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This paper analyzes a case with the patient having focal structural epilepsy by processing electroencephalogram (EEG) fragments
containing the “sharp wave” pattern of brain activity. EEG signals were recorded using 21 channels. Based on the fact that EEG
signals are time series, an approach has been developed for their analysis using nonlinear dynamics tools: calculating the Lyapunov
exponent’s spectrum, multiscale entropy, and Lempel–Ziv complexity. The calculation of the first Lyapunov exponent is carried
out by three methods: Wolf, Rosenstein, and Sano–Sawada, to obtain reliable results. The seven Lyapunov exponent spectra are
calculated by the Sano–Sawada method. For the observed patient, studies showed that with medical treatment, his condition did
not improve, and as a result, it was recommended to switch from conservative treatment to surgical. The obtained results of the
patient’s EEG study using the indicated nonlinear dynamics methods are in good agreement with the medical report and MRI
data. The approach developed for the analysis of EEG signals by nonlinear dynamics methods can be applied for early detection of
structural changes.

1. Introduction

Epilepsy is a common neurological disease characterized by
sudden various seizures. This disease affects approximately
1% of the world’s population. Disease symptoms can begin
suddenly, which endanger the life of a person with epilepsy.
Early disease diagnosis can improve not only the quality of
life, but also save the patient from an accident. When di-
agnosing a disease, it is important to identify the focus or foci
of the disease. Studies are performed on EEG andMRI basis.
The EEG signal captures time-varying brain activity im-
pulses. In fact, such signals are chaotic time series. Their
randomness can be estimated using methods of nonlinear
dynamics that are widely used in other modern science
branches, for example, in radiophysics [1], mechanics [2–4],
history [5], and others.

One of the characteristics that make it possible to
evaluate the chaotic state of a system is the Lyapunov ex-
ponent. When examining the signal state, as a rule, either the
first exponent or the spectrum of Lyapunov exponents is
calculated. A sign of a chaotic state is the positive values of
the Lyapunov exponent. Due to this, many authors opt for
this approach. Very often, when studying EEG signals, a
short-term Lyapunov exponent (STLmax) is used. The au-
thors of [6, 7] use the modified method proposed by the
authors to assess the highest short-term Lyapunov exponent
STLmax in order to identify signs of a preseizures state. The
minimum Lyapunov exponent value indicates well enough
the time of the seizure.The Lyapunov exponent is estimated
using the Kolmogorov–Smirnov test, which eliminates
arbitrary extraneous parameters and gives more stable
results. In [8], using the STLmax method [9] has classified
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the EEG signal, revealing normal or pathological brain
activity. Segmentation and calculation of STLmax values is
carried out using a trained neural network. Moreover, the
overall segments classification accuracy corresponding to
normal or pathological activity is 99.6%. In articles [10, 11],
the relationship of the STLmax spatial distribution with the
onset zone and with the processes leading to the attack is
clarified. Based on the results of the calculated STLmax
values, topographic modeling is performed. Visual as-
sessment of the STLmax topography helps to determine the
location of the onset of the attack. The STLmax values are
calculated by the method of [12], in which modification for
short-time series was proposed in [13, 14]. In [15], it was
revealed that STLmax has the lowest values for the EEG
characteristic of a seizure, and the highest values in the post
seizure state. In [16, 17], Lyapunov exponents are used to
classify the differences between the pre seizure and the post
seizure of EEG.

When studying EEG signals, the problem of noise and
artifacts arises. For research, the signals that have passed
the cleaning are considered as the most suitable. However,
this coin has two sides: when cleaning out the signal,
important signs can be removed and without them the
disease picture will become unreliable. The authors of [18]
study EEG signals using the Lyapunov exponent’s spectrum
and values of the first Lyapunov exponent. They use the
method in [12, 19] to determine the first Lyapunov ex-
ponent value as a randomness measure of the EEG time
series and the Sano–Sawada method [20] to determine the
spectrum of Lyapunov exponents to identify signs pre-
ceding the seizure. As a result, it was found that the
spectrum of Lyapunov exponents is more resistant to signal
noise than the first Lyapunov exponent values. In [16], the
methodology for training the Elman recurrent neural
network (RNN) in combination with Lyapunov exponents
is analyzed to classify EEG patterns characteristic of an
epileptic seizure and interictal activity. Lyapunov expo-
nents are calculated by the Sano–Sawada method. In [21],
to determine pathological changes in EEG signals, an ar-
chitecture of multilayered perceptron neural network
(MLPNN) and exponents was proposed. The work [22]
presents a method for modeling the spatiotemporal
changes in the brain during epilepsy based on the CML
(coupled map lattice) model. The CML optimization
method based on the calculation of local and global Lya-
punov exponents calculated by the Sano–Sawada method is
presented. Based on the results of studying of chaotic EEG
signals using the first Lyapunov exponent, the authors of
[23, 24] came to the conclusion that the Lyapunov expo-
nent is a reliable chaos measure for low-dimensional or
deterministic data (Lorentz system), but when studying
data with a high dimension or stochastic nature (EEG
signals), it does not give reliable results. In [25], a system
for predicting epileptic seizures based on the extraction of
correlation dimension, correlation entropy, noise level,
Lempel–Ziv complexity, and the highest Lyapunov expo-
nent STLmax for ten patients with focal hippocampal
epilepsy was presented. The results showed an average
sensitivity of 92.9%.

