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LETTER TO EDITOR

Forty-three key gene expressions involved in the effect of
indoleamine 2,3-dioxygenase 1 expression on cancer
prognosis may be a potential indoleamine 2,3-dioxygenase 1
inhibitor biomarker

Dear Editor,
Indoleamine 2,3-dioxygenase 1 (IDO1) inhibition has been
developed as a potential new tool in cancer immunother-
apy and some IDO1 inhibitors have been in clinical trials.1
However, the biomarker information of IDO1 inhibitors is
very few. Here, we searched for potential IDO1 inhibitors
biomarker by identifying molecular characteristic that can
predict the effect of IDO1 on cancer prognosis. We evalu-
ated the effect of IDO1 mRNA expression on prognosis in

F IGURE 1 Study flowchart. A total of 43 key genes influencing the association between IDO1 expression and prognosis were identified
based on 4405 patients in the discovery set and evaluated in 3479 and 3130 patients in the validation sets 1 and 2, respectively, from TCGA Pan-
Cancer dataset. Protective, IDO1 high expression correlates to good prognosis; Deleterious, IDO1 high expression correlates to poor prognosis;
Neutral, IDO1 expression does not correlate to the prognosis; TCGA, The Cancer Genome Atlas; KEGG, Kyoto Encyclopedia of Genes and
Genomes
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33 diverse cancer types, identified 43 key genes involved
in the effect, and defined the weighted average of all the
43 key gene expressions as 43-gene score to reflect the
integrated role of 43 key gene expressions in the relation-
ship between IDO1 expression and cancer prognosis. We
mined the potential regulator of 43 key genes and explored
its impacts on regulating the expressions of 43 key genes
and enhancing the therapeutic efficacy of IDO1 inhibitor
(Figure 1).
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F IGURE 2 Candidate genes according to expression features and biological functions and the performance of key genes in predicting the
effect of IDO1 on prognosis. A, The scatterplot of module membership against intramodular connectivity of genes in the turquoise, magenta,
green and blue modules from WGCNA. The module membership (MM) of gene is defined as the correlation of expression profile and each
module eigengene. The intramodular connectivity of gene measures how connected, or co-expressed, a given gene is with respect to the genes
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Specifically, we used Kaplan-Meier method and Cox
proportional hazards (CoxPH) regression model to com-
pare the overall survival (OS) and progression-free inter-
val (PFI) of patients with high and low IDO1 expressions2,3
(Table S1) and evaluated the effects of IDO1 expression
on prognosis in 33 diverse cancer types from The Can-
cer Genome Atlas (TCGA) (Figure S1). These types of
cancer were then classified into IDO1 protective category,
in which IDO1 has beneficial effects on prognosis, IDO1
deleterious category, in which IDO1 has disadvantageous
effects on prognosis, and IDO1 neutral category, in which
IDO1 has no effects on prognosis (see Table S2 for more
details). From the discovery set, which is a random par-
tition of patients of protective and deleterious categories,
computational tools such as the detection of differentially
expressed genes (DEGs),4 weighted gene co-expression
network analysis (WGCNA)5 (Figure 2A; Figures S2-S6),
gene set enrichment analysis (GSEA)6 (Figure 2B,C) and
protein-protein interaction network (PPIN) analysis7 (Fig-
ure 2D) were employed to obtain five candidate gene sets.
Totally, 540 candidate genes associated with the effects of
IDO1 expression on prognosis were collected and shown
in Table S3. Based on a random-forest variable importance
measure, these genes were further refined to 43 key genes
(Table S4) and 43-gene score. The 43-gene scores were sig-
nificantly lower in IDO1 deleterious category than that in
IDO1 protective category (Figure 2E). The effects of IDO1
on prognosis were more significant in two subgroups sep-
arated by the median of 43-gene scores than that in the
whole discovery set (Figure 2F). We also got the similar
observation in the validation set 1 (Figure 2G). For the

