
ARTICLE

Vortex states in an acoustic Weyl crystal with a
topological lattice defect
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Crystalline materials can host topological lattice defects that are robust against local

deformations, and such defects can interact in interesting ways with the topological features

of the underlying band structure. We design and implement a three dimensional acoustic

Weyl metamaterial hosting robust modes bound to a one-dimensional topological lattice

defect. The modes are related to topological features of the bulk bands, and carry nonzero

orbital angular momentum locked to the direction of propagation. They span a range of axial

wavenumbers defined by the projections of two bulk Weyl points to a one-dimensional

subspace, in a manner analogous to the formation of Fermi arc surface states. We use

acoustic experiments to probe their dispersion relation, orbital angular momentum locked

waveguiding, and ability to emit acoustic vortices into free space. These results point to new

possibilities for creating and exploiting topological modes in three-dimensional structures

through the interplay between band topology in momentum space and topological lattice

defects in real space.
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Topological lattice defects (TLDs) are crystallinity-breaking
defects in lattices that cannot be eliminated by local
changes to the lattice morphology, due to their nontrivial

real-space topology1. Although they give rise to numerous
important physical effects in their own right2, TLDs can have
especially interesting consequences in materials with topologically
nontrivial bandstructures3–8. For instance, Ran et al. have shown
theoretically that introducing a screw dislocation into a three
dimensional (3D) topological band insulator induces the forma-
tion of one-dimensional (1D) helical defect modes, which are
protected by the interplay between the Burgers vector of the
defect and the topology of the bulk bandstructure5. Aside from
topological band insulators5,9–12, other topological phases are
predicted to have their own unique interactions with TLDs,
including Weyl semimetals, topological crystalline insulators, and
higher-order topological insulators13–18. TLD-induced modes
provide a way to probe bandstructure topology independent of
standard bulk-boundary correspondences6–8,11,15,17, and may
give rise to exotic material properties such as anomalous torsional
effects13. Experimental confirmations have, however, been ham-
pered by the difficulty of accessing TLDs in real topological
materials19–21.

Recently, various groups have turned to classical wave
metamaterials22–26 to perform the experimental studies of the
interplay between TLDs and topological bandstructures, includ-
ing the demonstration of topologically-aided trapping of light on
a dislocation23, robust valley Hall-like waveguiding along dis-
clination lines24, and defect-induced fractional modes25,26. The
preceding studies have all been based on two dimensional (2D)
lattices; 3D lattices with TLD-induced topological modes have
thus far only been investigated theoretically.

Here, we design and experimentally demonstrate a 3D acoustic
metamaterial that hosts topological modes induced by the pre-
sence of a TLD. Without the TLD, the bulk metamaterial forms a
Weyl crystal, whose 3D bandstructure contains topologically
nontrivial degeneracies called Weyl points27–41. Weyl crystals are
known to exhibit, along their 2D external surfaces, Fermi arc
states that are protected by the topology of the Weyl points32,33.
The introduction of the defect generates a family of modes
localised to the line of the TLD (in real space). Moreover, in a
manner analogous to the formation of regular Fermi arcs, the
modes span the projections of two Weyl points of opposite
topological charge in the axial momentum space kz. The TLD-
bound modes for each kz can be interpreted as a 2D bound state
generated by a strongly localised pseudo-magnetic flux associated
with the TLD, in accordance with earlier theoretical predictions
about disclinations in 2D topological materials8. Hence, these
modes arise from the interplay between the TLD and the 3D
Weyl bandstructure. The TLD-bound modes carry nonzero
orbital angular momentum (OAM), locked to their propagation
direction. For each kz, the sign of the OAM depends on the Chern
number of the 2D projected band structure, and matches the
chirality of the robust localised state that appears in a Chern
insulator on a 2D surface with singular curvature42–45—a pre-
diction that has never previously been verified in an
experiment8,46,47. To our knowledge, this is also the first
demonstration of a 3D topology-induced mode carrying nonzero
OAM. Classical waves with nonzero OAM have a variety of
emerging applications including vortex traps and rotors48,49 and
OAM-encoded communications50. Although chiral structures
have previously been studied for the purposes of OAM wave-
guiding, those waveguides support multiple OAM modes with
different propagation constants51; by contrast, the present topo-
logical waveguide supports, for each kz, a single robust bound
mode with nonzero OAM.

