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Novel brain PET imaging agents:
Strategies for imaging
neuroinflammation in
Alzheimer’s disease and mild
cognitive impairment

Jie Huang*

The First People’s Hospital of Linping District, Linping, China
Alzheimer’s disease (AD) is a devastating neurodegenerative disease with a

concealed onset and continuous deterioration. Mild cognitive impairment

(MCI) is the prodromal stage of AD. Molecule-based imaging with positron

emission tomography (PET) is critical in tracking pathophysiological changes

among AD and MCI patients. PET with novel targets is a promising approach for

diagnostic imaging, particularly in AD patients. Our present review overviews

the current status and applications of in vivo molecular imaging toward

neuroinflammation. Although radiotracers can remarkably diagnose AD and

MCI patients, a variety of limitations prevent the recommendation of a single

technique. Recent studies examining neuroinflammation PET imaging suggest

an alternative approach to evaluate disease progression. This review concludes

that PET imaging towards neuroinflammation is considered a promising

approach to deciphering the enigma of the pathophysiological process of AD

and MCI.

KEYWORDS

Alzheimer’s disease, positron emission tomography, neuroinflammation, mild
cognitive impairment, review
1 Introduction

Alzheimer’s disease (AD) is a neurodegenerative disease with a concealed onset and

continuous progress. It is a severe risk factor that is threatening the health and life of elderly

individuals (1, 2). AD is known to accumulate two different insoluble protein aggregates.

During the prodromal phase of AD, also called mild cognitive impairment (MCI), patients

have a receding performance of cognitive domains (3). The neuropathological biomarkers for

AD andMCI are b-amyloid (Ab) plaques and intracellular tau neurofibrillary tangles (NFTs)
(4, 5). Ab cascade hypothesis is one of the dominant hypotheses of AD pathogenesis (6). It
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refers to the Ab patch as the initial factor causing excessive

phosphorylation of tau protein, microglial activation,

neurotransmitter disorders, oxidative stress, and neuro-

pathological changes (7). However, AD pathological changes may

have been maintained for decades before symptoms occur. When

the exact diagnosis has been made with the above approaches,

patients may present with irreversible nervous system damages.

Therefore, developing an early, non-invasive, and accurate

diagnostic method could be a research hotspot.

The central nervous system (CNS) degeneration and disease

neuropathology predate AD and MCI (8). One dominant theory

indicates that the excess generation or disordered clearance of

Ab is the dominant event that initiates AD pathogenesis.

However, about 30% of healthy individuals with Ab deposition

are without clinical symptoms. Nevertheless, most clinical

studies revealed that high Ab levels are associated with the

severity of cognitive impairment. The hyperphosphorylated tau-

based NFT pathology is positively associated with the severity of

cognitive symptoms (9). However, anti-amyloid interventions

have been reported to depict limited effects in clinical trials.

Because of poor understanding of the pathogenesis, the clinical

diagnosis of AD mainly depends on detailed medical history,

imaging, and neuropsychological scale assessment. Therefore,

besides the traditional biomarkers of AD pathology, more targets

require further investigation in exploring AD.

Positron emission tomography (PET) is a neuroimaging

approach to evaluate the molecular processes in the brain,

effective and accurate for diagnostic purposes, clinical strategy

planning, and assessing disease progression (10, 11). PET

radioligands can bind to responding targets, including

receptors, transporters, or enzymes. Furthermore, tracer

binding or uptake degrees can serve as a quantitative

neuropathology approach. With the advance of PET

technology, targeted molecular probes toward Ab deposition,

tau protein, and neuroinflammation have been extensively

developed and utilized in the clinical management of AD. PET

biomarkers have also been recommended to ameliorate

diagnostic accuracy for AD and MCI, including cerebral

metabolism or Ab deposition on amyloid PET (12). However,

the rate of cerebral metabolism cannot explicitly elucidate

potential neuropathology. Although measurement of amyloid

and neuroinflammation through PET tracers provides excellent

insight into the underlying process of AD andMCI, the latter has

not been implemented in clinical practice. The present review

describes the associated trials of PET imaging targeting

neuroinflammation within AD and MCI.
2 AD and neuroinflammation

Currently, neuroinflammation in AD has been well

illustrated (13). In the initial phase of neuroinflammation,

immune cells aim to ameliorate neuronal injury. However,
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abnormal inflammatory responses involving prolonged

microglial activation presented adverse effects and

exacerbated neurodegenerat ion (14) . According to

histopathological studies, activated microglia localize to Ab
plaques and NFTs, which attached significant attention to the

role of neuroinflammation in the AD process (15). Microglia

are dominant immune cells in the central nervous system

(CNS), essential in maintaining hemostasis and secreting

inflammatory factors (16, 17). Under the hemostatic

condition, microglia present M1-like status, while under

pathological conditions, they convert to an M2 state (18).

