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Lateralised dynamic modulations 
of corticomuscular coherence 
associated with bimanual learning 
of rhythmic patterns
Olivia Morgan Lapenta1,4*, Peter E. Keller1, Sylvie Nozaradan1,2 & Manuel Varlet1,3

Human movements are spontaneously attracted to auditory rhythms, triggering an automatic 
activation of the motor system, a central phenomenon to music perception and production. Cortico-
muscular coherence (CMC) in the theta, alpha, beta and gamma frequencies has been used as an index 
of the synchronisation between cortical motor regions and the muscles. Here we investigated how 
learning to produce a bimanual rhythmic pattern composed of low- and high-pitch sounds affects CMC 
in the beta frequency band. Electroencephalography (EEG) and electromyography (EMG) from the 
left and right First Dorsal Interosseus and Flexor Digitorum Superficialis muscles were concurrently 
recorded during constant pressure on a force sensor held between the thumb and index finger while 
listening to the rhythmic pattern before and after a bimanual training session. During the training, 
participants learnt to produce the rhythmic pattern guided by visual cues by pressing the force sensors 
with their left or right hand to produce the low- and high-pitch sounds, respectively. Results revealed 
no changes after training in overall beta CMC or beta oscillation amplitude, nor in the correlation 
between the left and right sides for EEG and EMG separately. However, correlation analyses indicated 
that left- and right-hand beta EEG–EMG coherence were positively correlated over time before 
training but became uncorrelated after training. This suggests that learning to bimanually produce a 
rhythmic musical pattern reinforces lateralised and segregated cortico-muscular communication.

Human movements are spontaneously attracted by rhythmic sensory stimulation. It has been shown that syn-
chronisation even occurs when instructed to avoid it or focusing on another rhythm1–3. Notwithstanding, some 
are more conducive to synchronisation than others, such as musical rhythms or biological rhythms. Based on 
cortical and subcortical connections between the auditory and motor system, auditory inputs can entrain motor 
responses, as evidenced by voluntary and involuntary movement synchronisation to auditory rhythms1,3–6. This 
automatic activation of the motor system in response to sensory sequences is a consequence of sensorimo-
tor entrainment7–9. Such entrainment supports the perception and production of complex auditory sequences, 
including music that are coordinated intra-personally (e.g., the two hands of a percussionist) and interpersonally 
(between ensemble co-performers)10,11.

Previous research has provided important insights into the contribution of the motor system in the neural 
processing of auditory rhythms even without overt movement or the intention to move. Neuroimaging studies 
demonstrated that motor areas are activated during both rhythm perception and production12–16. For example, 
the basal ganglia and supplementary motor area are activated in beat perception, and such activation is greater for 
musicians than non-musicians17. Magnetoencephalographic (MEG) studies also showed that listening passively 
to auditory rhythms modulates the amplitude of neural oscillations in the beta range (15–30 Hz)18,19 that are 
involved in movement perception and production20. Furthermore, studies using Electroencephalography (EEG) 
showed selectively enhanced neural activity in response to a rhythmic pattern after a movement training in which 
participants were trained to move at these specific frequencies marking a metrical interpretation of the rhythm21.

Although there is considerable evidence for activity in motor cortices induced by auditory rhythmic stimuli, 
how these responses transfer at muscular level remains unclear. Not investigated yet in the context of sensorimo-
tor entrainment, cortico-muscular coherence (CMC) is potentially a powerful approach to address this question. 
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Coherence is a correlation measure between frequency domain representations of different signals and CMC 
is conventionally used as an index of the synchronization between cortical motor regions and associated body 
muscles22. CMC has been proposed to reflect efficiency of neural communication, such that increased coherence 
between activity of different neural assemblies would reflect their mutual information transfer23,24. Although 
CMC has been investigated within different frequency bands, including theta25, alpha26, beta27,28, and gamma29,30, 
previous research generally focused on the beta range, which shows greater CMC magnitude24,26,27,31. CMC is 
assumed to reflect the coupling between motor activity from the central neural system and muscle discharges24. 
In other words, increased coherence between brain and muscle activity reflects more efficient brain-muscle 
information transfer. Consistent with this proposal, previous studies showed oscillatory interaction between EEG 
or MEG and Electromyography (EMG) during sustained contraction27,32,33, and that auditory distractors trigger 
rapid and automatic EMG responses in finger flexor muscles, along with increased CMC in the beta range34. 
Further, it has been argued that insights into muscle synergies gained through the investigation of functional 
connectivity and motor coordination benefit from complementary information associated with CMC and inter-
muscular coherence (IMC) for homologous muscles35,36.

