G.E. and Ohler,U. (2014)
Explicit DNase sequence bias modeling enables high-resolution
transcription factor footprint detection. Nucleic Acids Res., 42,
11865–11878.

31. Slattery,M., Zhou,T., Yang,L., Machado,A.C.D., Gordân,R. and
Rohs,R. (2014) Absence of a simple code: how transcription factors
read the genome. Trends Biochem. Sci., 39, 381–399.

32. Zinzen,R.P., Girardot,C., Gagneur,J., Braun,M. and Furlong,E.E.
(2009) Combinatorial binding predicts spatio-temporal
cis-regulatory activity. Nature, 462, 65–70.

33. Arvey,A., Agius,P., Noble,W.S. and Leslie,C. (2012) Sequence and
chromatin determinants of cell-type–specific transcription factor
binding. Genome Res., 22, 1723–1734.

34. Grant,C.E., Bailey,T.L. and Noble,W.S. (2011) FIMO: scanning for
occurrences of a given motif. Bioinformatics, 27, 1017–1018.

35. Dunham,I., Birney,E., Herrero,J., Wilder,S.P., Keefe,D., Beal,K.,
Flicek,P., Johnson,N., Sobraland,D., Kundaje,A. et al. (2012) An
integrated encyclopedia of DNA elements in the human genome.
Nature, 489, 57–74.

36. Yu,B., Doraiswamy,H., Chen,X., Miraldi,E., Arrieta-Ortiz,M.L.,
Hafemeister,C., Madar,A., Bonneau,R. and Silva,C.T. (2014)
Genotet: An interactive web-based visual exploration framework to
support validation of gene regulatory networks. Visual. Comput.
Graph. IEEE Trans., 20, 1903–1912.

37. Landt,S.G., Marinov,G.K., Kundaje,A., Kheradpour,P., Pauli,F.,
Batzoglou,S., Bernstein,B.E., Bickel,P., Brown,J.B., Cayting,P. et al.
(2012) ChIP-seq guidelines and practices of the ENCODE and
modENCODE consortia. Genome Res., 22, 1813–1831.

38. Tarailo-Graovac,M. and Chen,N. (2009) Using RepeatMasker to
identify repetitive elements in genomic sequences. Curr. Protoc.
Bioinformatics, 4–10.

39. Gardiner-Garden,M. and Frommer,M. (1987) CpG islands in
vertebrate genomes. J. Mol. Biol., 196, 261–282.

40. Saxonov,S., Berg,P. and Brutlag,D.L. (2006) A genome-wide
analysis of CpG dinucleotides in the human genome distinguishes
two distinct classes of promoters. Proc. Natl. Acad. Sci. U.S.A., 103,
1412–1417.



4328 Nucleic Acids Research, 2017, Vol. 45, No. 8

41. Fan,R.-E., Chang,K.-W., Hsieh,C.-J., Wang,X.-R. and Lin,C.-J.
(2008) LIBLINEAR: A library for large linear classification. J.
Mach. Learn. Res., 9, 1871–1874.

42. Andersen,R. (2008) Modern Methods for Robust Regression, Sage, p.
152.

43. Huber,P.J. (1981) Wiley series in probability and mathematics
statistics. Robust Stat., 309–312.

44. Wong,D., Teixeira,A., Oikonomopoulos,S., Humburg,P., Lone,I.N.,
Saliba,D., Siggers,T., Bulyk,M., Angelov,D., Dimitrov,S. et al.
(2011) Extensive characterization of NF-�B binding uncovers
non-canonical motifs and advances the interpretation of genetic
functional traits. Genome Biol., 12, 1–19.

45. Badis,G., Berger,M.F., Philippakis,A.A., Talukder,S., Gehrke,A.R.,
Jaeger,S.A., Chan,E.T., Metzler,G., Vedenko,A., Chen,X. et al.
(2009) Diversity and complexity in DNA recognition by
transcription factors. Science, 324, 1720–1723.