Results
Design of the Weyl acoustic structure. The emergence of a TLD-
bound topological mode is conceptually illustrated in Fig. 1a. In a
Weyl semimetal, topologically-charged Weyl points in the 3D bulk
imply the existence of Fermi arc modes on 2D external surfaces of
the crystal. In the 2D surface momentum space, each Fermi arc
extends between the projections of two oppositely-charged Weyl
points. The introduction of a TLD into the Weyl crystal breaks
translational symmetry in the x–y plane while maintaining it along
z, and generates modes that are spatially localised to the 1D string
formed by the TLD. Viewed from momentum space, the TLD-
bound modes extend between the projections of the two Weyl
points into the 1D momentum space kz.

Recently, the discovery of higher-order topological materials52

has led to the idea of higher-order Weyl and Weyl-like
phases53–61, which can host “higher-order Fermi arcs”56–58,61.
Like the TLD-bound modes discussed in this paper, higher-order
Fermi arc modes are one-dimensional, but they arise from a
completely different mechanism involving higher-order topolo-
gical indices56,57,61. Moreover, they lie along external hinges,
whereas the present TLD-bound modes are localised to the line of
the TLD, embedded inside a 3D bulk.

We designed and fabricated a 3D acoustic crystal formed by
chirally structured layers stacked along z, as shown in Fig. 1b–e.
Without any TLD, an x–y cross section of the structure would
form a triangular lattice. The TLD is introduced by a “cut-and-
glue” procedure in which a π/3 wedge is deleted (Fig. 1c inset)
and the edges are reattached by deforming the rest of the lattice
(see Methods). The experimental sample is formed by stacking
3D-printed structures, with a total of 21 layers (see Methods); a
photograph is shown in Fig. 1e.

The 3D Brillouin zone of the acoustic crystal, in the absence of
the TLD, is depicted in the left panel of Fig. 2a. Weyl points exist
at K and K 0 (H and H0), with topological charge +1 (−1)39,62,63;
for details, refer to Supplementary Note 1. Consider the Weyl
point at K or K 0 (the analysis for H and H0 is similar). In its
vicinity, the wavefunctions are governed by the effective
Hamiltonian

H ¼ �iðτzσx∂x þ σy∂yÞ þ kzτzσz; ð1Þ
where τi (σi) denotes valley (sublattice) Pauli matrices, we have
rescaled each spatial coordinate so that the group velocity is unity,
and kz is the wavenumber in the z direction.

Pseudo-magnetic flux of the lattice defect. With the introduction
of the TLD, kz remains a good quantum number; in the x–y plane,
the distortion introduced by the TLD can be modelled as a matrix-
valued gauge field8 that mixes the valleys (i.e., K with K 0 and H with
H0). The effective Hamiltonian can be brought back into block-
diagonal form by a unitary transformation8, whereby the Hamil-
tonian for each block has the form of Eq. (1) but modified by

τz ! τ0; ∇ ! ∇þ iτ0A; A ¼ ð4ΩrÞ�1eθ; ð2Þ
where τ0 ¼ ±1 is the block index, r is the radial coordinate and eθ is
the azimuthal unit vector in the unfolded space, and the factor
Ω= 5/6 is the number of undeleted wedges. Unlike previously stu-
died strain-induced pseudo-magnetic fluxes in Weyl semimetals63–65,
the pseudo-magnetic flux here is strongly localised8,66. Moreover,
unlike previous studies of pseudo-magnetic fluxes generated by screw
dislocations, the pseudo-magnetic flux is kz-independent5,13.

Viewed from 2D, the pseudo-magnetic flux induces topologi-
cally protected chiral defect states. For each kz > 0, one can
show5,8 that there is a single bound solution (among the two
Weyl Hamiltonians) localised at r= 0. This remains true even
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when kz is non-perturbative. For fixed kz, the lattice in the
absence of the TLD maps to a 2D Chern insulator whose Chern
numbers switch sign with kz (the gap closes at 0 and ±π/L); upon
introducing the TLD via the cut-and-glue construction, one of the
two sub-blocks in the effective Hamiltonian (τ0 ¼ 1 for 0 < kz <
π/L, and τ0 ¼ �1 for−π/L < kz < 0) exhibits a solution that is
localised to the TLD8. As we vary kz, this family of solutions spans
the projections of the Weyl points at K(K 0) and H(H0). Note that
the overall acoustic structure preserves time-reversal symmetry
(T), but the individual Hamiltonian sub-blocks effectively break
T; the defect mode at− kz thus serves as the time-reversed
counterpart of the defect mode at kz, with opposite chirality. For
further details, refer to Supplementary Note 2.