In sum, it is well known that audio-motor entrainment is central to rhythm perception and production. In the 
context of music more specifically, it has been shown that the strength with which the motor system responds, 
overtly and covertly, is affected by musical expertise37,38. Musicians have enlarged somatosensory cortical rep-
resentations of the fingers involved in playing their instrument, and also larger auditory cortical areas respond-
ing to music-related acoustic stimuli when compared to non-musicians39. Considering that precise temporal 
audio-motor coordination and integration are necessary to perceive and produce rhythms in synchrony38,40, one 
could suggest a bidirectional influence where music training reinforces neural pathways related to sensorimotor 
entrainment. In fact, a previous fMRI study demonstrated that auditory-only and motor-only (music related) 
tasks engage the secondary motor (pSMA, PMv, PMd) and auditory cortex, respectively, and that such transmodal 
activity is significantly stronger in skilled pianists when compared to non-musicians41. Lahav and colleagues42 
demonstrated similar audio-motor transmodal activations in musically naive subjects. Specifically, after brief 
training at playing a piano piece by ear, passive listening to the trained music resulted in activation of additional 
frontoparietal motor-related regions42. Finally, a MEG study showed greater music-elicited mismatch negativity 
(a negative event-related potential that is generated by the brain’s response to changes in auditory stimulation 
exceeding a certain limit roughly corresponding to the behavioural discrimination threshold43) in the auditory 
cortex after sensorimotor-auditory training compared to auditory training alone44. This data demonstrates the 
functional connection between auditory and motor systems, and that sensorimotor-auditory training promotes 
plasticity within the auditory cortex to a greater extent compared to auditory training alone, thus suggesting that 
learning predictions about upcoming musical events actively involves the motor system44.

Therefore, we propose that learning how to play an auditory rhythmic pattern where the right and left hands 
are used to play two different sounds of the pattern would promote specific entrainment of cortico-muscular com-
munication with right and left hand muscles while listening to the learnt pattern. In order to test this hypothesis, 
we exposed non-musicians to a rhythmic pattern composed of two sounds (low-pitch and high-pitch percussion 
sounds) while concurrently recording EEG and EMG activity from two muscles at right and left hands and arms. 
Recordings were made before and after a training session where participants learnt how to play the rhythmic 
pattern guided by visual cues by pressing the force sensors with their left or right hands in order to produce the 
low- and high-pitch sounds, respectively. We evaluated short-term effects of audiomotor rhythmic learning in 
laterality-specific motor entrainment at cortical and muscular levels by means of the magnitude of brain oscil-
lations, and of cortico-muscular and inter-muscular coherence, in the beta frequency range. We expected more 
beta desynchronisation and higher beta CMC when listening after training, indicating that learning the rhythm 
promotes greater entrainment. We also expected that entrainment would become more specific after training, 
as reflected by selective modulation of the beta cortico-muscular communication for the right and left hands 
while listening, according to the sounds that they have learnt to play. In order to examine whether bimanual 
training promotes lateralised entrainment and beta cortico-muscular modulations, we performed between-hand 
correlations to test integrated vs. segregated pattern before and after training, respectively.

Methods
Participants.  Thirty-two subjects were invited to participate in the experiment, which was performed in 
accordance with the Declaration of Helsinki and approved by the Human Research Ethics Committee at Western 
Sydney University (reference #H10487). All participants gave their written informed consent and complied with 
the following criteria: age between 18 and 50 years, right-handed, normal or corrected-to-normal visual acuity, 
and no known past or current auditory impairment, psychological or psychiatric disorders, and central nerv-
ous system injury, with no formal or informal musical training. Five participants were excluded from the initial 
sample as their EEG and/or EMG signals presented abnormal excessive noise and artifacts due to loose EEG 
ground electrodes and/or EMG electrodes for more than 50% of the listening trials. Therefore, the final sample 
comprised 27 participants (12 male) aged between 19 and 41 years (M = 30.63, SD = 4.32).

