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Background. Chronic renal failure (CRF) has become a global health problem and bears a huge economic burden. FuShengong
Decoction (FSGD) as traditional Chinese medicine has multiple pharmacological effects.Objectives. To understand the underlying
molecular mechanism and signaling pathway involved in the FSGD treatment of CRF and screen differentially expressed proteins
in rats with CRF treated with FSGD.Methods. Thirty-three male Sprague-Dawley rats were randomly divided into control group,
CRF group, and FSGD group. Differentially expressed proteins were screened by iTRAQ coupled with nanoLC-MS/MS, and
these identified proteins were later analyzed by GO, KEGG, and STRING. Additionally, haptoglobin (HP) and alpha-1-antitrypsin
(AAT) were finally verified by ELISA, Western blot, and real time PCR. Results. A total of 417 proteins were identified. Nineteen
differentially expressed proteins were identified in the FSGD group compared with the model group, of which 3 proteins were
upregulated and 16 proteins were downregulated. Cluster analysis indicated that inflammatory response was associated with
these proteins and complement and coagulation cascade pathways were predominantly involved. The validation methods further
confirmed that the levels of HP and AAT were significantly increased. Conclusions. HP and AATmay be the important biomarkers
in the pathogenesis of CRF and FSGD therapy.

1. Introduction

The incidence of chronic renal failure (CRF) is increasing
annually on a global scale [1], thus placing enormous bur-
den on the medical system of many countries [2]. Renal
fibrosis characterized a common endpoint of different kidney
diseases which resulted in kidney functional impairment
ultimately leading to terminal renal failure. Tubulointerstitial
fibrosis and glomerulosclerosis were closely associated with
diverse action mechanisms such as abnormality of gene
and protein expressions [3–6] as well as their downstream
low-molecular-weight metabolite dysregulations [7–10]. The
relationships of abnormal gene or protein expressions and
endogenous metabolite disturbance were demonstrated in

diverse chronic renal diseases [11–16]. Current clinical thera-
pies for CRF are scarce and often ineffective [17]. Traditional
Chinese medicine is potentially a meaningful alternative
therapy for CRF [18–22].

FuShengongDecoction (FSGD) is summarized byProfes-
sor of Chinesemedicinemaster ZiguangGuo, who added and
deducted some herbs based on the classic formula “jisheng
shenqi pills” with 60 years of clinical experience [23]. FSGD is
composed ofRadix Astragali,Rehmannia glutinosa,Dioscorea
opposita, Fructus Corni, Semen Plantaginis,RadixAchyranthis
Bidentatae,CortexMoutan Radicis, Rhizoma Alismatis, Poria,
RhizomaAtractylodis,Cortex Eucommiae,Hirudo, andCortex
Phellodendri. Research indicates that Radix Astragali, which
is the dominate component, plays a role in improving the
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immunity and renal function [24]. Rehmannia glutinosa has
been shown as an effective constituent that can suppress
inflammation and enhance renal function [25]. Dioscorea
opposita has been used to strengthen bone and tonify the kid-
ney [26]. It has been reported that Rhizoma Alismatis showed
dual effect including promotion and inhibition of diuretic
activity on renal function and antihyperlipidemia effect [27–
29]. Several studies have demonstrated that Poria possessed
nephroprotective activities including diuretic activity and
treatment of CRF [30–34] and antihyperlipidemia effect
[35, 36]. Although the clinical application of FSGD in the
treatment of CRF has been verified, the underlyingmolecular
mechanisms of its effect remain unknown.

Isobaric tags for relative and absolute quantitation
(iTRAQ) is a technology that can be used to simultaneously
measure protein amounts in a multitude of test samples.
This method significantly reduces the variability caused by
multiple tests, thereby improving the accuracy of qualitative
and quantitative protein analyses. iTRAQ has the ability to
produce highly accurate and comprehensive information on
hundreds to thousands of proteins. In a Pubmed search we
found only 173 papers that used iTRAQ labeling to detect
serum differential proteins; of these articles none reported on
CRF.