For the study of EEG signals, the values of the Lem-
pel–Ziv complexity (LZC) are also used. But at present,
there is no consensus on the correct interpretation of the
results. In [26], the finite dimension of data is studied. The
authors provide analytical expressions for the LZC for
regular and random sequences and use them to study the
effect of finite data size on the LZC. To study the diagnosis
of brain pathologies in [27], a comparative study of the
complexity of main measures for EEG signals is given. To
do this, we study a multiscale complexity measure,
depending on the scale, and Lyapunov exponents on the
corresponding scales. In [28], a novel complexity measure
algorithm, named multiscale permutation Rényi entropy
(MPEr), is proposed by introducing the weighting-aver-
aging method.

An analysis of the work shows that there are practically
no publications devoted to the study of the patient’s EEG
signals over a long time interval using nonlinear dynamics
methods. Basically, in publications known to us, normal and
pathological activity on EEG is studied and EEG patterns
characteristic of an epileptic seizure are studied.This work is
devoted to the EEG analysis of patients with focal structural
epilepsy using nonlinear dynamics methods (Lyapunov and
Lempel–Ziv complexity and multiscale entropy) for several
years. The authors developed a unified approach to the EEG
signal analysis based on the above methods, which can be
used for early detection of neurological changes and to
identify the patient’s whole condition.

2. Object of Study

The object of the study is a man born in 1996, who was
diagnosed with focal structural epilepsy with focal (cognitive,
motor with consciousness impaired) seizures and bilateral
tonic-clonic seizures with focal debut, mesial sclerosis on the
left, and focal temporal left lobe cortical dysplasia at the age of
8 years. Mother pregnancy and childbirth proceeded without
peculiarities, was born on time. Brain injury denied. The
epilepsy inheritance is not burdened. Normostenic consti-
tution: height 190 cm; weight 75 kg. Neurological status:
psychomotor development corresponds to age, no focal
neurological symptoms, funnel chest deformity, and scoliosis
of the thoracic spine. The first seizures with impaired con-
sciousness and motor automatisms, periodically with the
evolution into bilateral tonic-clonic seizures, appeared from
the age of 8. Initially, seizures occurred 1 time per year, usually
during a night’s sleep, subsequently, the frequency of seizures
increased to 3-4 times per month; the last bilateral tonic-
clonic seizure was noted at the age of 19 years. The patient
complains of frequent seizures with impaired consciousness,
which begin with the dizziness appearance, a sudden change
in mood, an “influx” of thoughts, and heart palpitations,
periodically with subsequent consciousness loss and motor
automatisms. The duration of the seizure is up to 30–60
seconds. In the postseizure period, cephalgia, hyperthermia to
subfebrile numbers, and drowsiness are noted.

Therapy. From childhood, he took long-acting carbamaze-
pine, prolonged-acting valproic acid—without a significant

2 The Scientific World Journal



effect—and topiramate, with a positive effect—bilateral
tonic-clonic seizures—the number of focal seizures was
reduced to 1 per year. From the age of 14, an increase in focal
seizures and theirserial flow tendency increased the top-
iramate dose to 400mg per day, without a significant effect.
In 2014, oxcarbazepine 900mg/day was added to the
treatment, against which there was a significant improve-
ment; over a period of 6 months, a single focal seizure
occurred, leading to a gradual reduction in the dose of
topiramate that was recommended. In 2015-2016, at a dose
of topiramate 200mg per day in combination with oxcar-
bazepine 900mg per day, focal attacks with impaired con-
sciousness became frequent up to 1 time per month and
bilateral tonic-clonic seizures resumed, in connection with
which it was recommended to increase the daily dose of
topiramate. Prescribing topiramate 250mg per day in
combination with the previous dose of oxcarbazepine led to
remission of tonic-clonic seizures; however, the focal ones
remained with the same frequency throughout 2017. Since
2018, given the increase in focal seizures up to 3-4 times a
month, levetiracetam has been added with a gradual increase
in dose of 1000mg per day, which did not bring the expected
result, while side effects appeared and began to increase. The
cancellation of levetiracetam with an increase in the dose of
oxcarbazepine to 1800mg per day was recommended, which
led to a reduction in focal seizures during the first half of
2019 to 1 time in 1.5-2 months (Figure 1).