EEG and EMG recordings.  Electrophysiological (EEG) and Electromyographic (EMG) data were recorded 
with a BioSemi ActiveTwo system (BioSemi, The Netherlands). EEG was recorded by means of 64 active Ag–
AgCl electrodes placed on the scalp according to the International 10/20 system. EMG was recorded using 8 
external Ag–AgCl channels. EMG electrodes were positioned over the right and left First Dorsal Interosseous 
(FDI) and Flexor Digitorum Superficialis (FDS)32,45 following a classic belly-tendon montage. Both muscles are 
involved in the pincer movement needed to hold the sensor and playing the sequence. Whereas FDI is more 
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superficial, facilitating recording, previous studies showed CMC effects on FDS45, therefore we opted to include 
both. EEG and EMG data were recorded at a sampling rate of 2048 Hz, and stored for offline analysis.

Stimuli and procedure.  The sound of a single strike from a surdo and a bongo (percussion instruments) 
were used to create a rhythmic pattern composed of low-pitch (approximately 90 Hz fundamental frequency) 
and high-pitch sounds (approximately 430 Hz fundamental frequency), respectively, each with 500 ms dura-
tion consisting of a sharp onset (~ 10 ms rise time) for both sounds followed by a rapid decay for the high-pitch 
sound (~ 60 ms) and a slower decay (~ 350 ms) for the low-pitch sound (see Fig. A in Supplementary Material 
for further details). The tones were equalised for perceived loudness following the Cambridge loudness model46 
also applied in similar research47,48 using Matlab (The MathWorks Inc., Natick, MA, USA). The sounds were then 
arranged in a 5 s pattern composed of “XO.OX.O.O.XX” where “X” represents the low-pitch sounds (i.e., surdo); 
“O” the high-pitch sounds (i.e., bongo); and “.” a silence period of 250 ms.

The pattern was presented in two categories of trials: (1) Listening trial with a total duration of 2 min, com-
posed only of auditory stimuli, containing 24 concatenated repetitions of the pattern (before presentation of the 
stimuli, participants were explicitly informed that the rhythm was repeated over time); and (2) Training trial with 
a total duration of 1 min. The training trial started with 20 s containing 4 repetitions of the pattern accompanied 
by visual stimuli, consisting of dots that flashed at the left-hand side of the screen for low-pitch sounds and at 
the right-hand side of the screen for high-pitch sounds. The initial 20 s of training trial were directly followed 
by 40 s without visual stimuli, where participants were instructed to continue producing the pattern by pinching 
the force sensors, with the left sensor producing the low-pitch sound (i.e., surdo) and right sensor producing the 
high-pitch sound (i.e., bongo), while receiving auditory feedback of their produced rhythm. Participants were 
instructed to adjust their pressure timings to best match the previously listened pattern. Auditory stimuli were 
delivered binaurally via insert earphones (ER‐1, Etymotic Research, Elk Grove Village, IL, USA) at a comfortable 
but clearly audible intensity that was the same for all participants. Visual stimuli were red (RGB: 255,0,0) dots 
with 5 cm of diameter presented on a VIEWPixx monitor (VPixx Technologies, Saint-Bruno, Canada) with a 
120 Hz refresh rate and appeared for 14 frames (i.e., about 117 ms).

Upon arrival, all participants were informed about the procedure and provided written informed consent. 
After EEG and EMG preparation, participants were asked to sit comfortably on a chair at a distance of approxi-
mately 60 cm from the monitor. They were given two pressure sensors to hold between the index finger and 
thumb. The force sensors consisted in wide bar load cells (HTC-Sensor TAL201, Colorado, USA) connected to 
an Arduino Duemilanove board (Arduino, Ivrea, Italy) via an amplifier shield (Load Cell/Wheatstone Amplifier 
Shield, RobotShop, Mirabel, Quebec, Canada). Participants then received verbal and on-screen instruction to 
pinch with both hands at their maximum force in three consecutive pre-trials of 5 s. The maximum force recorded 
in each of the three 5 s pre-trials were averaged and used in the following experimental trials.