patients in the discovery set and the validation set 1, 43-
gene score showed superior prediction power, especially
over the patient category (Figure 2H). Within our expec-
tation, the performance of 43-gene score was not strong
in the validation set 2, in which all the patients are of the
IDO1 neutral category (Figure S7). Even so, we observed
that some key genes, such as glial fibrillary acidic protein
(GFAP) andX-Cmotif chemokine ligand 1 (XCL1), still per-
formed well in the validation set 2 (Figure 2I). All of these
illustrated that 43-gene score is a better biomarker than the
patient category regarding the efficacy of IDO1 inhibitors
and may also reflect the immune landscape in tumor.
We further found that the tumor immune subtype was

distributed differently among patients of IDO1 protective,
deleterious, and neutral categories (Figure S3). IDO1 had
a beneficial effect on prognosis in patients with tumor
immune subtype C1 (Wound Healing) or C2 (IFN-gamma
Dominant), a disadvantageous effect in patients with C3
(Inflammatory) or C5 (Immunologically Quiet) (Figure
S4). We identified four co-expression modules that were
associated with tumor immune subtype and patient cat-
egory based on their respective correlations with mod-
ule eigengenes of modules (Figure S5). The correlations
between gene significance (GS) and module membership
(MM) in the four modules were illustrated in Figure S6,
which confirmed that the larger the MM of a gene was,
the stronger the correlation between the gene and immune
subtype or patient category was. Tumors with C1 or C2
have the highest proportion of tumor infiltrating lympho-
cytes and tumors with C3 or C5 have the opposite.8 It can
be concluded that IDO1 inhibitors are applicable for the

of a particular module. Candidate genes were highlighted in red. B,C, The upset plots showing the overlapping of leading edge genes among
top 10 enriched GO terms and KEGG pathways from GSEA. Unconnected dots are leading edge genes with only one enriched GO term or
KEGG pathway. Connected dots indicate leading edge genes shared by two or more enriched GO terms and KEGG pathways. The vertical
histogram shows the number of overlapping leading edge genes. D, Protein–protein interaction network of DEGs with |log2(FC)| > 1.5. The
nodes represent proteins coded by DEGs with |log2(FC)| > 1.5. The edges represent interactions between proteins. Interactions were retrieved
from STRING online database. Interactions with scores greater than 0.9 were retained. Proteins encoded by candidate genes were highlighted
in red. E, Distribution of 43-gene scores of IDO1 deleterious category patients (pink) versus that of IDO1 protective category patients (blue)
in the discovery set. The P-value was calculated by Mann-Whitney U test. F,G, Kaplan-Meier curves of the progression-free interval stratified
by low (in blue) and high (in red) expression of IDO1 for the patients in the discovery set (top) and validation set 1 (top), and further their
subgroups of low (bottom left) or high (bottom right) 43-gene score, respectively. The median of 43-gene scores was set as the cutoff value
for determining whether a patient has a high or low 43 gene score. The p-values were calculated by the log-rank test. The C-indexes in terms
of high or low IDO1 expression for the discovery set and validation set 1 are 0.519 and 0.527, respectively. When each of these two sets are
partitioned into two subsets according to high or low 43-gene scores, the C-indexes increase to 0.623 and 0.571 for discovery set, and 0.607 and
0.580 for validation set 1, respectively. H, The ranking of the hazard ratios of each of the 43 key gene expressions (in grey), 43-gene score (in red),
and patient category (in blue) in the discovery set (upper) and validation set 1 (bottom), respectively. Clinical endpoint is the progression-free
interval. I, Kaplan-Meier curves of the progression-free interval stratified by low (in blue) and high (in red) expression of IDO1 for the patients
in the validation set 2 (middle). Further, Kaplan-Meier curves for patients with high (upper left) and low (bottom left) GFAP expression, and
for patients with high (upper right) or low (bottom right) XCL1 expression. The median of GFAP or XCL1 expression was set as the cutoff
value. P-values were calculated by log-rank test. WGCNA, weighted gene co-expression network analysis; GO, Gene Ontology; KEGG, Kyoto
Encyclopedia of Genes and Genomes; GSEA: gene set enrichment analysis; DEGs, differentially expressed genes; FC, fold change. STRING,
Search Tool for the Retrieval of Interacting Genes/Proteins