High-resolution MRI (magnetic-resonance imaging) of
the brain according to the epileptological program from
2014 revealed structural changes in the left temporal region
in the form of a combination of focal cortical dysplasia of the
mediobasal portions of the left temporal lobe and left
hippocampal sclerosis, as well as metabolic disorders of the
right hippocampus.

The main diagnostic method, as well as evaluating the
effectiveness of treatment for epilepsy, is EEG, in connection
with this we will further analyze the patient’s EEG signals
based on the study of Lyapunov exponent’s spectrum and
calculation of multiscale entropy and Lempel–Ziv com-
plexity.The EEG of the patient with epilepsy was recorded at
the medical center of neurology, diagnosis, and treatment of
epilepsy “Epineiro” in Saratov city for 6 years: 2014–2019
(aged 17 to 22 years) on 21 channels: O2, O1, P4, P3, C4, C3,
F4, F3, Fp2, Fp1, T6, T5, T4, T3, F8, F7, Pz, Cz, Fz, A2, and
A1 with the electrode arrangement shown in Figure 2.
Purification from artifacts was carried out by a neuro-
physiologist. The work analyzes fragments of the patient’s
EEG containing “sharp wave” complexes since this phe-
nomenon is highly specific for epilepsy. On average, the
duration of one signal is 10 seconds and the sampling
frequency is 250Hz.

3. Lyapunov Exponent

Lyapunov exponents enable evaluation of the average ex-
ponential divergence or convergence of the neighboring
trajectories in the phase space. A positive Lyapunov expo-
nent shows that the studied system is chaotic. There is no
unified approach for estimation of the Lyapunov exponent;

therefore, we used several methods and compared the
methods for classic problems [29–31].

3.1. First LyapunovExponent. Let there be a dynamic system
as follows:

_x � f(x), (1)

where x is an N-dimensional state vector.
We choose two close phase points x1 and x2 in the phase

space, draw trajectories [x1(t) and x2(t)], and trace how the
distance d between the corresponding points of these tra-
jectories changes during the system evolution (1):

d(t) � | ε→(t)| � x2(t) − x1(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌. (2)

If the dynamics of system (1) is chaotic, d(t) will increase
exponentially over time:

d(t) ≈ d(0)ekt. (3)
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Figure 2: EEG electrode layout on the scalp.
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From here, we find the average velocity of the trajectories
exponential divergence:

k ≈
ln [d(t)/d(0)]

t
, (4)

or more precisely

k � lim
d(0)⟶0
t⟶∞

ln[d(t)/d(0)]
t

.
(5)

The h value (sum of positive exponents) is called the
Kolmogorov–Sinai entropy or KS-entropy [32, 33]. Using
the KS-entropy, it is possible to determine whether the mode
under investigation is chaotic or regular. In particular, if the
system dynamics is periodic or quasiperiodic, then the
distance d(t) does not increase with time and KS-entropy is
equal to zero (h� 0). If the system has a stable fixed point,
then d(t)⟶ 0 and h< 0. In a chaotic system, KS-entropy is
greater than zero (h> 0).

KS-entropy is a sum of positive Lyapunov’s exponents,
allowing one to judge the speed information lost about the
initial state.

3.2. Lyapunov Exponent Spectrum. The spectrum of Lya-
punov exponents gives an opportunity to qualitatively assess
local stability attractor properties.

Let’s take the phase trajectory x(t) of the dynamical
system (1) emerging from the point x(0), as well as the
trajectory close to it:

x1(t) � x(t) + ε→(t). (6)

Consider the function

λ[ ε→(0)] � lim
t⟶∞

ln[| ε→(t)|/| ε→(0)|]
t

, (7)

defined on the initial displacement vectors ε→(0), such that
| ε→(0)| � ε where ε⟶ 0.

For all possible rotations of the initial displacement
vector in n directions in the N-dimensional phase space,
function (7) will change in jumps and take a finite series of
values λ1, λ2, λ3, . . . , λn. These values of the function λ are
called Lyapunov exponents. Positive Lyapunov exponents
serve as a measure of the average exponential divergence of
neighboring trajectories and negative ones as a measure of
the average exponential convergence of trajectories to the
attractor.

The sum of Lyapunov exponents is the average diver-
gence of the phase trajectories flow, which for a dissipative
system (i.e., a system having an attractor) should always be
negative. As numerical examples show, for some dissipative
systems, Lyapunov exponents are invariant with respect to
all enumerated initial conditions. Therefore, Lyapunov ex-
ponent spectrum can be considered a property of the
attractor.