M1 microglia are pro-inflammatory and produce reactive

oxygen species (ROS) to remove the foreign substance and

trigger neuroinflammation, while M2 microglia present an

anti-inflammatory function to protect the neurons.

Additionally, reactive astrocyte is also a critical member of

neuroinflammation, which precipitates both Ab and tau and

is closely linked to microgliosis (19, 20). Astrocytes can be

classified into A1 and A2 subtypes based on their phenotype

and genetic expression profiles (21). A1 astrocyte secretes and

produces various inflammatory factors and neurotoxins,

whereas A2 astrocyte produces neurotrophic substances

(22, 23).

Neuroinflammation is considered to have an essential role in

AD. It has been demonstrated that the persistent accumulation

of Ab levels in AD patients leads to activated neuroinflammation

and elevated ROS, which induces cell death through apoptosis

(7). Moreover, neuroinflammation initiated by infection has

been revealed to exacerbate the tau pathological process in

transgenic rodent AD models. Because elderly individuals are

more prone to infections, the elevated Ab burden with activated

neuroinflammatory insult may accelerate the progression of

neurodegeneration in patients at risk for AD (24). According

to the above discussion, it is urgent to make international efforts

to develop novel radiotracers for imaging neuroinflammation in

AD patients with PET. Therefore, the following sections will

briefly review the different strategies within advanced PET

radiotracers targeting the potential molecules in the

neuroinflammation process.
3 Application of PET imaging agents
for neuroinflammation

The AD-associated neuroinflammatory biomarkers are divided

into (1) enzymes or signal molecules, including 18-kDa transporters

(TSPO), monoamine oxidase B (MAO-B), imidazoline binding sites

I2 (I2BS), epoxidation enzyme, and arachidonic acid (AA); (2) G

protein-coupled receptors, including purine P2X7 and P2Y

receptors, and type 2 cannabinoid receptors (CB2R). Therefore,

the corresponding PET tracers are developed and will be

summarized in the following section.
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3.1 TSPO PET radiotracer

It is reported that TSPO presents a variety of cellular functions,

including cholesterol transport, inflammatory responses, and

hormone synthesis. However, its exact role in the brain immune

reaction is not fully understood. Under the hemostatic condition,

the expression of TSPO maintains a low level in microglia within

CNS, while after neuroinflammation, abnormal activation of

microglia is associated with a high level of TSPO. Furthermore,

upregulation of TSPO and activation of microglia colocalize

spatially after a neurotoxic intervention was established through

immunohistochemistry staining, suggesting that TSPO can detect

activated microglia and can be a novel approach to measure

neuroinflammation. Therefore, combining imaging agents with

TSPO can serve as microglia activation and neuroinflammation

biomarkers. 11C-PK11195 presents a high affinity to TSPO, the first

classical probe used for PET neuroinflammation imaging.

Accumulative evidence of PET images revealed that the region of

the cingulate, temporoparietal cortex, and amygdala in patients with

AD presented a high level of 11C-PK11195 absorption compared to

healthy individuals. However, the low sensitivity, low bioavailability,

high rate of nonspecific binding, and short half-life defects limited

the application of 11C-PK11195 in patients with AD (25–27).

Therefore, the second- and third-generation imaging agents,

including the 11C-DPA713, 18F-DPA714, 18F-GE180, and 11C-

ER176, exert higher affinity, and brain uptake rate can detect TSPO

in neuroinflammation in low expression.

3.1.1 First generation of TSPO PET radiotracers:
11C-PK11195

The dominant first generation of TSPO PET radiotracers

was the 11C-PK11195, which is accompanied by either the

racemic mixture or the active R-enantiomer. It has been

considered the most widely used radiotracer for PET imaging

in brain tissue. However, due to the intrinsic properties of the

compound and complexity of carbon-11 radiolabeling within a

short period of 20 min, the development of this technique for

exploring neuroinflammation was impeded. Due to the poor

blood–brain barrier (BBB) penetration and low brain uptake,
11C-PK11195 presents a poor signal-to-noise ratio. Moreover,
11C-PK11195 has various shortcomings, including low

bioavailability and nonspecific binding, which limit its ability

to determine subtle changes in TSPO expression in brain tissues

(25, 27, 28). Therefore, the above difficulties challenge its

application in clinical management and require further

development of novel TSPO PET radiotracers.

3.1.2 Second generation of TSPO PET
radiotracers

A wide range of second-generat ion TSPO PET

radiotracers have emerged, which present a higher affinity

to TSPO and better characteristics. Several radiotracers have
Frontiers in Immunology 03
already been widely used in patients, especially in AD.