Before each Listening trial (both pre- and post-training), two feedback bars on the right and left-hand sides 
of the screen were presented and participants had to adjust the pressure applied to the sensor to match 10% of 
their maximum force. Trials only began once the exerted force for both hands equated 10% ± 7% of the maximum 
force. Although the feedback bars disappeared upon the beginning of the trial, participants were instructed to 
maintain this constant pressure during the entire trial. Participants were only instructed to maintain the pressure 
as steady as possible and no other instructions related to the auditory stimuli were given in these trials.

For the Training trials, participants were instructed to play along with the auditory pattern by pinching the 
force sensors with the help of the right and left visual stimuli flashing to indicate which sensor had to be pinched. 
They were warned that after four repetitions the visual cue would disappear and that they should keep playing 
the same rhythmic pattern.

The task was elaborated to contain 8 trials lasting 2 min each in a pre-training Listening condition, and 8 
trials lasting 2 min each in a post-training Listening condition. To learn how to produce the pattern, 8 consecu-
tive Training trials of 1 min each were presented after the pre-training condition and 7 additional trials of 1 min 
each were presented in alternation with the listening trials in the post-training condition (see Fig. 1) in order to 
reinforce learning and maintain participants’ engagement. The experiment was programmed in C++ on a Mac-
Book Pro laptop (Apple Inc., California, USA). Participants took roughly 1 h to complete the task, and the EEG 
and EMG preparation varied between 30 and 50 min. Therefore, the experiment was in total within 1.5–2 h long.

Training data processing and analysis.  To evaluate if training was effective at allowing participants to 
learn how to play the pattern, we computed, for each hand and trial, the absolute time difference between the 
inter-sound intervals the participant was supposed to perform and the ones the participant actually produced. 
Following this, we averaged the mean absolute time difference of the right and left hands for each trial. Outliers 
were identified as any data point more than 1.5 interquartile range (IQR) below the first quartile or above the 
third quartile. To evaluate if task performance improved significantly across training, we performed a paired-
sample t-test contrasting the first and last trial mean absolute time difference.

EEG and EMG data processing.  Data was processed using the Fieldtrip toolbox for EEG/EMG analysis49 
in the MatLab software environment (The MathWorks, Natick, USA). Listening data was segmented in epochs of 
120 s from the beginning of the sound pattern. EEG channels with excessive noise were interpolated by the mean 
of surrounding channels; a maximum of 6 EEG channels per participant was interpolated (M = 1.55, SD = 1.39 of 
interpolated channels). Trials were considered invalid and rejected when visual inspection detected (1) peaks in 
EMG due to movement or loss of contact or (2) large waves in EEG due to issues with the reference or ground 
channels. Each participant had maximum 3 rejected trials per condition (M = 0.11, SD = 0.31 eliminated trials 
due to poor EEG quality; M = 0.29, SD = 0.76 eliminated due to poor EMG quality). Independent component 
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analysis was performed using the FASTICA algorithm, as implemented in Fieldtrip, to identify and remove eye 
blink and lateralised eye movement artefacts. The average number of ICA components removed per participant 
was of 1.93 (SD = 0.60). A 0.1 Hz and 10 Hz high-pass filter was applied for EEG and EMG, respectively. We fil-
tered EMG signals below 10 Hz to avoid possible movement-related interferences, which is a common approach 
in EMG and cortico-muscular (EEG–EMG and MEG–EMG) coherence studies focusing on beta and faster 
frequencies27,45,50,51. Both EEG and EMG data were notch filtered to remove 50 Hz power contamination and its 
harmonics. EEG data was re-referenced to the average of all EEG channels, and each EMG belly channel was 
referenced to the corresponding tendon channel and then rectified52. All data was downsampled to 1000 Hz and 
stored for further analyses.