Usually Lyapunov’s exponents are arranged in the
descending order. For example, the symbols (+, 0, − ) mean
that for some attractor in the three-dimensional state space,
exponential stretching occurs along one direction, and the

phase flow is neutral along the other and undergo expo-
nential compression along the third trajectory direction. It is
important to note that attractors other than stable stationary
points always have at least one Lyapunov exponent equal to
zero since on average, the points on the trajectory are
bounded by a compact set and can neither diverge very far
nor accumulate.

Consider the relationship of Lyapunov exponents with
the properties and types of attractors.

(1) n� 1. An attractor can only be a stable fixed point
(node or focus). In this case, there is one Lyapunov
exponent λ1 � (–) exists.

(2) n� 2. In two-dimensional systems, there are two
types of attractors: stable fixed points and limit cy-
cles. Lyapunov exponents correspond to
(λ1, λ2)� (− , − ) − a stable fixed point;
(λ1, λ2)� (0, − ) − a stable limit cycle (one of the
exponents is equal to zero).

(3) n� 3. In the three-dimensional phase space, there are
four types of attractors: stable points, limit cycles,
two-dimensional tori, and strange attractors. Lya-
punov exponents correspond to
(λ1, λ2λ3)� (− , − , − ) − a stable fixed point;
(λ1, λ2λ3) � (0, − , − ) − a stable limit cycle;
(λ1, λ2λ3)� (0, 0, − ) − a stable two-dimensional torus;
(λ1, λ2λ3)� (+, 0, − ) − a strange attractor.

The analytical determination of Lyapunov exponents for
most problems is not possible because for this it is necessary
to know the analytical solution of the differential equations
system. However, there are quite reliable algorithms that
allow one to find all Lyapunov exponents using numerical
methods.

3.3. Methods of Analysis of Lyapunov Exponents

3.3.1. Wolf’s Method. In [12], Alan Wolf and his coauthors
proposed an algorithm that allows one to estimate non-
negative Lyapunov exponents based on time series. In their
work, the authors show that Lyapunov exponents are as-
sociated with exponentially fast divergence or convergence
of neighboring orbits in phase space. Conceptually, the
method is based on a previously developed technique that
can only be applied to analytically defined model systems.
The long-term growth rates of small-volume elements in the
attractor are monitored.

The idea of the method is that the method calculates the
highest Lyapunov exponent from a sample of a single co-
ordinate and is used when the equations of the system
evolution are unknown and all its phase coordinates cannot
be measured.

Let there be a time series x(t), t � 1, N of one coor-
dinate measurements of the chaotic process, made at equal
time intervals. The time delay τ is determined by the mutual
information method, and the dimension of the embedding
space m is determined by the method of the nearest false
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neighbors. As a result of reconstruction, we obtain a point
set in the space Rm:

xi � x(i), x(i − τ), . . . , x[i − (m − 1)∗ τ]{ }

� x1(i), x2(i), . . . , xm(i)􏼂 􏼃
1
2
,

(8)

where i � [(m − 1)τ + 1], N .
Choose a point from sequence (8) and denote it by x0.

Looking through sequence (8), we can find a point 􏽥x0, such
that the relation 􏽥x0 − x0 � ε0 < ε holds true, where ε is a fixed
quantity much smaller than the reconstructed attractor size.
It is also necessary that the points x0 and 􏽥x0 should be
separated in time. After that, the evolution of these points on
the reconstructed attractor is monitored until the distance
between them exceeds a predetermined value εmax. We
denote the obtained points as x1 and 􏽥x1, the distance be-
tween them as ε0′, and the evolution time interval as T1.

After this, sequence (8) is considered again and a point
􏽥x1′, close to x1, is found such that 􏽥x1′ − x1 � ε1 < ε. The
vectors 􏽥x1 − x1 and 􏽥x1′ − x1 should have, if possible, the same
direction. Next, the procedure is repeated for the points
x1 and 􏽥x1′.

Repeating the described procedure, a large number of
times M, the first Lyapunov exponent is evaluated as

λ �
􏽐
M− 1
k�0 ln εk′/εk( 􏼁

􏽐
M
k�1Tk

. (9)

3.3.2. Rosenstein’s Method. The Rosenstein method [19] is
simple to implement and shows a good calculation speed;
however, the result of its work is not a numerical value of λ1,
but a certain function of time:

y(i,Δt) �
1
Δt
〈ln dj(i)〉,

dj(i) � min
xj

xj − xj′
�����

�����,

(10)

where xj is a current point and xj′ is one of its “neighbors.”
The algorithm is based on the relationship of dj and Lya-
punov exponents: dj(i) ≈ eλ1(iΔt). For evaluation, the nearest
neighbor of the current point is used. The first Lyapunov
exponent is proposed to be calculated as the inclination
angle of its most linear section. Finding such a site turns out
to be a nontrivial task, and sometimes it is not possible to
indicate such a site at all.