According to a previous study, 11C-PBR28 presents a higher

specific signal towards microglial activity than 11C-PK11195

(29). Additionally, 11C-DPA-713 showed better sensitivity in

the healthy brain than 11C-PK11195 in measuring increased

TSPO expression in the brain (30). Moreover, 11C-DPA-713

determined increased TSPO density in widespread brain

regions in AD patients than 11C-PK11195 (31). The

evaluations of TSPO radioligands, including 11C-DPA-713,
18F-DPA-714, and 11C-PK11195, have been compared in

acute neuroinflammation rat models (32). The results

indicated that 18F-DPA-714 had the highest ipsilateral-to-

contralateral uptake ratio and had a better binding potential

than 11C-DPA-713 and 11C-PK11195 (31). Moreover, the

ligand 11C-DAA1106 has demonstrated a higher affinity

than 11C-PK11195 to activate microglia in various

neurological disorders (33, 34). The development of novel

molecules with higher affinity, greater bioavailability, and the

possibility of radiolabel with 18F facilitates the easier

development of inflammation imaging. Currently, a couple

of radioligands labeled with 18F have also been established.

Among these, 18F-FEDAA1106 presents a higher affinity to

TSPO than DAA1106. Accumulated evidence has revealed the

higher brain uptake of 18F-FEDAA1106 than 11C-PK11195 or
11C-DAA1106 (35). Moreover, 18F-FEMPA could be a

suitable PET radiotracer for TSPO (36). It has been

described that 18F-FEPPA is associated with higher affinity

towards TSPO, higher brain penetration, and better

pharmacokinetics than the first generation of TSPO PET

radiotracers (37).
3.1.3 Third generation of TSPO PET
radiotracers

A wide range of third-generation TSPO tracers, including 18F-

GE-180 (R, S)-18F-GE-387, 11C-ER176, 11C-CB184, 11C-CB190,
11C-N′-MPB, and 18F-LW223, have been well established. A

couple of clinical trials have compared the binding properties,

brain uptake, and performance of TSPO radiotracers. The

measurement of microglial activation through 18F-GE-180 was

more sensitive than that by 18F-PBR06. A wide range of studies

have reported on the value of 18F-GE-180 in assessing microglial

activity in different rodent models. Furthermore, rising levels of 18F-

GE-180 uptake indicate elevated microglial activation in patients

with AD, semantic dementia, and MCI. However, another study on

mouse stroke models suggested that 11C-DPA-713 PET presented

higher accuracy and sensitivity on microglial activation

measurement than 18F-GE-180. Moreover, a more favorable brain

entrance property of 11C-PBR28 has also been reported compared

to 18F-GE-180. 11C-ER176 has been revealed with a higher binding

affinity than 11C-PK11195, 11C-PBR28, and 11C-DPA-71. A clinical

trial of 11C-ER176 PET for accessing microglia activation in MCI

and AD patients is still ongoing (NCT03744312).
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Based on the evidence, the dominant concern for TSPO ligands

is the cellular location of the signal. The different binding sites on

glial and vascular TSPO have been reported for several TSPO

ligands. The high-glial-TSPO-selectivity and polymorphism-

sensitive ligand 18F-FEBMP has been developed. It presented a

higher contrast to neuroinflammation than 11C-PK11195 in the

PS19 tauopathy mouse model. Further studies assessing the binding

selectivity to TSPO polymorphism among different generations of

TSPO radiotracers are highly required.
3.2 TSPO PET imaging of
neuroinflammation in AD

The following section will summarize the clinical effects

secured from the clinical trials of PET imaging toward

neuroinflammation among AD and MCI patients. An in-depth

understanding of the underlying mechanisms of AD

neuroinflammation will lead to novel therapeutic approaches

to monitor disease progression using TSPO PET imaging.

3.2.1 First generation of TSPO PET imaging
in AD

The radiotracer has been examined in accumulative studies

involving AD and MCI patients (Table 1). The first clinical trial

focusing on 11C-PK11195 failed to detect TSPO binding related

to microglial activation in patients with mild to moderate

dementia (51). Another AD study also reported a similar

result, which suggested that microglial activation presented in

later stages of AD or 11C-PK11195 is insensitive in mild to

moderate AD (40). A recent study reveals only a small cluster of

significantly elevated 11C-PK11195 binding in occipital lobes in

AD dementia patients without any difference between clinically

stable prodromal AD patients and those who progressed to

dementia (43). The rising 11C-PK11195 brain uptake among AD

patients was observed in two studies: (1) higher uptake was

found in the frontal and right mesotemporal regions using

SPECT (52); (2) higher uptake was seen in the frontal,

temporal, occipital, and striatum using PET (39). Additionally,

elevated regional 11C-PK11195 binding is observed in the

entorhinal, temporoparietal, and cingulate cortex in patients

having mild and early AD. The results were consistent with

another study showing increased 11C-PK11195 signals (38, 53)