The upper panel of Fig. 2b shows the numerically computed
acoustic band diagram for the TLD-free bulk structure, projected
onto kz. The relevant bands along K-H (M-L) are plotted in green
(orange), and the gap region is shown in white. The lower panel
of Fig. 2b shows the corresponding band diagram for a structure
with a TLD, which is periodic along z and has the same x–y
profile as the experimental sample (Fig. 1b–e). These numerical
results reveal the existence of TLD-bound modes, plotted in red,
which occupy the gap and span almost the entire kz range. (Near
kz= 0 and kz= π/L, they are difficult to distinguish from bulk
modes due to finite-size effects.)

In Fig. 2c,d, we show the mode distributions for the TLD-
bound modes at kz= ±0.5π/L. The modes are strongly localised to
the center of the TLD; their intensity profiles are identical since
the two modes map to each other under time reversal. The phase
distributions (inset) reveal that the kz > 0 (kz < 0) TLD-bound
mode has winding number +1 (−1). This winding number is tied
to the Chern number of the 2D projected band structure for fixed
kz. The fact that the TLD-bound modes carry nonzero OAM,

locked to the propagation direction, distinguishes them from
previously studied topological defect modes67–70 and hinge
modes56,57,61 that have zero OAM. Moreover, we have verified
numerically that the TLD-bound modes’ localisation and OAM
are robust to in-plane disorder, consistent with their topological
origin (see Supplementary Note 3).

Spectrum and field distribution measurements. We performed
a variety of experiments to characterise the TLD-bound modes in
the fabricated structure. First, we investigated their dispersion
curve by threading an acoustic source into the bottom layer of the
sample, near the center of the TLD. A probe is inserted into the
other 20 layers in turn, via the central air sheet in each layer, as
indicated by the blue arrow in Fig. 1d. The acoustic pressure,
measured close to the center of the TLD, is Fourier transformed
to obtain the spectral plot shown in Fig. 3a. The overlaid red
dashes are the numerically obtained TLD-bound mode dispersion
curve (Fig. 2b), which closely matches the intensity peaks in the
experimental results. We then repositioned the source and probe
away from the TLD, obtaining in the spectrum shown in Fig. 3b;
this matches the bulk spectrum obtained numerically, with the
spectral intensities peaking in the bulk bands. For details about
the source and probe positions, see Supplementary Note 4.

The acoustic pressure intensity at kz= π/2L is plotted versus
frequency in Fig. 3c. A narrow peak corresponding to the TLD-
bound modes is clearly observable within the bulk gap, with only
a small frequency shift of 80 Hz relative to the numerically
predicted eigenfrequency. For excitation near the TLD, the
measured intensity distribution at frequency f= 4.924 kHz is
plotted in Fig. 3d, showing strong localisation around the TLD.
The radial dependence of the intensity distribution is plotted in
Fig. 3e (note that the apparent irregularity arises from the fact
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that the measurement points lie at different azimuthal angles).
The measurement data is in good agreement with the numerically
obtained TLD-bound mode profiles. From a linear least squares
fit of the semi-logarithmic plot, using measurement data up to a
radial distance of 12 cm, we find a localisation length of 2.38 cm,
which is on the order of the mean distance between unit cells (i.e.,
the approximate lattice constant).

Figure 3f plots the phase of the measured acoustic pressure
signal versus azimuthal angle for kz= π/2L and f= 4.924 kHz. The
different data series in this plot correspond to measurement points
at different radial distances. The phase is observed to wind by+2π
during a counterclockwise (CCW) loop encircling the TLD,
consistent with the numerically obtained eigenmode (Fig. 2c),
which implies that the TLD-bound mode has OAM of +1.

Excitation by vortex sources. To demonstrate the physical sig-
nificance of the OAM carried by the TLD-bound modes, we
studied their coupling to external acoustic vortices. The experi-
mental setup is shown in Fig. 4a. The vortex wave is generated in
a cylindrical waveguide of radius 1.7 cm, attached to the bottom
layer of the sample at the center of the TLD. Figure 4b shows the
acoustic pressure intensity measured in the top layer, on the
opposite side of the sample from the source. This intensity is
obtained by averaging over points closest to the TLD, and

dividing by the averaged intensity in the bottom layer to nor-
malise away the frequency dependence of the source. For a CCW
vortex source, a strong peak is observed within the range of
frequencies where TLD-bound modes are predicted to exist. For a
clockwise (CW) vortex source, the intensity is low (the non-
vanishing intensity is likely due to finite-size effects).

Figure 4c–d shows the intensity and phase distributions
measured in the top layer at 5.6 kHz, confirming that the TLD-
bound modes are preferentially excited by the CCW vortex.