In this study, we performed proteomic analysis using
iTRAQ technology coupled with nanoscale liquid chro-
matography tandemmass spectrometry (nanoLC-MS/MS) to
unveil molecular mechanism and identify potential biomark-
ers of FSGD. At the same time, we elucidated potential
pathogenesis and the key pathway of these proteins through
pathway analysis and protein networks. Furthermore, via the
ELISA method, Western blot, and RT-qPCR we verified two
dysregulated proteins (HP andAAT) that are ofmuch interest
as these two proteins were able to distinguish the CRF levels
between model group and FSGD group, and they may act as
biomarkers of FSGD.

2. Materials and Methods

2.1. Substances. FSGD ingredients were selected according
to the “Chinese Pharmacopoeia” 2010 Edition. FSGD were
soaked for 30 minutes with purified water and boiled three
times every 30 minutes for a total of 90 minutes; then the
boiling liquid was collected, filtered, concentrated to crude
drug with the amount of 1 g/ml, and stored at 4∘C for use.

2.2. Animals and Sample Collection. A total of 33 male
Sprague-Dawley rats (SYXK (Chongqing) 2012-0001),
weighting 180 ± 20 g, were fed adaptively for 1 week and then
randomly divided into 3 groups: control group, model group,
and FSGD group (11 in each group). The control group was
fed standard chow, while the other two groups were fed 0.5%
adenine (Sigma-Aldrich, St. Louis, MO, USA) chow for 3
weeks to induce chronic renal failure [37, 38]. After the mod-
els were successfully made, rats in control and model groups
received saline in the amount of 20ml/kg/d, while those
in FSGD group received 16 g/kg/d, administered by gastric
irrigation, respectively, for 30 days. All rats were starved for
12 h and anesthetized by 3% pentobarbital (Beijing Propbs

Biotechnology, Beijing, China) at a dose of 5ml/kg at 30 days,
and blood samples were later acquired by cardiac puncture.
Blood was placed at room temperature for 0.5 hours and was
subsequently centrifuged at 4∘C, 1300𝑔 for 15min, and the
supernatant was obtained and stored at −80∘C for further
analysis. Kidneys were immediately washed by phosphate
buffer saline and stored at −80∘C for histological study. The
experimental animals were disposed according to the “Guide
for the Care and Use of Laboratory Animals” approved by
the Committee of Chongqing Medical University.

2.3. iTRAQ Labeling. To increase accuracy and reduce
variability in measures of protein concentration, the same
amount of blood from each group wasmixed into one sample
[39, 40]. High-abundance proteins such as albumin and IgG
were depleted by using the Multiple Affinity Removal System
(Agilent, Palo Alto, CA, USA) according to the manufac-
turer’s instructions. Next, proteins were concentrated and
desalted [41]. A total of 200𝜇g proteins were soaked in 6 𝜇l
dithiothreitol (Amresco, Solon, OH, USA) and 2 𝜇l indole-
3-acetic acid (Amresco, Solon, OH, USA) for 1 h at 37∘C
and then centrifuged.Thedeposit was subsequently removed.
The samples were then digested with trypsin (AB Sciex,
Framingham, MA, USA) with the ratio of protein : trypsin
= 50 : 1 at 37∘C overnight. The peptides were labeled with
iTRAQ reagent (AB Sciex, Framingham, MA, USA) (each
reagent was dissolved in 70 𝜇l of ethanol) and incubated
at room temperature for 2 h. The samples were labeled as
follows: the control group, 113; the model group, 114; the
FSGD group, 115; then they were mixed and dried by vacuum
centrifugation. To avoid the labeling bias, two independent
biological replicates were performed.