Moreover, two other longitudinal studies provided the

course of neuroinflammation in AD via 11C-PK11195. The

first study revealed an increase in radiotracer signals in AD

patients (44). On the contrary, another longitudinal study

illustrated the evolution of 11C-PK11195 in eight MCI

patients, four of whom revealed negative amyloid imaging. In

contrast, a longitudinal reduction of microglial activation was

observed in this population (47). The small sample sizes,

different methods, and first-generation TSPO radiotracer limits

could elaborate on these contradictory results.
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3.2.2 Second generation of TSPO PET imaging
in AD

The shortcomings of the second generation of TSPO

radiotracers were improved with the development of

advanced-generation TSPO ligands with an enhanced signal-

to-noise ratio and higher binding affinity compared to 11C-

PK11195 (54). Several studies assessed neuroinflammation with

the measurement of radiotracer retention in AD patients

through these advanced ligands (Table 2). This section will

summarize the second-generation TSPO radiotracers widely

used in AD or MCI. Elevated region-specific TSPO binding

signals in a wide range of cortical areas are more illustrated in

patients with AD than in normal individuals. The temporal

pattern of neuroinflammation over the course of AD has also

been well-characterized through longitudinal investigations (55,

60, 62). The role of neuroinflammation is revealed by a large

longitudinal study with the administration of 18F-DPA-714 (60,

61). Participants with MCI and higher initial TSPO binding

indicate a slower rate of decline due to dementia than those with

lower initial TSPO binding. Combined with the other 11C-

PK11195 studies, the proposal of a dual peak hypothesis of

neuroinflammation in AD has been well-established (47). The

hypothesis illustrated that neuroinflammation in the early phase

of MCI patients is protective and beneficial to Ab removal, while

activated neuroinflammation in the later phase is detrimental.

Notably, the results from TSPO imaging studies could reflect

different PET signals to explore the association between TSPO

expression and clinical outcomes. Similar to 11C-PK11195,

enhanced TSPO signals are related to impairments in

cognition and memory, visuospatial and language ability,

executive functioning, dementia severity, and brain atrophy.

Further research and clinical trials are urgently required when

illustrating regional uptake patterns of TSPO ligands in MCI.

Some studies indicated that striking patterns of high cortical

tracer retention, especially in the temporal lobe, have been

observed compared to healthy controls (47, 63, 65).

Nevertheless, it is necessary to understand the limitation of

second-generation TSPO radiotracers, particularly sensitivity to

the single-nucleotide polymorphism (SNP) of the TSPO gene.

Genetic variation in the SNP rs6917 leads to different binding

patterns in TSPO. Therefore, it is critical to evaluate these

genetic polymorphisms when examining data from these

radiotracers and exclude low-affinity binders (54, 67).

Consequently, the advantage of 11C-PK11195 can be

emphasized without any influence of TSPO polymorphism.
3.3 Other radiotracers targeting
neuroinflammation

It is imperative to develop other novel and effective imaging

radiotracers to measure neuroinflammation with higher specificity

and affinity since TSPO is not specifically located in microglia.
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Therefore, promising targets should present precise localization in

neuroinflammation and particular ligands to enable imaging

measurement (68–71). Further work is required to explore novel

targets for the activated microglia and their ability to phagocytose

Ab. Transcriptional profiling of human microglia in plaque-

associated and parenchymal tissues could decipher changes in

whole tissue RNA, leading to novel targets identified and

prioritized for further investigation (72). In the following section,

we summarized the other neuroinflammation-targeted ligands for

imaging neuroinflammation.
Frontiers in Immunology 05
3.3.1 CSF1R PET imaging
Colony-stimulating factor 1 receptor (CSF1R) is dominantly

expressed in the microglia, macrophages/monocytes, and

dendritic cells in the brain parenchyma. CSF1R presents an

essential role in microglia growth, proliferation, and survival.

Previous studies have determined that the growth factors of

colony stimulating factor-1 (GCSF1) and interleukin-34 (IL-34)

are endogenous ligands toward CSF1R (73). It has also been

demonstrated that the upregulation of CSF1R is responsible for

injury and AD-related neuropathology (74, 75). Due to the role
TABLE 1 Studies examining regional brain uptake via first-generation TSPO tracers in AD and MCI.

Radiotracer Included
individuals

Conclusion Year Author

11C-PK11195 8 AD patients
and 15 normal
individuals

Elevated levels of radiotracer level were observed in brain areas in AD patients. Uptake in the left inferior
temporal lobe differentiated AD patients with a sensitivity of 75%.