3.3.3. Sano–Sawada Method. This method was proposed in
[34, 35]. The method essence is reduced to the following
algorithm. A phase space sphere having a small radius ε is
selected. After a number of iterations m, some operator Tm
transforms this sphere into an ellipsoid with a1, . . . , ap
semiaxes. The sphere will stretch along the axes a1, . . . , as > ε,
where s is the number of positive Lyapunov exponents, if any.
For sufficiently small ε, the operator Tm will be close to the
sum of the shift operator and the linear operator A. The
Lyapunov exponents are estimated by averaging the

eigenvalues of the operator A over the entire attractor.
Suppose that there is some vector ςj. We find the set of
vectors ςki􏼈 􏼉(i � 1, . . . , N) that fall into its neighborhood.
We obtain a set of vectors yi ≡ ςki − ςj, where yi ≤ ε. Afterm
iterations operator, Tm maps vector ςj into the vector ςj+m,
and vector ςki maps into the vector ςki+m. Consequently, the
vectors yi transform into yi+m � ςki+m − ςj+m. If the radius ε
is small enough, we can assume that there is a linear op-
erator Aj such that yi+m � Ajyi. Operator Aj describes the
system in variations. To estimate the operator A we use the
least squares method:

min
Aj

S � min
Aj

1
N
􏽘

N

i�0
yi+m − Ajyi􏼐 􏼑

2
. (11)

We obtain an equation system of dimension n × n of the
following form:

AjV � C, (V)kl �
1
N
􏽘

N

i�1
y
k
i y

l
i,

(C)kl �
1
N
􏽘

N

i�1
y
k
i+my

l
i,

(12)

where V, C are n × n-dimensional matrices, yki is the k-st
component of the vector yi, and yki+m is the k-st component
of the vector yi+m. Let A be a solution to these equations,
then Lyapunov exponents can be calculated by the following
formula:

λi � lim
n⟶∞

1
nτ
􏽘

n

j�1
ln Aje

j
i , (13)

where ej􏽮 􏽯 is the set of basis vectors in the tangent space ςj.
When implementing the algorithm, one can do the same

as when calculating Lyapunov exponents analytically given
systems of ordinary differential equations. An arbitrary basis
es{ } is chosen. Next, it is necessary to monitor the change in
the vector lengthAjes. As the vectors Ajes grow and their
orientation changes, it is necessary to carry out their or-
thogonalization and renormalization using, for example, the
Gram–Schmidt procedure. After receiving a new basis, the
procedure is repeated.

3.4. Analysis of Classical Systems Using Methods for Cal-
culating Lyapunov Exponents. Since the work is devoted to
the study of EEG signals in focal structural epilepsy by
analyzing the Lyapunov exponent’s spectrum and there is no
single developed method for calculating Lyapunov expo-
nents, the question arises of choosing a method that would
most accurately allow us to analyze the problem mentioned
above. The choice of the method for calculating Lyapunov
exponents will be carried out using classic problems as an
example: logistic map, Rössler attractor, and Hénon map
using three methods: Wolf, Rosenstein, and
Sano–Sawada.

3.4.1. Logistic Map. The logistic map [29] describes how the
population size changes over time:
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Xn+1 � RXn 1 − Xn( 􏼁. (14)

The calculations of the first Lyapunov exponent were
carried out for R� 4. Table 1 shows the values of the first
Lyapunov exponent. As can be seen from the table, the
Rosenstein method and the Sano–Sawada method give the
closest results.

3.4.2. Rössler Attractor. The Rössler differential equations
are studied [31]:

_x � − y − z,

_y � x + ay,

_z � b + z(x − c).

⎧⎪⎪⎨

⎪⎪⎩
(15)

The calculations were performed for the parameters:
a� b� 0.2 and c� 5.7.

Table 2 shows the first Lyapunov exponents calculated by
three methods, all of them have positive values. Also in
Table 2, for the Rössler attractor, the Lyapunov exponent
spectrum is calculated by the Sano–Sawada method.

3.4.3. Hénon Map. The Hénon map [30] takes a point with
coordinates (Xn, Yn) and maps it to a new point according
to the law:

Xn+1 � 1 − aX
2
n + Yn,

Yn+1 � bXn.
(16)

The following parameters were used for the calculation:
a� 1.4, b� 0.3.

Since the equations do not describe any real system, the
parameters are simply numbers. Table 3 shows the first
Lyapunov exponents calculated by three methods, all of
them have positive values. The Rosenstein method and the
Sano–Sawada method give the closest results. Also in Table 3,
for Hénonmap by the Sano–Sawada method, the spectrum of
Lyapunov exponents was calculated.