Time–frequency analyses, as implemented in Fieldtrip, were conducted on EEG and EMG channels to 
retrieve oscillatory activity within 10–50 Hz and compute EEG–EMG and EMG–EMG coherence. A fast Fou-
rier transform (FFT) was computed on 250 ms window sliding by 10 ms steps, resulting in power spectra and 
cross-spectra with a 4 Hz frequency resolution. A multitaper method based on Slepian sequences as tapers was 
applied, for optimal spectral concentration of energy within a range of frequency space53, to compute the power 
and cross-spectra over time27,34,45. Three tapers in total were used, leading to a spectral smoothing of ± 6 Hz. The 
time–frequency maps obtained for each Listening condition (i.e., pre- and post-training) were then reshaped in 
24 windows of 5 s long (i.e. the length of the sound pattern), thus corresponding to the 24 repetitions of the sound 
pattern for each trial. Next, we computed the averaged power and coherence in the beta (16–36 Hz) frequency 
range over the 5 s window. For the beta band, we selected the 16–36 Hz range that contains both low and high 
beta ranges while avoiding high alpha45, which is in line with previous studies that reported beta oscillations, 
as well as beta cortico-muscular coherence, ranging from 15 to 35 Hz32,45,51,54. Further, this range was selected 
to capture the range of frequencies at which EEG–EMG coherence occurred across all participants (see Fig. B 
in Supplementary Material showing the mean and variability in the frequency range in which coherence was 
observed across participants). Channels C3 and C4 were used to examine cortical activities related to the right 
and left hand, respectively55,56. CMC was computed between C3 and right limb muscles, and between C4 and left 
limb muscles. The selection of C3 and C4 electrodes was based on the extensive literature showing C3 and C4 as 
main key loci for sensorimotor activity and CMC50,55, as seen in Fig. 4 showing maximum grand-averaged CMC 
at these electrodes for both FDI and FDS muscles. IMC was computed between right and left limb homologous 
muscles. All computations (i.e., EEG and EMG power, CMC and IMC) were performed for listening trials before 
and after training.

Broadband EMG responses were also examined to determine whether there was any modulation in partici-
pants’ muscular activity induced by the stimulus presentation despite being instructed to maintain a constant 
finger pressure. The envelope of the preprocessed EMG signals (i.e., 10 Hz high-pass filtered and rectified) was 
extracted using a Hilbert transform to capture global changes in the amplitude of muscular activity27,45. The 
envelopes of the different trials were then reshaped in windows of 5 s corresponding to the sound pattern and 
averaged together.

EEG and EMG power analysis.  EEG and EMG power data and EMG broadband data from all time-bins 
in response to the sound pattern were first averaged. We then performed repeated measures analyses of variance 
(rmANOVAs) to evaluate changes in EEG power, considering Training (Pre vs. Post) and Electrode (C3 vs. C4) 
as factors, and averaged beta power as the dependent variable. Analogously, for EMG we considered Training 
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Figure 1.   Experimental Design. Sound was delivered binaurally. Force sensors were held between index finger 
and thumb. EMG was recorded from left and right FDI and FDS muscles. EEG was recorded with 64 channels 
and analyses were conducted using C3 and C4 data. Listening (L) trials before and after the 8 training (T) trials 
were considered as pre and post-training, respectively.
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(Pre vs. Post), Muscle (FDI vs. FDS) and Hand (Right vs. Left) as factors, and averaged beta power, as well as 
broadband amplitude (i.e., envelope of the rectified EMG extracted with the Hilbert transform), as dependent 
variables.

We also computed the correlation coefficient between the EEG beta power at C3 and C4 over the time of the 
5 s pattern, and between the right and left FDI/FDS EMG power within the beta band and the broadband EMG 
before and after training for each participant to examine the degree of co-activation between the right and left 
hands at cortical and muscular levels.