46. Ramos,A.I. and Barolo,S. (2013) Low-affinity transcription factor
binding sites shape morphogen responses and enhancer evolution.
Philos. Trans. R. Soc. Lond. B: Biol. Sci., 368, 20130018.

47. Crocker,J., Abe,N., Rinaldi,L., McGregor,A.P., Frankel,N.,
Wang,S., Alsawadi,A., Valenti,P., Plaza,S., Payre,F. et al. (2015) Low
affinity binding site clusters confer hox specificity and regulatory
robustness. Cell, 160, 191–203.

48. Xu,T., Li,B., Zhao,M., Szulwach,K.E., Street,R.C., Lin,L., Yao,B.,
Zhang,F., Jin,P., Wu,H. et al. (2015) Base-resolution methylation
patterns accurately predict transcription factor bindings in vivo.
Nucleic Acids Res., 43, 2757–2766.

49. Gotea,V., Visel,A., Westlund,J.M., Nobrega,M.A., Pennacchio,L.A.
and Ovcharenko,I. (2010) Homotypic clusters of transcription
factor binding sites are a key component of human promoters and
enhancers. Genome Res., 20, 565–577.

50. Hnisz,D., Abraham,B.J., Lee,T.I., Lau,A., Saint-André,V.,
Sigova,A.A., Hoke,H.A. and Young,R.A. (2013) Super-enhancers in
the control of cell identity and disease. Cell, 155, 934–947.

51. Whyte,W.A., Orlando,D.A., Hnisz,D., Abraham,B.J., Lin,C.Y.,
Kagey,M.H., Rahl,P.B., Lee,T.I. and Young,R.A. (2013) Master
transcription factors and mediator establish super-enhancers at key
cell identity genes. Cell, 153, 307–319.

52. Dermitzakis,E.T. and Clark,A.G. (2002) Evolution of transcription
factor binding sites in Mammalian gene regulatory regions:
conservation and turnover. Mol. Biol. Evol., 19, 1114–1121.

53. Ciofani,M., Madar,A., Galan,C., Sellars,M., Mace,K., Pauli,F.,
Agarwal,A., Huang,W., Parkurst,C.N., Muratet,M. et al. (2012) A
validated regulatory network for Th17 cell specification. Cell, 151,
289–303.

54. Hardison,R.C. and Taylor,J. (2012) Genomic approaches towards
finding cis-regulatory modules in animals. Nat. Rev. Genet., 13,
469–483.

55. Benveniste,D., Sonntag,H.-J., Sanguinetti,G. and Sproul,D. (2014)
Transcription factor binding predicts histone modifications in
human cell lines. Proc. Natl. Acad. Sci. U.S.A., 111, 13367–13372.

56. Siggers,T., Duyzend,M.H., Reddy,J., Khan,S. and Bulyk,M.L.
(2011) Non-DNA-binding cofactors enhance DNA-binding
specificity of a transcriptional regulatory complex. Mol. Syst. Biol.,
7, 555.

57. Rashid,N.U., Giresi,P.G., Ibrahim,J.G., Sun,W. and Lieb,J.D. (2011)
ZINBA integrates local covariates with DNA-seq data to identify
broad and narrow regions of enrichment, even within amplified
genomic regions. Genome Biol., 12, R67.

58. Anders,S. and Huber,W. (2010) Differential expression analysis for
sequence count data. Genome Biol., 11, R106.

59. Stergachis,A.B., Neph,S., Reynolds,A., Humbert,R., Miller,B.,
Paige,S.L., Vernot,B., Cheng,J.B., Thurman,R.E., Sandstrom,R.
et al. (2013) Developmental fate and cellular maturity encoded in
human regulatory DNA landscapes. Cell, 154, 888–903.