Strong cation exchange (SCX) chromatography was per-
formed to separate protein with the LC-20AB HPLC Pump
system (Shimadzu, Kyoto, Honshu, Japan) with Gemini-
NX C18 column (Phenomenex, Torrance, CA, US) (4.6 ×
250mm, 5 𝜇m 110A). The peptide mixture was eluted with
a liner gradient of buffer A (AB Sciex, Framingham, MA,
USA) and 5% buffer B (AB Sciex, Framingham, MA, USA)
for 30min, 15%–90% buffer B for 25min, and 5% buffer B for
10min at a flow of 0.8ml/min. A total of 50 components were
collected and vacuum-dried.

2.4. Mass Spectrometry (MS) Analyses. The fractions were
centrifuged at 12,000𝑔 for 8min and supernatant was col-
lected. The samples were analyzed with nanoHPLC-MS/MS
(Thermo Scientific,Waltham,MA,USA). Specific parameters
were as follows: ion spray voltage, 2.3 kv; Curtain gas, 35 psi;
survey scan, 300–1800𝑚/𝑧 for MS scans; dynamic exclusion
duration of 25 s; survey scan, 100–1500𝑚/𝑧 forMS/MS scans.

Peptide and protein identification were performed using
the ProteinPilot™ software (version 4.2; Applied Biosystems,
USA) and searching an automated database against the
rat database (IPI rat v3.87) with the Mascot search engine
(version 2.3.02; Matrix Science, London, UK). To screen the
differential proteins, the threshold was applied as follows: the
unused ProtScore > 1.3 and at least one peptide with a 95%
confidence level [42], ratios with fold change > 1.2 (or <0.83),
and 𝑃 values < 0.05 were considered to be significant.
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2.5. Bioinformatics Analysis. Gene ontology (GO) analysis
and the Kyoto encyclopedia of genes and genomes (KEGG)
database were used to enrich and cluster the differential
proteins. Each protein was represented by its cellular com-
ponents, molecular function, and biological process by the
GOdatabase;meanwhile the pathway analysis was performed
using the KEGG database. Functional networks were deter-
mined by STRING protein-protein interaction networks.
All of the above analyses were conducted with Omicsbean
software (Geneforhealth, Shanghai, China).

2.6. ELISA Methods. Rat HPT ELISA kit (Abcam, Cam-
bridge, MA, USA, SwissProt: P06866) and rat 𝛼-1-AT ELISA
kit (Abcam, Cambridge, MA, USA, SwissProt: P17475) were
used to detect protein levels in the serum. The protein
concentration analysis of each group was performed accord-
ing to the manufacturer’s protocols. Concentrations in each
group were compared with Student’s 𝑡-tests after logarithmic
transformation.

2.7. Real Time Quantitative PCR. The renal samples stored
at −80∘C were uniformized in TRIzol (Tiangen Biotech,
Beijing, China) and the RNA extraction was performed
according to the manufacturer’s directions. Then the RNA
was transcribed into cDNA (Toyobo, Shanghai, China)
according to the manufacturer’s protocols. The PCR reac-
tion was submitted to CFX96 Touch Real Time PCR
(Bio Rad, Hercules, CA, USA) with the following primers:
rat HP: sense, 5-TGTGCCGTAGCTGAGTATGGTGTG-
3, antisense, 5-GAATTGCCCTGCCCCACTGT-3, rat Ser-
pina1: sense, 5-CCCTTGGCGACCCTCCTCTT-3, anti-
sense, 5-CCCCACCGAAGAACCAGGATATA-3, and 𝛽-
actin: sense, 5-ACCCCGTGCTGCTGACCGAG-3, anti-
sense, 5-TCCCGGCCAGCCAGGTCCA-3 according to the
manufacturer’s instructions. Afterwards, the expression of
genes was calculated from standard curve with the expression
of 𝛽-actin gene as reference.