2001 Cagnin (38)

11C-PK11195 13 AD patients
and 10 normal
individuals

Areas in frontal temporal, parietal, and occipital association cortex showed increased radiotracer uptake in
AD patients than controls.

2008 Edison (39)

11C-PK11195 6 AD patients, 6
MCI patients,
and 5 normal
individuals

No statistic difference in TSPO binding was observed when comparing the AD with controls in any brain
region.

2009 Wileey (40)

11C-PK11195 14 MCI patients
and 10 normal
individuals

Frontal cortical regions presented higher TSPO binding in MCI patients compared to controls. 2009 Okello (41)

11C-PK11195 11 AD patients
and 10 normal
individuals

Higher 11C-PK11195 retention was observed in medial frontal, parietal, and left temporal cortical areas in AD
patients compared to controls. Additionally, uptake in the left anterior cingulate, left precuneus, left
hippocampus, and left medial frontal cortex presented negative relationship with cognitive performance.

2011 Yokokura
(42)

11C-PK11195 19 AD patients,
10 MCI patients,
and 21 normal
individuals

The bilateral occipital cortex is the only brain region assessed with a statistical difference between AD patients
and controls, while no such differences were found when comparing MCI patients to controls.

2013 Schuitmaker
(43)

11C-PK11195 8 AD patients
and 14 normal
individuals

Increased microglial tracer uptake in frontal, parietal, occipital, temporal cortical areas, and striatum and
hippocampus was observed in AD patients compared to controls.

2015 Fan (44)

11C-PK11195 10 AD patients,
10 MCI patients,
and 16 normal
individuals

Cortical retention of 11C-PK11195 in the occipital lobe, temporal lobe, hippocampus, parahippocampus,
temporal, and precentral and postcentral gyrus was higher in AD patients compared to controls. Additionally,
temporal, frontal, orbital, straight, parietal gyrus, insula, putamen, and occipital lobe presented higher 11C-
PK11195 retention in MCI compared to controls.

2015 Fan (45)

11C-PK11195 8 AD patients
and 8 normal
individuals

11C-PK11195 uptake in the areas of medial temporal regions and the hippocampus in AD was negatively
related to hippocampal volume.

2016 Femminella
(46)

11C-PK11195 8 AD patients, 8
MCI patients,
and 14 normal
individuals

MCI patients showed reductions in 11C-PK11195 uptake in the region of temporal, occipital, parietal,
cingulate cortex, and the hippocampus after 14 months, while AD patients showed an increase in microglial
activation than controls.

2017 Fan (47)

11C-PK11195 42 MCI patients
and 10 normal
individuals

In amyloid positive MCI subjects, TSPO binding was elevated in frontal, parietal, and lateral temporal regions
compared to controls. Moreover, positive correlation was observed between the results of 11C-PK11195 and
11C-PiB in frontal, temporal, and parietal brain areas.

2017 Parbo (48)

11C-PK11195 16 AD and MCI
patients, and 13
normal
individuals

Areas within the occipital, parietal, temporal cortex, and medial temporal regions showed increased
radiotracer uptake in the AD and MCI combined group compared to controls.

2018 Passamonti
(49)

11C-PK11195 6 AD patients, 20
MCI patients,
and 20 normal
individuals

In the areas of frontal, posterior cingulate, parahippocampal, lateral and posterior temporal cortex, precuneus,
and hippocampus, increased TSPO binding was observed in MCI patients compared to controls.

2018 Parbo (50)
fro
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of CSF1R, a novel CSF1R-targeting radiotracer 11C-CPPC was

developed. In animal acute inflammation models, the

encephalomyelitis model of multiple sclerosis, and APPsi with

cerebral Ab pathology, increased microglial levels of CSF1R have

been captured through this radiotracer (76). Moreover, a recent

study compared novel CSF1R tracers 11C-GW2580 with 11C-

CPPC in detecting both acute inflammation induced by LPS

injection and chronic inflammation in APP knockin mice. The

results revealed that 11C-GW2580 signal changes in CSF1R

showed higher sensitivity than 11C-CPPC, associated with

increased TSPO pattern in the brain (77).