60. Vierstra,J. and Stamatoyannopoulos,J.A. (2016) Genomic
footprinting. Nat. Methods, 13, 213–221.

61. He,H.H., Meyer,C.A., Chen,M.-W., Zang,C., Liu,Y., Rao,P.K.,
Fei,T., Xu,H., Long,H., Liu,X.S. et al. (2014) Refined DNase-seq
protocol and data analysis reveals intrinsic bias in transcription
factor footprint identification. Nat. Methods, 11, 73–78.

62. Koohy,H., Down,T.A. and Hubbard,T.J. (2013) Chromatin
accessibility data sets show bias due to sequence specificity of the
DNase I enzyme. PLoS One, 8, e69853.

63. Madrigal,P. (2015) On accounting for sequence-specific bias in
genome-wide chromatin accessibility experiments: recent advances
and contradictions. Front. Bioeng. Biotechnol., 3, 144.

64. Sung,M.-H., Guertin,M.J., Baek,S. and Hager,G.L. (2014) DNase
footprint signatures are dictated by factor dynamics and DNA
sequence. Mol. Cell, 56, 275–285.

65. Ang,S.-L., Wierda,A., Wong,D., Stevens,K.A., Cascio,S., Rossant,J.
and Zaret,K.S. (1993) The formation and maintenance of the
definitive endoderm lineage in the mouse: involvement of
HNF3/forkhead proteins. Development, 119, 1301–1315.

66. Iwafuchi-Doi,M. and Zaret,K.S. (2014) Pioneer transcription
factors in cell reprogramming. Genes Dev., 28, 2679–2692.

67. Zaret,K.S. and Carroll,J.S. (2011) Pioneer transcription factors:
establishing competence for gene expression. Genes Dev., 25,
2227–2241.

68. Iwafuchi-Doi,M., Donahue,G., Kakumanu,A., Watts,J.A.,
Mahony,S., Pugh,B.F., Lee,D., Kaestner,K.H. and Zaret,K.S.
(2016) The pioneer transcription factor FoxA maintains an
accessible nucleosome configuration at enhancers for tissue-specific
gene activation. Mol. Cell, 62, 79–91.

69. Mahony,S. and Pugh,B.F. (2015) Protein–DNA binding in
high-resolution. Crit. Rev. Biochem. Mol. Biol., 50, 269–283.

70. Zhou,T., Shen,N., Yang,L., Abe,N., Horton,J., Mann,R.S.,
Bussemaker,H.J., Gordân,R. and Rohs,R. (2015) Quantitative
modeling of transcription factor binding specificities using DNA
shape. Proc. Natl. Acad. Sci. U.S.A., 112, 4654–4659.

71. Valouev,A., Johnson,S.M., Boyd,S.D., Smith,C.L., Fire,A.Z. and
Sidow,A. (2011) Determinants of nucleosome organization in
primary human cells. Nature, 474, 516–520.

72. Maurano,M.T., Wang,H., John,S., Shafer,A., Canfield,T., Lee,K.
and Stamatoyannopoulos,J.A. (2015) Role of DNA methylation in
modulating transcription factor occupancy. Cell Rep., 12,
1184–1195.

73. Medvedeva,Y.A., Khamis,A.M., Kulakovskiy,I.V., Ba-Alawi,W.,
Bhuyan,M. S.I., Kawaji,H., Lassmann,T., Harbers,M.,
Forrest,A.R., Bajic,V.B. et al. (2014) Effects of cytosine methylation
on transcription factor binding sites. BMC Genomics, 15, 119.

74. Tillo,D. and Hughes,T.R. (2009) G+ C content dominates intrinsic
nucleosome occupancy. BMC Bioinformatics, 10, 1.

75. Deaton,A.M. and Bird,A. (2011) CpG islands and the regulation of
transcription. Genes Dev., 25, 1010–1022.

76. Barozzi,I., Simonatto,M., Bonifacio,S., Yang,L., Rohs,R.,
Ghisletti,S. and Natoli,G. (2014) Coregulation of transcription
factor binding and nucleosome occupancy through DNA features of
mammalian enhancers. Mol. Cell, 54, 844–857.