The values of the highest Lyapunov exponent calculated
by the Rosenstein method, the Wolf method, and the
Sano–Sawada method for classical problems are in good
agreement with each other. Along with the indicated
methods for calculating Lyapunov exponents, there is the
Kantz method [9] and the modified neural network method
[36]. It is worth noting that the calculation of the Lyapunov
exponent spectrum using the modification of neural net-
works takes a longer time compared to the Sano–Sawada
method. Due to the fact that the Sano–Sawada method is
simpler to implement and takes the least time to calculate, it
is most preferable for calculating the spectrum of Lyapunov
exponents.

4. Multiscale Entropy (MSE)

According to themethod of calculating of multiscale entropy
(MSE) presented in [37], for a given discrete time series
x1, . . . , xi, . . . , xN􏼈 􏼉, a sequence from the simplified time
series y(τ)􏼈 􏼉 is determined relative to the scaling parameter τ.

The initial time series is divided into nonoverlapping win-
dows of length τ, and then the values are averaged for each
window. Thus, each element of the simplified time series is
calculated by the following formula:

y
(τ)
j �

1
τ

􏽘

jr

i�(j− 1)τ+1
xi, 1≤ j≤

N

τ
. (17)

For the first scale, the time series y(1)􏼈 􏼉 is equivalent to
the original time series. The length of each time series
corresponds to the length of the original time series divided
by the scaling parameter τ.

The quantitative measure calculation of entropy SE for
each simplified time series is carried out according to the
following formula:

SE(m, r, N) � ln
􏽐
N− m
i�1 n′mi

􏽐
N− m
i�1 n′m+1i

, (18)

where m is the increment of the data vector length, r is the
cell size in the phase space (error), and n′mi is the probability
of repeating a given length data sequence in the source data.

5. Lempel–Ziv Complexity (LZC)

In [38], Lempel and Ziv proposed a measure of the patterns
complexity for finite length sequences. Later, Kaspar and
Schuster developed an algorithm for computing LZC on a
computer, which determined the measure of complexity
[39]. LZC calculates the quantity of new images, i.e., seg-
ments that are not consistently represented in all previous
data. In this algorithm, the EEG signal x(n){ } is converted
into a binary sequence s(n){ } by comparison with the av-
erage value of the signal m. After obtaining the binary se-
quence, the corresponding measure of complexity c(n) is
increased by one until a new sequence is detected. The
sequence search process is repeated until the last time the
series character has been read. LZC is defined as

LZC �
c(n)

b(n)
, (19)

Table 1: The first Lyapunov exponent for logistic mapping.

The first Lyapunov exponent
Wolf Rosenstein Sano–Sawada
LLE: 0.99683 LLE: 0.690553 LES: 0.69317

Table 2: The first Lyapunov exponent for the Rössler attractor.

The first Lyapunov exponent
Wolf Rosenstein Sano–sawada
LLE: 0.05855 LLE: 0.0726 LES: 0.099851; − 0.014317; − 0.72266

Table 3: The first Lyapunov exponent for the Hénon map.

The first Lyapunov exponent
Wolf Rosenstein Jacobian
LLE: 0.38788 LLE: 0.414218 LES: 0.42703; − 1.5717
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where b(n) � n/log2(n).

6. Analysis of the EEG Signals of a Patient with
Epilepsy Using Lyapunov Exponents, Multiscale
Entropy, and Lempel–Ziv Complexity

We study fragments of EEG signals containing pathological
changes in the “sharp wave” (according to the international
classification of EEG disorders, Luders H, Noachtar S, 2000)
of the patient, who suffered from epilepsy during 2014–2019
in order to study the general patient condition. EEG re-
cordings were taken once a year in interictal periods. During

the recording of the EEG, many factors had been influencing
the patient’s condition, including changes in therapy: a
combination of medicaments and their doses. The study was
carried out using nonlinear dynamics methods, namely, the
Lyapunov exponent’s analysis, multiscale entropy, and
Lempel–Ziv complexity.

For each year under consideration, Lyapunov’s first
exponents (Le1) were calculated in each channel by three
methods: Rosenstein (blue line), Sano–Sawada (red line),
and Wolf (green line). Figures 3 and 4 show the results for
2015 and 2018 years, respectively. The first Lyapunov ex-
ponents calculated by the Wolf and Sano–Sawada method
are close to each other, and only in some channels the values
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Figure 3: First Lyapunov exponent for 2015.
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Figure 4: First Lyapunov exponent for 2018.
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by the Sano–Sawada and Rosenstein methods coincide. The
“sharp wave” pattern on the EEG is observed in the F7
channel (Figure 5), and on the charts of the first Lyapunov
exponent calculated by the Rosenstein and Sano–Sawada
method, a local minimum is reached in the F7 channel
(Figures 3(a) and 4(a)). The Rosenstein method gives the
widest range of values across channels [5∗10− 2; 6∗10− 1]
(Figures 3(a) and 4(a)).