3.3.2 COX1 and COX2 PET imaging
Cyclooxygenase (COX) plays an essential role in the

generat ion of prostaglandin H2, the substrate for

prostaglandins and thromboxanes. There are two isoforms of

COX, COX-1 and COX-2, determined to present a critical role in
Frontiers in Immunology 06
neuroinflammation and links to various neurodegenerative

diseases, especially AD. According to the results of

immunochemical evidence, COX-1 and COX-2 are located in

both microglia and neuron in the CNS (78). Various radiotracers

for COX-1 and COX-2 have been well established, such as 18F-

TMI, 18F-triacoxib, 11C-rofecoxib, 11C-KTP-Me, 11C-PS13, and
11C-MC1 (79–86). A few studies demonstrated that 11C-KTP-

Me harbors a greater BBB entrance and selective sensitivity

towards COX-1 (80, 86). Moreover, clinical trials with 11C-KTP-

Me revealed an elevated brain signal in AD patients compared to

normal individuals. 11C-KTP-Me accumulation can be seen in

activated microglia surrounding Ab plaques within the frontal

cortex and hippocampus. Similar in vivo studies can also be

observed in APPswe (Tg2576) mice compared to wild-type mice

(80, 81). Additionally, previous studies illustrated that both 11C-

PS1 (COX-1 PET imaging) and 11C-MC1 (COX-2 PET imaging)

radiotracers showed specific detection patterns after LPS-
TABLE 2 Studies examining regional brain uptake via advanced TSPO tracers in AD and MCI.

Radiotracer Included individuals Conclusion Year Author

11C-PBR28 19 AD patients, 10
MCI patients, and 13
normal individuals

Areas of prefrontal, inferior parietal, temporal, precuneus, posterior cingulate, occipital, hippocampus, and
entorhinal cortex presented higher 11C-PBR28 binding in AD patients compared to controls, while no such
difference was observed in MCI patients.

2013 Kreisl (55)

11C-PBR28 25 AD patients, 11
MCI patients, and 21
normal individuals

Areas of temporal and parietal brain presented higher 11C-PBR28 uptake in AD patients compared to
controls, while no such difference was observed in MCI patients.

2015 Lyoo (56)

11C-PBR28 14 AD patients and 8
normal individuals

Areas of inferior parietal lobule, occipital cortex, precuneus, entorhinal cortex, hippocampus, inferior, and
middle temporal cortex presented higher 11C-PBR28 binding in AD patients compared to controls. Annual
increase in radiotracer binding was also observed in AD patients.

2016 Kreisl (57)

11C-PBR28 13 MCI patients and 9
normal individuals

Higher radiotracer uptake in the temporal lobe, post-cingulate cortex, thalamus, medial temporal lobe,
hippocampus, amygdala, and cerebellum can be observed in MCI patients than controls.

2018 Fan (58)

11C-PBR28 16 AD patients, 16
MCI patients, and 19
normal individuals

Positive correlations were found between 1C-PBR28 and amyloid retention on 18F-flutemetamol and tau
aggregation measured by18F-AV-1451.

2018 Dani (59)

11C-DPA-
713; 11C-
PK11195

17 AD patients and 22
normal individuals

11C-DPA-713 presented higher accuracy in TSPO binding than 11C-PK11195 in AD patients, and
demonstrated an inverse relationship with cognition.

2017 Yokoura
(31)

18F-DPA-
714

64 AD patients and 32
normal individuals

Areas of precuneus, parietal, temporal cortex, and medium and posterior cingulate presented higher 18F-
DPA-714 uptake in AD patients compared to controls.

2016 Hamelin
(60)

18F-DPA-
714

52 AD patients and 17
normal individuals

Areas of temporal and parietal brain presented higher tracer retention in AD patients relative to controls.
Annual increases of 13.2% were observed for AD patients.

2018 Hamelin
(61)

11C-
DAA1106

10 AD patients and 10
normal individuals

Areas of cerebellum, prefrontal cortex, parietal cortex, temporal cortex, occipital cortex, anterior cingulate
cortex, and striatum presented higher 11C-DAA1106 binding in AD patients compared to controls.

2008 Yasuno (62)

11C-
DAA1106

10 AD patients, 7 MCI
patients, and 10
normal individuals

Areas of striatum, lateral temporal, parietal, and anterior cingulate cortex presented increased 11C-DAA1106
binding in AD patients compared to controls.

2012 Yasuno (63)

18F-FEPPA 21 AD patients and 21
normal individuals

Areas of temporal, frontal, parietal, and occipital cortical regions, and the hippocampus presented increased
18F-FEPPA retention in AD patients compared to controls.

2015 Suridjan
(64)

18F-FEPPA 11 MCI patients and
14 normal individuals

A positive correlation between 18F-FEPPA binding and 11C-PiB can be observed in aMCI in the
hippocampus.

2017 Knezevic
(65)

18F-
FEMPA

10 AD patients and 7
normal individuals

Areas of medial temporal, lateral temporal, and posterior cingulate cortex, putamen, caudate, thalamus, and
cerebellums presented increased 18F-FEMPA uptake in AD patients compared to controls.

2015 Varrone
(36)

18F-GE-180 6 AD patients and 7
normal individuals

Cerebellum is a suitable pseudo-reference region for PET imaging of AD by 18F-GE-180. No significant
increases in 18F-GE-180 binding in the frontoparietal VOIs of patients with AD when compared to the
healthy controls.