Further, Bayesian equivalent tests were performed to report statistical evidence using Bayes factors (BFs), 
BF10 for paired sample comparisons and correlational analysis and BFincl for ANOVAs denoting the level of evi-
dence for the alternate hypothesis (non-signed difference), and the inclusion of a specific parameter in a model 
(ANOVA), respectively.

Cortico‑muscular and intermuscular coherence analyses.  As for the power analysis, we averaged all 
time-bins of the computed beta CMC for the left and right-hand muscles at their corresponding cortical repre-
sentation (C4 and C3, respectively). Following, rmANOVA was performed on the mean of CMC considering 
Training (Pre vs. Post), Muscle (FDI vs. FDS) and Hand (Left vs. Right) as factors.

To further examine the degree of integration/segregation between the two hands (i.e., if the bimanual action 
is elaborated as an integrated response of complementary information or segregated into different specialised 
modules57) and how it is modulated by training, we also computed the correlation coefficient between left and 
right FDI/FDS muscles on CMC data. Correlation coefficients were submitted to a rmANOVA with the factors 
Muscle (FDI vs. FDS) and Training (Pre vs. Post).

To evaluate changes in coherence between the muscles of the left and right hands before and after training, 
we averaged all time-bins of the computed IMC within the beta range and performed a rmANOVA considering 
muscle (FDI vs. FDS) and Training (Pre vs. Post) as factors.

Further, Bayesian equivalent tests were performed to report statistical evidence using Bayes factors (BFs), 
BF10 for paired sample comparisons and correlational analysis and BFincl for ANOVAs denoting the level of evi-
dence for the alternate hypothesis (non-signed difference), and the inclusion of a specific parameter in a model 
(ANOVA), respectively.

Results
Training effect on performance.  Data of the first trial showed a uniform and fairly symmetrical distribu-
tion with a kurtosis value of − 0.773 (SE = 0.872) and a skewness value of 0.071 (SE = 0.448). Data for the last trial 
showed a uniform but moderately positively skewed distribution, with a kurtosis value of − 0.415 (SE = 0.872) 
and a skewness value of 0.994 (SE = 0.448). No outliers were found.

A paired-sample t-test comparing the mean absolute time difference of the first and last training trials indi-
cated a significant decrease after training (t26 = 5.671, p < 0.001, d = 1.098), showing that participants learnt to 
produce the bimanual pattern (Fig. 2).

EEG beta power.  The ANOVA on the time-averaged EEG beta power considering Training (Pre vs. Post) 
and Electrode (C3 vs. C4) as factors revealed a significant main effect of Electrode, F1,26 = 6.155, p = 0.020, 
ηp

2 = 0.191, BFInc = 4.605, showing higher power at C3 (M = 1.040 SE = 0.149) compared to C4 (M = 0.887 
SE = 0.110). However, topographic maps suggest that source for such modulation was unspecific to motor areas 
and seems to originate from more frontal activity, and potentially residual of eye movements (see Fig. C in Sup-
plementary Material). No effect of Training (p = 0.211, BFInc = 0.541) nor for Electrode × Training interaction 
(p = 0.916, BFInc = 0.439) was observed.
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Figure 2.   Absolute time difference between the inter-sound intervals that participants were instructed to 
perform and the intervals that participants actually produced before and after training. The black dot and bars 
represent the mean and confidence interval. Grey dots represent averaged data for individual participants. The 
significant reduction on the absolute time differences throughout training indicate successful training with 
higher production precision gained through practice.
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The t-test between Pre and Post training on correlation coefficients between EEG beta power at C3 and C4 
indicated no difference in the interhemispheric correlation for beta power over the time of the 5 s sound pattern, 
t26 = 0.557, p = 0.582, d = 0.107, BF10 = 0.235.

EMG power.  Beta.  The ANOVA on EMG beta power considering Muscle (FDI vs. FDS), Hand (Right 
vs. Left), Training (Pre vs. Post) as factors revealed a main effect of Muscle, F1,26 = 39.85, p < 0.001, ηp

2 = 0.605, 
BFInc = 1.66e+13, showing greater power for FDI (M = 240.282 SE = 37.558) compared to FDS (M = 3.540 
SE = 0.682). No effect of Hand (p = 0.927, BFInc = 0.068) or Training (p = 0.859, BFInc = 0.065), nor for the Mus-
cle × Training interaction (p = 0.877, BFInc = 0.059), Muscle × Hand (p = 0.867, BFInc = 0.060), Training × Hand 
interaction (p = 0.743, BFInc = 0.012) and Muscle × Hand × Training (p = 0.738, BFInc = 8.06e−4) interaction was 
observed.