77. Iyer,V. and Struhl,K. (1995) Poly (dA: dT), a ubiquitous promoter
element that stimulates transcription via its intrinsic DNA structure.
EMBO J., 14, 2570.

78. Phillips-Cremins,J.E., Sauria,M.E., Sanyal,A., Gerasimova,T.I.,
Lajoie,B.R., Bell,J.S., Ong,C.-T., Hookway,T.A., Guo,C., Sun,Y.
et al. (2013) Architectural protein subclasses shape 3D organization
of genomes during lineage commitment. Cell, 153, 1281–1295.

79. Seitan,V.C., Faure,A.J., Zhan,Y., McCord,R.P., Lajoie,B.R.,
Ing-Simmons,E., Lenhard,B., Giorgetti,L., Heard,E., Fisher,A.G.
et al. (2013) Cohesin-based chromatin interactions enable regulated
gene expression within preexisting architectural compartments.
Genome Res., 23, 2066–2077.

80. Sofueva,S., Yaffe,E., Chan,W.-C., Georgopoulou,D., Rudan,M.V.,
Mira-Bontenbal,H., Pollard,S.M., Schroth,G.P., Tanay,A. and
Hadjur,S. (2013) Cohesin-mediated interactions organize
chromosomal domain architecture. EMBO J., 32, 3119–3129.

81. Wang,H., Maurano,M.T., Qu,H., Varley,K.E., Gertz,J., Pauli,F.,
Lee,K., Canfield,T., Weaver,M., Sandstrom,R. et al. (2012)
Widespread plasticity in CTCF occupancy linked to DNA
methylation. Genome Res., 22, 1680–1688.

82. Gaston,K. and Fried,M. (1995) CpG methylation has differential
effects on the binding of YY1 and ETS proteins to the bi-directional
promoter of the Surf-1 and Surf-2 genes. Nucleic Acids Res., 23,
901–909.

83. Hong,S., Skaist,A.M., Wheelan,S.J. and Friedman,A.D. (2011)
AP-1 protein induction during monopoiesis favors C/EBP: AP-1
heterodimers over C/EBP homodimerization and stimulates FosB
transcription. J. Leukocyte Biol., 90, 643–651.



Nucleic Acids Research, 2017, Vol. 45, No. 8 4329

84. Huang,Y., Myers,S.J. and Dingledine,R. (1999) Transcriptional
repression by REST: recruitment of Sin3A and histone deacetylase
to neuronal genes. Nat. Neurosci., 2, 867–872.

85. Nair,S.K. and Burley,S.K. (2003) X-ray structures of Myc-Max and
Mad-Max recognizing DNA: molecular bases of regulation by
proto-oncogenic transcription factors. Cell, 112, 193–205.

86. Arrieta-Ortiz,M.L., Hafemeister,C., Bate,A.R., Chu,T.,
Greenfield,A., Shuster,B., Barry,S.N., Gallitto,M., Liu,B.,
Kacmarczyk,T. et al. (2015) An experimentally supported model of
the Bacillus subtilis global transcriptional regulatory network. Mol.
Syst. Biol., 11, 839.

87. Barski,A., Cuddapah,S., Cui,K., Roh,T.-Y., Schones,D.E., Wang,Z.,
Wei,G., Chepelev,I. and Zhao,K. (2007) High-resolution profiling of
histone methylations in the human genome. Cell, 129, 823–837.

88. Lister,R., Pelizzola,M., Dowen,R.H., Hawkins,R.D., Hon,G.,
Tonti-Filippini,J., Nery,J.R., Lee,L., Ye,Z., Ngo,Q.-M. et al. (2009)
Human DNA methylomes at base resolution show widespread
epigenomic differences. Nature, 462, 315–322.

89. Dror,I., Rohs,R. and Mandel-Gutfreund,Y. (2016) How motif
environment influences transcription factor search dynamics:
Finding a needle in a haystack. BioEssays, 38, 605–612.