2021 Vettermann
(66)
fro
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induced neuroinflammation in monkey brain and human

inflammatory tissues (82, 83).
3.3.3 P2X7R and P2Y12R PET imaging
The upregulated levels of the purinergic P2X7 receptor

(P2X7R) can activate neuroinflammation, especially in M1

microglia. P2X7R had various biological functions, including

inflammasome activation, cytokine secretion, T lymphocyte

differentiation, and cell death (87). Microglia monitors

through P2Y12R-dependent junctions are associated with

mitochondrial activity in neurons (88). Brain injuries altered

somatic junctions that induced P2Y12R-dependent

neuroprotective effects through calcium load and functional

connec t i v i t y in neurons (89 , 90 ) . Bas ed on the

immunohistochemical staining results, levels of P2Y12R were

decreased in the brains of AD patients (91). Accumulative

evidence has revealed that various P2X7R-targeting

radiotracers have been developed currently, such as 11C-

GSK1482160, 11C-JNJ-47965567, 18F-JNJ-64413739, 11C-JNJ-

54173717, 11C-SMW139, and 18F-PTTP (92–98). A previous

study overexpressed human P2X7R in a rat model by

rAAV3flag-hP2X7R and demonstrated that 11C-SMW139 had

higher affinity and specificity to the P2X7R (99). Moreover,

brains of AD patients revealed higher 11C-SMW139 binding

compared to healthy individuals through autoradiography,

consistent with histological staining results (99). An ongoing

clinical trial applied 11C-SMW139 as a PET imaging radiotracer

toward neuroinflammation in Parkinson’s disease (PRI-PD:

2018-000405-23). The other probes are P2Y12R-based

radiotracers, including 11C-AZD1283, 11C-P2Y12R-ant, and
11C-5, assessed among animal models (94, 100, 101). A

previous study has demonstrated that the P2Y12R radiotracer,
11C-AZD1283, distinctly responds to tau and amyloid deposits.

The levels of P2Y12R binding increase in APP23 and APPNL-F/

NL-F mice (101). However, 11C-AZD1283 PET imaging showed

no signal in the wild-type mouse brain.

Additionally, two other radiotracers, 11C-P2Y12R and 11C-5,

exerted sufficient brain uptake, high affinity, and promising

results in experimental autoimmune encephalomyelitis and

stroke models, detecting anti-inflammatory microglia (48)

(94, 100).

3.3.4 MAO-B PET imaging
In several clinical trials, 11C-deuterium-L-deprenyl (DED)

MAO-B inhibitors have also been applied in PET imaging

toward neuroinflammation. It has been proved that early

astrocytosis can be measured via 11C-DED in sporadic and

autosomal dominant AD patients and amyloidosis mouse

models (102–110). In addition, 18F-fluorodeprenyl-D2 showed

favorable kinetic properties and ameliorated affinity in MAO-B

imaging (111). However, the technical problems of irreversible

inhibitors impede the accuracy of imaging. Therefore, several
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reversible-binding inhibitors have been developed and validated,

including 11C-Cou, 11C-SL25.1188, and 11C-SMBT-1 (69, 112,

113). Among the advanced PET imaging based on reversible-

binding inhibitors, a specific elevated regional retention of 11C-

SMBT-1 within the cortical and hippocampal regions can be

seen in patients with AD compared to healthy individuals (114).

3.3.5 I2BS PET imaging
I2BS is located on both monoamine oxidases A (MAO-A)

and B (MAO-B), which is another novel target for PET imaging

toward neuroinflammation (115–118). 11C-FTIMD presented

the specific binging to I₂BS in the monkey brain (119). A

previous study has revealed that the activated astroglia

determined using 11C-BU99008 PET in the early period of

Parkinson ’s disease is responsible for a-synuclein
accumulation (116). A previous in vitro study demonstrated

that 3H-BU99008 revealed high specificity in brain tissues from

AD patients and colocalized with glial fibrillary acidic protein

staining of astrocytes (120). Moreover, a clinical study reported

that an increasing 3H-BU99008 binding signal could be detected

in the brain of patients with AD compared to healthy

individuals. Similar results were reported in the cortical region

via 11C-BU99008, consistent with the high cerebral Ab load

evaluated by 18F-florbetaben in MCI and AD patients (121). A

previous study demonstrated that increased 11C-BU99008

signaling could be detected in earlier stages with low Ab loads.

At the same time, reduced astrocytosis can be observed in the

advanced stages with a more significant Ab load and

atrophy (122).

3.3.6 CB2R PET imaging
Cannabinoid type 2 receptor (CB2R) is a member of the

endogenous cannabinoid system. CB2R has a low concentration

in the brain during healthy conditions. However, Ab deposition

activates microglia leading to the high expression of CB2R, another

widely considered dominant marker of AD neuroinflammation.