After the TLD-bound modes have passed through the
structure, they emit an acoustic vortex into free space at the far
surface. In Fig. 4e–h, we show the intensity and phase
distributions measured by an external acoustic probe positioned
2 mm above the top surface of the sample. For a CCW vortex
source in the bottom layer, a CCW vortex is emitted from the top
layer, at the position of the TLD; for a CW vortex source, the
emission is negligible due to the TLD-bound modes not being
excited. For frequencies outside the range of the TLD-bound
modes, the CW and CCW vortices both produce negligible
emission from the top layer (see Supplementary Note 4).

Discussion
We have experimentally realised a 3D acoustic structure hosting
localised topological modes induced by a topological lattice
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defect. In real space, the modes lie along a 1D line formed by the
defect, embedded within the bulk; in momentum space, they
connect the projections of the Weyl points in the defect-free
crystal, and hence span the 1D Brillouin zone. This is, to our
knowledge, the first experimental demonstration of a defect-
induced topological mode in any 3D system. For each momen-
tum space slice (kz), the system maps onto a 2D Chern insulator
trapped on a surface with singular curvature. Theoretical studies
have previously shown that such a system hosts a robust localised
defect mode tied to the Chern number of the 2D bulk
bandstructure8,46,47.

The TLD-bound modes carry nonzero OAM, locked to their
propagation direction. This is a striking feature not possessed by
topological defect modes based on other similar schemes; for
example, the localised topological modes of 2D Kekulé lattices
carry zero winding number67–70. Our sample therefore serves as
an OAM-locked acoustic waveguide, one whose operating prin-
ciples are very different from the chiral acoustic emitters71,72 and
metasurfaces73,74 studied in previous works. This design may be
useful for applications of acoustic vortices, such as acoustic traps
and rotors48,49 and OAM-encoded communications50. Similar
designs could be used to realise TLD-bound modes in photonics,
based on 3D photonic crystals30 or laser-written waveguide
arrays35.

Finally, our work opens the door for further investigations
into the numerous other effects of lattice defects in topological
materials. Many interesting phenomena in this area have been
proposed theoretically but have not thus far been observed,
including torsional chiral magnetic effects in Weyl semimetals
and 1D helical defect modes in 3D weak topological
insulators5,13,15.

Methods
Lattice generation. The lattice was optimised by the the molecular dynamics
simulator LAMMPS75, using two types of particle interactions: (i) a three-body
Tersoff potential (SiC.tersoff), and (ii) a pairwise nearest-neighbour har-
monic potential UðrÞ ¼ Kðr � r0Þ2 (bond_style harmonic) with K= 20 and
r0= 0. Note that these particle interactions have no physical significance; they are
simply a convenient way to generate a lattice with minimal variation in inter-site
distances24.

Numerical simulation. All bandstructure calculations were performed using
COMSOL Multiphysics, with air density 1.18 kg m−3 and sound speed 343 ms−1.
All air-solid interfaces are modeled as hard acoustic boundaries. For the
dispersion plot in the lower panel of Fig. 2b, we used periodic boundary
conditions in the z direction, and plane wave radiation boundary conditions
in x and y.

Experiments. The experimental samples were fabricated from photosensitive
resin via stereolithographic 3D printing. For the dispersion measurements in
Fig. 3, the bottom surface of the sample is covered by a square plexiglass plate
(length 500 mm), which acts as a hard acoustic boundary. A broadband
acoustic signal is launched from a balanced armature speaker of around 1 mm
radius, driven by a power amplifier, and located at the center of the TLD at the
interface between the plate and the sample. Each acoustic probe is a micro-
phone (Brüel & Kjær Type 4961, of about 3.2 mm radius) in a sealed sleeve
with a tube of 1 mm radius and 250 mm length. The probes can be threaded
into the sample along the horizontal air regions to scan different positions
within each layer of the sample (see Supplementary Note 4). The measured
data was processed by a Brüel & Kjær 3160-A-022 module to extract the
frequency spectrum, with 2 Hz resolution. Spatial Fourier transforms are
applied to the complex acoustic pressure signals to obtain the dispersion
relation and field distributions.

For the experiment shown in Fig. 4, the CW and CCW waves are generated in a
circular waveguide of radius 1.7 cm, into which three balanced armature speakers
are inserted. The signal amplitudes in the three speakers are kept the same, and the
phases are controlled by two waveform generators (Agilent type 33500B). The CW
and CCW waves were generated by setting the relative phases to (0∘, ±120∘, ±240∘).
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(0.5 cm step size). An internal probe is inserted into the top layer. b Normalised acoustic pressure intensity versus frequency measured in the top
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TLD-bound modes. c, d Acoustic pressure distribution in the top layer for a CCW (g) and CW (h) vortex source at 5.6 kHz (vertical dotted line in
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