In the graph of the Lyapunov exponent calculated by
the Rosenstein method, in 2015 (Figure 3(a)), local
maxima are observed in the channels P4, C4, C3, Fp2, T6,
F8, Pz, and Fz; and in 2018 (Figure 4(a)), only in the
channels P3, C4, T5, F8, and Pz, thus the average value
becomes closer to zero, which characterizes the disease
spread to other brain areas. Qualitatively, the distribution
of the first Lyapunov exponent over the channels, cal-
culated by the three methods, coincides. The value of the
first Lyapunov exponent calculated by the Sano–Sawada
method has a negative value in some channels
(Figures 3(a) and 4(a)), which is a measure of the average
exponential convergence of the trajectories to the
attractor. All this indicates a trend of worsened patient
condition. On the joint figures (Figures 3(a) and 4(a)), due
to the smallness of the first Lyapunov exponent values
calculated by the Wolf method, the line corresponding to
it is straightened. Therefore, to see the distribution nature
over the channels, a graph of the first Lyapunov exponent
is calculated by the Wolf method only (Figures 3(b) and
4(b)). The Wolf method has low sensitivity, and the first
Lyapunov exponent values are in the range [− 1∗ 10− 3;
3∗10− 3], that is, very close to zero. In 2018, according to
the Wolf method, the first Lyapunov exponent in channel
T3 is zero (Figure 4(b)), i.e., the signal is harmonic, and
this fact is in good agreement with the neuroimaging data
that the patient has structural changes in the left temporal
region.

However, it is worth noting that pathological electrical
activity from one brain zone extends to the remaining zones
and has a significant effect, so it makes sense to study the

average value of the Lyapunov exponent for all channels. In
2014, a “sharp wave” pattern was observed for the patient on
the EEG in the F7, T3, and F3 channels, and the response of
this wave is also extended to the right hemisphere channels
T4, T6, and O2, which is confirmed by the closeness to the
zero value of the first Lyapunov exponent in these channels
calculated by the Rosenstein method (Table 4). Similar results
were obtained for the remaining years, and there is a tendency
to increase zones in which the Lyapunov exponent is close to
zero, which characterizes the general deterioration of the
patient’s condition. Table 4 shows the distribution of Lya-
punov exponents for each channel over the scalp surface. To
visualize the obtained data in the Matlab software package,
algorithms for constructing topographic images of Lyapunov
exponents were implemented in accordance with electrodes
arrangement in Figure 2.The values at the intermediate points
were interpolated using a spherical spline. The minimum
values are shown in blue and themaximum values in dark red.

Consider the average across all channels of the first
Lyapunov exponent calculated by three methods: Rosenstein
(blue line), Sano–Sawada (red line), andWolf (green line). Let
us construct the distribution diagrams over the years of the
obtained average value for the first Lyapunov exponent
(Figure 6). Qualitatively, the Sano–Sawada and Rosenstein
methods give similar results (Figure 6(a)). In 2015 and 2017,
there are local minima (Figure 6(a)), which characterizes the
deterioration of the patient’s condition. During this period,
the patient had more frequent focal seizures with impaired
consciousness and bilateral tonic-clonic seizures resumed
(Figure 1). All three methods give positive values of the first
Lyapunov exponent; however, the general trend in the values
distribution from 2014 to 2019 years indicates the values tend
to zero (Figure 6(a)) and the Wolf method gives results very
close to zero throughout all years (Figure 6(b)), which in-
dicates a trend towards signals “harmonization”, i.e., wors-
ening of the patient whole condition.

In the future, due to the fact that all three methods
qualitatively show one trend, we will calculate the Lyapunov
exponent spectrum by the Sano–Sawada method. It is worth

Figure 5: EEG fragment of a patient with epilepsy.
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noting that the value of the first Lyapunov exponent depends
on the amount of calculated exponents in the spectrum.
Here are the graphs of the Lyapunov exponents spectrum
(Le1-Le7) calculated by the Sano–Sawada method in each
channel for 2015 (Figure 7) and 2018 (Figure 8) years, as well
as the spectrum distribution of the averaged Lyapunov
exponents over the channels for the years 2014–2019 (Fig-
ure 9). As can be seen from the graphs, the first Lyapunov
exponent (Le1) has a positive, but close to zero value. The
remaining exponents, starting from the second, (Le2-Le7)

have negative values. The channel-averaged values of the
Lyapunov exponent’s spectrum during 2014–2019 (Figure 9)
tend to zero, which again indicates a deterioration in the
patient’s condition.