2.8. Western Blot Analysis. The proteins were separated
from frozen renal tissues and the protein concentration was
measured by bicinchoninic acid (BCA) assay kit (Thermo
Fisher Scientific, Rockford, IL, USA). The protein samples
were resolved and transferred onto polyvinylidene fluoride
(PVDF) membranes. After blocking with 5% nonfat milk at
room temperature for 2 h, the membranes were performed
using specific primary antibody as follows: haptoglobin and
alpha-1-antitrypsin (Abcam, Cambridge, MA, USA). The
blots were incubatedwith horseradish peroxidase-conjugated
secondary antibodies (Abcam, Cambridge, MA, USA) and
then exposed with an ECL kit (GE Healthcare, Chicago, IL,
USA).

2.9. Statistical Analysis. Statistical analyses were performed
with GraphPad Prism software version 5.01 (GraphPad Soft-
ware, Inc., San Diego, CA, USA). Variables in each group
were tested to determine if they were normally distributed.
Multiple comparisons of samplemeans were used for analysis
of variance. The SNKmethod was used for pairwise compar-
ison. 𝑃 < 0.05 was considered to be significant.

3. Results

3.1. Comparative Analysis of SerumProteomic Changes in Each
Group. The overall proteins were compared among the three
groups. In total, 417 proteins were confirmed with 5% local
false discovery rate (FDR) and > 95% confidence score. Nine-
teen proteins with differential expression were found using
stringent criteria. Among these proteins, twelve were found
to be upregulated in the models compared with the controls
and these same proteins were found to be downregulated in
the FSGDgroup comparedwith themodels. Additionally two
downregulated proteins were then shown to be upregulated
in the FSGD group, and five proteins exhibited no significant
differences between groups. In addition, the levels of five
proteins showed no difference between the controls and
FSGD group. It is worth mentioning that the fold changes of
HP were striking after FSGD treatment (Table 1).

3.2. GO Analysis, KEGG Pathway, and STRING. Differen-
tially expressed proteins of the FSGD and model groups
were catalogued based on GO enrichment analysis. It was
revealed that most of the proteins were involved in the
response to external stimulus (12, 63.16%), inflammatory
response (9, 47.37%), and negative regulation of hydrolase
activity (7, 36.84%). In addition, the subcellular proteins were
distributed in the extracellular region (17, 89.47%), extracel-
lular region part (16, 84.21%), and extracellular space (16,
84.21%) and associatedwithmolecular function regulators (9,
47.37%), enzyme regulator activity (8, 42.11%), and enzyme
inhibitor activity (7, 36.84%) (Figure 1).

The KEGG pathway mapping indicated that complement
and coagulation cascades (6 proteins) were the predominant
pathways. Vitamin digestion and absorption (3 proteins) and
fat digestion and absorption (3 proteins) were also verified;
these proteins are associated with the immune, endocrine,
and digestive systems (Figure 2).

The interactions among the differentially proteins were
analyzed by the STRING network (Figure 3). STRING analy-
sis showed that Alb and Serpina1 played a central role in the
network.

3.3. The Validation of ELISA, Western Blot, and RT-qPCR.
Based on the central role in the STRING network and the
fold changes, we selected HP and AAT for further analysis.
The results revealed that both HP and AAT levels were
significantly increased (𝑃 < 0.001, 𝑃 < 0.001, resp.) in the
control group compared with the model group. HP and AAT
levels were significantly decreased (𝑃 < 0.001, 𝑃 < 0.001,
resp.) in the model group compared to the FSGD group. In
addition, therewere no significant differences inHP andAAT
levels between the model group and the FSGD group (𝑃 =
0.4485, 𝑃 = 0.1449, resp.) (Figure 4).

4. Discussion

We examined the therapeutic effect of FSGD in the adenine-
induced CRF rats. In traditional Chinese medicine, com-
pounds of Chinese herbs have long-standing and widespread
clinical applications. Multiple components of different herbs
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Table 1: Differentially expressed proteins among control, model, and FSGD groups obtained by iTRAQ-nanoHPLC-MS/MS. 113: control;
114: model; 115: FSGD; —: ratio between 0.83 and 1.20.