4 of 6 LETTER TO EDITOR

F IGURE 3 Gefitinib, an EGFR inhibitor being a potential regulator of the expressions of 43 key genes, enhanced the anti-tumor effect
of IDO1 inhibitor in vivo. A, Volcano plot showing the coefficients and p-values from the hierarchical logistic regression model fitting IC50 of
251 drugs and 43-gene scores of 983 cell lines. Each point is an indicator of drug and the significance level was 0.01. The coefficient reflects
the change of drug sensitivity with 43-gene score in a cell line. The positive coefficient indicates that cell lines with higher 43-gene scores
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patients with C3 or C5 because IDO1 has a disadvanta-
geous effect on their prognoses. We also found that tumor
immune subtype’s distributions were significantly differ-
ent in patients with high and low GFAP or XCL1 expres-
sions and in patients with high and low 43-gene scores
(Figure S8). These suggest thatGFAP and XCL1may be the
more important ones among the 43 key genes.
We sought to find the potential regulator of the expres-

sions of 43 key genes using the Genomics of Drug Sensitiv-
ity in Cancer database. As IDO1 high expression correlates
to good prognosis in patients with high 43-gene scores, a
hierarchical logistic regression model was employed to fit
the efficacy measures of 251 drugs across 983 human cell
lines, and further to identify drugs more sensitive to that
cell lines with higher 43-gene scores. As a result, EGFR
inhibitor gefitinib was mined (Figure 3A-E). Using LLC
cells and LLC tumor-bearing mouse model,9 the effect
of gefitinib in regulating expressions of key genes (Fig-
ure 3F,I) and enhancing the therapeutic efficacy of IDO1
inhibitor (INCB024360, L-1-MT, and RY103) were explored
(Figures 3G,H,J), which supports the possibility of key
gene expressions as a biomarker for IDO1 inhibitors. To
exhibit the stability of our procedure for obtaining key
genes, we randomly partitioned the patients in either the
IDO1 protective or deleterious category into a new discov-
ery set and a new validation set 1, and then repeated the
same steps and finally got the similar results (see details in
Tables S5 and S6 and Figure S9.
Our study provides a possible strategy for the screen-

ing of IDO1 inhibitor biomarker and suggests a new thera-
peutic strategy to enhance the therapeutic efficacy of IDO1
inhibitors.
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were more sensitive to this drug. B-D, The scatterplots of ln(IC50) of gefitinib (B), afatinib (C), cetuximab (D) against 43-gene score with 95%
confidence ellipse, Pearson correlation coefficient, and its corresponding P-value. E, Protein–protein interaction network of EGFR and 43 key
genes. The interactions were retrieved from STRING online database and shown as edges when the scores are greater than 0.4. Protein with
no edges connected with other proteins were hidden. The proteins interacting with EGFR were marked in pink. F, qPCR detection of changes
in the mRNA expression of Gfap in LLC cells due to the treatment of gefitinib (100 nM, 96 h). Control group received equal amount of DMSO
for dissolving gefitinib. Results are representative of at least three independent experiments. G, In vivo study design. H, Weight of tumors in
mice at the time of sacrifice from each of nine groups. I, qPCR detection for mRNA expression of Gfap in tumors from control and gefitinib
administrated mice. J, Concentration of Trp (left) and Kyn (middle) and their ratio Kyn/Trp (right) in serum from each group by HPLC. Data
are represented as mean ± SEM. Control: n = 5; INCB024360: n = 5; Gefitinib: n = 5; L-1-MT: n = 6; Gefitinib plus L-1-MT: n = 6; Gefitinib
followed by L-1-MT: n = 6; RY103: n = 6; Gefitinib plus RY103: n = 5; Gefitinib followed by RY103: n = 6. P-values were calculated by Student’s
t-test or one-way ANOVA followed by Dunnett’s test. *.01 < P-value < .05, ** .001 < P-value < .01, *** P-value < .001
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