90. Abe,N., Dror,I., Yang,L., Slattery,M., Zhou,T., Bussemaker,H.J.,
Rohs,R. and Mann,R.S. (2015) Deconvolving the recognition of
DNA shape from sequence. Cell, 161, 307–318.

91. Chiu,T.-P., Comoglio,F., Zhou,T., Yang,L., Paro,R. and Rohs,R.
(2016) DNAshapeR: an R/Bioconductor package for DNA shape
prediction and feature encoding. Bioinformatics, 32, 1211–1213.

92. Tsankov,A.M., Gu,H., Akopian,V., Ziller,M.J., Donaghey,J.,
Amit,I., Gnirke,A. and Meissner,A. (2015) Transcription factor
binding dynamics during human ES cell differentiation. Nature, 518,
344–349.

93. Heinz,S., Benner,C., Spann,N., Bertolino,E., Lin,Y.C., Laslo,P.,
Cheng,J.X., Murre,C., Singh,H. and Glass,C.K. (2010) Simple
combinations of lineage-determining transcription factors prime
cis-regulatory elements required for macrophage and B cell
identities. Mol. Cell, 38, 576–589.

94. Guo,Y., Papachristoudis,G., Altshuler,R.C., Gerber,G.K.,
Jaakkola,T.S., Gifford,D.K. and Mahony,S. (2010) Discovering

homotypic binding events at high spatial resolution. Bioinformatics,
26, 3028–3034.

95. Guo,Y., Mahony,S. and Gifford,D.K. (2012) High resolution
genome wide binding event finding and motif discovery reveals
transcription factor spatial binding constraints. PLoS Comput.
Biol., 8, e1002638.

96. Teytelman,L., Thurtle,D.M., Rine,J. and van Oudenaarden,A.
(2013) Highly expressed loci are vulnerable to misleading ChIP
localization of multiple unrelated proteins. Proc. Natl. Acad. Sci.
U.S.A., 110, 18602–18607.

97. Setty,M. and Leslie,C.S. (2015) SeqGL identifies context-dependent
binding signals in genome-wide regulatory element maps. PLoS
Comput. Biol., 11, e1004271.

98. Kulakovskiy,I.V., Boeva,V., Favorov,A.V. and Makeev,V. (2010)
Deep and wide digging for binding motifs in ChIP-Seq data.
Bioinformatics, 26, 2622–2623.

99. Kulakovskiy,I., Levitsky,V., Oshchepkov,D., Bryzgalov,L.,
Vorontsov,I. and Makeev,V. (2013) From binding motifs in
ChIP-Seq data to improved models of transcription factor binding
sites. J. Bioinformatics Computat. Biol., 11, 1340004.

100. McVean,G.A., Abecasis,G.R., Bentley,D.R., Chakravarti,A.,
Clark,A.G., Donnelly,P., Eichler,E.E., Flicek,P., Lunter,G.,
Marchini,J.L. et al. (2012) An integrated map of genetic variation
from 1,092 human genomes. Nature, 491, 56–65.

101. Lindblad-Toh,K., Garber,M., Zuk,O., Lin,M.F., Parker,B.J.,
Washietl,S., Kheradpour,P., Ernst,J., Jordan,G., Mauceli,E. et al.
(2011) A high-resolution map of human evolutionary constraint
using 29 mammals. Nature, 478, 476–482.

102. Ward,L.D. and Kellis,M. (2012) Evidence of abundant purifying
selection in humans for recently acquired regulatory functions.
Science, 337, 1675–1678.

103. Dowell,R.D. et al. (2010) Transcription factor binding variation in
the evolution of gene regulation. Trends Genet.: TIG, 26, 468.

104. Greenfield,A., Hafemeister,C. and Bonneau,R. (2013) Robust
data-driven incorporation of prior knowledge into the inference of
dynamic regulatory networks. Bioinformatics, 29, 1060–1067.