Protein ID Protein name 115:114 114:113 115:113
sp|P06866 Haptoglobin 0.10 12.62 1.74
sp|P04639 Apolipoprotein A-I 0.17 4.90 —
sp|Q6P734 Plasma protease C1 inhibitor 0.19 1.80 0.32
sp|P02651 Apolipoprotein A-IV 0.23 2.28 0.52
sp|P02764 Alpha-1-acid glycoprotein 0.25 1.87 0.45
sp|P09006 Serine protease inhibitor A3N 0.28 1.71 0.48
tr|D4A183 Protein Vnn3 0.35 — 0.31
sp|Q03626 Murinoglobulin-1 0.35 — 0.40
sp|Q63207 Coagulation factor X 0.36 — 0.37
sp|D3ZTE0 Coagulation factor XII 0.43 1.84 0.79
tr|Q68FY4 Group specific component 0.45 2.22 —
sp|P17475 Alpha-1-antiproteinase 0.46 2.74 1.25
tr|A9CME3 Complement component 4 binding protein, alpha 0.49 2.20 —
sp|P01015 Angiotensinogen 0.49 2.72 1.46
tr|G3V8B1 Glycosylphosphatidylinositol specific phospholipase D1, isoform CRA a 0.58 — 0.67
tr|F1M6Z1 Apolipoprotein B-100 0.73 4.60 3.30
sp|P02770 Serum albumin 1.28 0.79 —
sp|P31211 Corticosteroid-binding globulin 2.24 1.79 3.48
sp|Q01177 Plasminogen 2.90 0.35 —
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Figure 1: GO analysis of differentially expressed proteins.
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Figure 2: KEGG pathway mapping of differentially expressed proteins.
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Figure 3: The network of differentially expressed proteins obtained by STRING analysis.

can concurrently attack multiple targets involved in the
pathogenesis of the diseases. Thus, compounds are more
important than a single herb [19, 43]. Previous studies have
verified that FSGD is effective in the treatment of CRF.
Specifically, levels of serum creatinine (SCr) and blood urea
nitrogen (BUN) decreased significantly; renal function and
nephridial tissues were improved after treatment of FSGD
[44, 45]. We found that possible mechanisms may be the
inhibition of Sonic Hedgehog (SHH) signaling pathway
and/or reduced levels of 𝛼-SMA in nephridial tissue by

detecting renal tissues. To characterize the effect of FSGD, we
conducted the present experiment.

We initially examined the mechanisms of the adenine-
induced CRF. CRF is similar to chronic renal insufficiency
and chronic kidney disease. Several previous studies have
showed that diabetic nephropathy [46, 47], hypertensive
nephropathy [48, 49], and lupus nephritis [50] are the
primary causes ofCRF. Inagi [51] found that the accumulation
of advanced glycation end product (AGE) produces glyca-
tive stress closely associated with kidney disease. Various
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Figure 4:The expressions of HP and AAT among the control, model, and FSGD groups obtained by the ELISA, Western blot, and RT-qPCR
methods. ((a) and (b)) The result of ELISA method. (c) The expression of each gene by RT-qPCR. (d) Western blot analysis for HP and AAT.
(e) Densitometric analysis for HP andAAT. A𝑃 value less than 0.05 indicates statistical significance using the 𝑡-test. ∗∗∗𝑃 < 0.001; ∗∗𝑃 < 0.01.
The bars represent the means ± standard deviations of ten rats.

signaling pathways are involved in process of chronic kidney
disease, such as Wnt/𝛽-catenin, TGF-𝛽/Smads, JNK/STAT3,
and MAPKs [52]. The common pathway of these renal
diseases is tubulointerstitial fibrosis, which is characterized
by the superfluous deposition of extracellular matrix, infiltra-
tion of lymphocytes, dendritic cells, macrophages [53], and
fibroblast proliferation/differentiation.