To estimate the EEG signals complexity, we apply al-
gorithms for calculating multiscale entropy (MSE) and the
Lempel–Ziv complexity measure (LZC). EEG signals can be
represented at various spatial and temporal scales, so their
complexity is also multiscale. Given this statement, MSE
analysis was carried out for various scales d � 2, . . . , 5 (see
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Figure 6: Distribution of the channel-averaged values of the first Lyapunov’s exponents by three methods for 2014–2019 years.
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Figure 10(a)). The analysis of the plots of the channel-av-
eraged MSE value for every considered year (see
Figure 10(a)) shows that the increase of the scaling coeffi-
cient above d � 4 is redundant, as convergence of entropy
values is reached. Thus, the following parameters are used
for the entropy analysis: embedding dimensionm� 20, error
r� 0.4, and scaling coefficient d� 3.

When calculating the Lempel–Ziv complexity (LZC),
normalization of values was used. A decrease in entropy and
an increase in the Lempel–Ziv complexity characterize a
decrease in the signal randomness. The average value graph
across all channels of the Lempel–Ziv complexity has a local
maximum in 2015 and 2018 years (Figure 10(b)), and
multiscale entropy has a local minimum in 2016 and 2018
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(Figure 10(a)), which is well comparable with the dynamics
of patient seizures (Figure 1). In 2017, the patient experi-
enced remission of tonic-clonic seizures, which is in good
agreement with the LZC graph (local minimum in 2017) and
the MSE graph (local maximum in 2017).

7. Conclusion

In the present work, for the first time, an investigation was
made for EEG signals containing pathological changes in the
“sharp wave” for a patient with focal epilepsy for several
years using methods of nonlinear dynamics (analysis of the
spectrum of Lyapunov exponents, Lempel–Ziv complexity,
and multiscale entropy). A unified approach to the analysis
of EEG signals based on the above methods was developed,
which can be used for the early detection of structural
changes in the brain and treatment effectiveness prediction.

For the first time, to obtain the results reliability, the
analysis of Lyapunov exponents was carried out by several
different methods (Wolf, Rosenstein, and Sano–Sawada). It
was revealed that the Rosenstein method is the most in-
formative for the zones localization of abnormal activity, and
the Sano–Sawada method well describes the general trend in
the condition change of a patient with epilepsy. Such
characteristics as MSE and LZC are informative when
comparing the patient’s condition in the current year with
the previous one.

Using the methods of nonlinear dynamics, it was
revealed that the deviations are located in the temporal parts
of the hemispheres, which advise the channels T3 and T4.
This is confirmed by high-resolution brain MRI according to
the epileptological program: structural changes in the
temporal region were revealed in the form of a combination
of focal cortical dysplasia of the left temporal lobe medi-
obasal parts and left hippocampal sclerosis, as well as
metabolic disorders of the right hippocampus.

The results obtained using the proposed methodology
(analysis of the Lyapunov exponents spectrum, multiscale

entropy, and Lempel–Ziv complexity) showed deterioration
in the patient’s condition during the period under review,
which is in good agreement with the medical report.

The developed software package based on the proposed
methodology can be used in the medical epilepsy diagnosis,
as well as a qualitative therapy selection.
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Attractor, «Chaos and Fractals: New Frontiers of Science»,
pp. 636–646, Springer, Berlin, Germany, 2004.

[32] A.O. Lpmnp[prpc, “Pb ;otrpVjj oa fejojxu crfnfoj

lal nftrjyfslpn jocarjaotf actpnprvjinpc,” EAO

SSSR, vol. 124, pp. 754-755, 1959.
[33] 6. Γ. Sjoak, “P Vpo>tjj ;otrpVjj ejoanjyfslpk

sjstfn9,” EAO SSSR, vol. 124, pp. 768–771, 1959.
[34] J.-P. Eckmann and D. Ruelle, “Ergodic theory of chaos and

strange attractors,” Reviews of Modern Physics, vol. 57, no. 3,
pp. 617–656, 1985.

[35] S. Sato, M. Sano, and Y. Sawada, “Practical methods of
measuring the generalized dimension and the largest Lya-
punov exponent in high dimensional chaotic systems,”
Progress of Theoretical Physics, vol. 77, no. 1, pp. 1–5, 1987.

[36] J. Awrejcewicz, A. Krysko, N. Erofeev, V. Dobriyan,
M. Barulina, and V. Krysko, “Quantifying chaos by various
computational methods. Part 1: simple systems,” Entropy,
vol. 20, no. 3, p. 175, 2018.

[37] S. H. Na, S. H. Jin, S. Y. Kim, and B.-J. Ham, “EEG in
schizophrenic patients: mutual information analysis,” Clinical
Neurophysiology, vol. 113, no. 12, pp. 1954–1960, 2002.

[38] A. Lempel and J. Ziv, “On the complexity of finite sequences,”
IEEETransactions on information theory, vol. 22, pp. 75–81, 1976.

[39] F. Kaspar and H. G. Schuster, “Easily calculable measure for
the complexity of spatiotemporal patterns,” Physical Review
A, vol. 36, no. 2, 1987.

The Scientific World Journal 13