Various PET radiotracers with higher affinity towards CB2R have

been well established. Among the developed CB2R imaging agents,
11C-NE40 can specifically and reversibly bind to CB2R. Previous

studies have depicted that the uptake of 11C-NE40 was reduced in

the brain of AD patients due to loss of neuron-based CB2R

expression, contrary to the expectations from preclinical studies.

This inconsistency may be due to the low expression of CB2R and

insufficient selectivity for CB2R and CB1R (123). The other CB2R

agonists with high affinity are under exploration, including 11C-

MA2, 18F-MA3, or 18F-RS126 (124).

3.3.7 11C-AA PET imaging
AA, a kind of n-6 polyunsaturated fatty acid and an essential

component of the metabolic network of inflammation, is abundant

in the brain parenchyma and participates in cell signal transduction.

Microglia in the CNS release the inflammatory cytokines and bind
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to receptors on the surface of astrocytes, leading to the secretion of

phospholipase and cytoplasmic phosphatase and mediated AA

release. Therefore, AA detection can serve as an indirect marker

of microglial activation (125). Based on the above results, 11C-AA

and PET imaging can determine brain phospholipase activity. By

injecting 11C-AA, the regional brain incorporation coefficients and

metabolic loss of AA in the brain can be determined (125).

Therefore, elevated signals of 11C-AA could evaluate the

disordered metabolism of AA due to neuroinflammation.

3.3.8 Nicotinic acetylcholine receptors
It has been demonstrated that nicotinic acetylcholine receptors

(nAChRs) were closely related to neuroinflammation. Moreover,

the ligand 2-18F-A85380 (2-FA) towards nAChR has also

presented similar patterns of uptake with 11C-PK11195 in

activated microglia and astrocytes (126). Additionally, 18F-

flubatine has been established with more favorable kinetic profile,

which leads to a better understanding of nAChRs in

neuroinflammation (126, 127). The homomeric nAChRs are

colocalized in neuritic plaques in patients’ brain with AD, and

Ab1–42 has been reported to bind to the a7 nAChRs with high

affinity (128). a7 nAChRs are also strongly expressed on astrocytes

and microglia, the activation of which has been shown to suppress

inflammatory processes (128). Recently, several new compound-

based bio-tracers, such as 18F-ASEM and 18F-DBT-10, presented

more promising results (129).
4 Methodological issues in
radiotracers quantification by PET

A variety of quantification methods have been established due

to the tracers. It appears that it is a great challenge for quantification

by PET and that various factors should be taken into account. (1)

Genetic polymorphism and affinity: The main limitation of the

second-generation TSPO radiotracers is their sensitivity to a

polymorphism of the TSPO gene. This polymorphism leads to

differential affinity of these ligands to TSPO (67). (2) Arterial plasma

input function: The kinetics model analyses are based on the input

function, which requires the relative traumatic placement of an

arterial catheter and the development of radioanalytical methods to

accurately identify the plasma metabolite fractions (56). (3)

Reference region definition: The reference region should be

devoid of specific ligand binding to the target and only share the

same free and non-specific binding with the region expressing the

target and remain unaffected by the disease.
5 Conclusion

The interplay between amyloid, tau, and neuroinflammation

is a brand new area of investigation that has only recently
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become possible through the development of an expanded

repertoire of PET tracers. Therefore, we reviewed various

strategies for PET imaging for neuroinflammation and

summarized the dominant results from previous clinical trials

on AD patients. There are a variety of approaches explaining the

exploration of neuroinflammation. Although determining

neuroinflammation by PET imaging in AD is widely used,

there is a conflict on whether neuroinflammation is beneficial

or detrimental to the evolution of the symptoms, neuronal

injury, and cognitive deficits. This review also highlighted are

a number of areas of uncertainty and various radiotracers’

limitations. The challenges of radiotracer establishment and

accura te b ind ing quant ifica t ion , the compl i ca ted

neuroinflammation in the brain tissue of AD patients, and its

extensive roles in different stages have also been emphasized.

PET imaging towards neuroinflammation is a potential

approach to deciphering the pathophysiological process of AD

patients. It clarifies the links between amyloid/tau pathologies

and neuroinflammation, influencing different clinical symptoms

and pathophysiological progression. More efforts are also

required to improve the approaches to determine the binding

signal from the PET imaging based on the current radiotracers

and develop novel radiotracers. Moreover, deciding on a

consensus to standardize the PET data analysis is critical.

Given the proposal that the role of neuroinflammation in AD

pathogenesis changes over the disease course, this is a

prerequisite to conducting multi-tracer longitudinal studies

based on multiple centers and elucidating the multifaced role

of neuroinflammation in AD and MCI patients.
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