By function and pathway analysis, our study demon-
strated that complement and coagulation cascade pathways
and inflammatory response have a striking response on
protein structure. The complement system is composed of
over 30 serum proteins and cell membrane proteins [54],
appears congenitally and/or is an acquired immune effector,
and is one of the most powerful barriers against invading
pathogens. The deposition of immune complexes mediated
inflammatory response causing tissue injury [55]. In addition,

coagulation factors are activated after the interaction of
platelets and endotheliocyte, thus enhancing coagulation and
inflammation [56]. Keir and Langman [54] also indicated
that complement factors are related to kidney function.
Further, activation of the complement system may aggravate
kidney damage. Hence, we assume that the development of
CRF accompanied activation of the complement system and
inflammatory infiltration.

Haptoglobin (HP), as an acute phase protein, exists as
two major alleles: HP1 and HP2. The main efficacy of HP1
is antioxidant and anti-inflammatory, while HP2 plays an
important role in antagonism. The main function of HP
is to combine with free hemoglobin (Hb) and bind to
monocytic cells and lymphocytes, thereby avoiding the loss
of the Hb and heme iron from the kidney and damage to
the kidney [57, 58]. Several studies have demonstrated that
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higher levels of HP are correlated with liver fibrosis [59],
various cancers [60–62], and cardiovascular disease [63]. HP
is mainly produced in the liver but also expressed in kidney.
The common mechanism of these diseases indicates that HP
is associated with inflammation and the immune response
[57]. In addition, several previous studies have showed that
HP can predict various kidney diseases [64–66]. Specifically,
previous reports show that HP2 is more closely related to
kidney disease. Elevated concentrations of HP2 in the serum
have been shown to increase deterioration of renal function
[67]. HP response to injury or improved oxidative stress
could be expressed in the renal tubules. This phenomenon
may contribute to development of haptoglobin-hemoglobin
complex that cannot be filtered from the glomerulus and,
along with iron, accumulates in renal proximal tubule.This is
a possible mechanism of CRF. Our proteomic result further
demonstrates that HP is critical in the progress of CRF.

Alpha-1-antitrypsin (AAT), as the serine proteinase
inhibitor, can prevent pathological damage of tissue, inhibit
infection and inflammation, and organize and maintain
the internal environment of body [58]. AAT has multiple
activities, such as cytoprotective, immunomodulatory activ-
ity and downregulation of neutrophil elastase during the
inflammatory processes. Accumulating studies have showed
that AAT may lead to lung pathologies [68], type 1 diabetes
[69], arthritis [70], and lupus [71]. Kwak et al. [72] found
that the expression of AAT is elevated in renal biopsies, while
other investigators detected that it is overexpressed in the
urine of some renal diseases [73–75]. This phenomenon was
consistent with our result in which AAT was upregulated.
Upregulation of AAT could lead to inhibition of elastase,
which can contribute to regulating inflammation and the
accumulation of mesangial matrix, as well as maintaining the
elasticity of blood vessels and glomerular integrity. AAT is
located in the cytoplasmof podocytes and it is possibly related
to epithelial dysfunction and podocyte stress and results in
renal fibrosis.

In conclusion, we succeeded in finding differentially
expressed proteins in the adenine-inducedCRF. According to
the function and pathway analyses, it was demonstrated that
these proteins are involved in multiple pathways and biolog-
ical processes, but mainly in the inflammatory response. The
results are consistent with the multitarget way of traditional
Chinese medicine. Interestingly, HP and AAT exhibited sig-
nificantly changes and located in key positions. This finding
was verified by ELISA and the results were consistent with
serum proteomics. We presumed that HP and AAT could
be applicable as markers in the progression of CRF and
may be the candidate biomarkers of FSGD. Further research
is needed to explore the role of these protein functions in
pathogenesis.
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[75] M. Navarro-Muñoz, M. Ibernon, J. Bonet et al., “Uromod-
ulin and 𝛼1-antitrypsin urinary peptide analysis to differen-
tiate glomerular kidney diseases,” Kidney and Blood Pressure
Research, vol. 35, no. 5, pp. 314–325, 2012.