The ANOVA on the correlation coefficient between the right and left FDI/FDS EMG power within the beta 
band showed no significant effects for Muscle (p = 0.738, BFInc = 0.150), Training (p = 0.255, BFInc = 0.369) or 
Muscle Training interaction (p = 0.366, BFInc = 0.087).

Broadband.  The ANOVA on EMG broadband amplitude (i.e., envelope of the EMG signal) considering 
Muscle, Hand and Training as factors indicated a main effect of Muscle, F1,26 = 149.213, p < 0.001, ηp

2 = 0.852, 
BFInc = 3.22e+15. This effect shows higher amplitude for FDI (M = 92.952 SE = 6.871) than FDS (M = 12.843 
SE = 1.009). This analysis did not reveal any other significant effects for Training (p = 0.531, BFInc = 0.0845), Hand 
(p = 0.825, BFInc = 0.070), Muscle × Training (p = 0.679, BFInc = 0.074), Muscle × Hand (p = 0.499, BFInc = 0.074), 
Training × Hand (p = 0.280, BFInc = 0.014), Muscle × Training × Hand (p = 0.308, BFInc = 0.001).

The ANOVA on the correlation data between the right and left FDI/FDS EMG broadband power considering 
the factors Muscle (FDI vs. FDS) and Training (Pre vs. Post) yielded no significant effects for Muscle (p = 0.595, 
BFInc = 0.176), Training (p = 0.764, BFInc = 0.145) or Muscle × Training interaction (p = 0.739, BFInc = 0.039).

Cortico‑muscular coherence.  The ANOVA on the time-averaged beta coherence considering Muscle, 
Hand and Training as factors revealed a main effect of Muscle, F1,26 = 9.673, p = 0.004, ηp

2 = 0.271, BFInc = 54.510. 
Specifically, coherence for FDI (M = 0.077 SE = 0.008) was higher than for FDS (M = 0.068 SE = 0.007) muscle. 
No significant effects were found for Electrode (p = 0.821, BFInc = 0.166), Training (p = 0.241, BFInc = 0.252), 
Muscle × Electrode (p = 0.613, BFInc = 0.237), Muscle × Training (p = 0.448, BFInc = 0.209), Electrode × Training 
(p = 0.384, BFInc = 0.214), Muscle × Electrode × Training (p = 0.327, BFInc = 0.280). Note that two control analyses, 
(1) on CMC in the 16–32 Hz range, excluding higher beta frequencies and (2) considering left (C1, C3, C5, FC3, 
CP3) and right (C2, C4, C6, FC4, CP4) electrode clusters, indicated similar results (see SM for further details).

The ANOVA on the correlation coefficients between left and right FDI/FDS coherence with C4 and C3, 
respectively, considering Muscle and Training as factors yielded a significant main effect of Training, F1,26 = 8.332, 
p = 0.008, ηp

2 = 0.243, BFInc = 8.195 and Muscle × Training interaction, F1,26 = 4.410, p = 0.046, ηp
2 = 0.145, 

BFInc = 0.863. Bonferroni corrected post hoc analysis revealed a significant difference between Pre- and Post-
training conditions for the FDS muscle, t26 = 3.259, p = 0.019, d = 0.627, BF10 = 12.648, but not FDI, t26 = 0.828, 
p = 1, d = 0.159, BF10 = 0.279. As illustrated in Fig. 3, one sample t-tests indicated that both FDI, t26 = 2.985, 
p = 0.006, d = 0.575, BF10 = 7.093 and FDS, t26 = 3.005, p = 0.006, d = 0.578, BF10 = 7.395, correlation coefficients 
were significantly above zero in the Pre-training condition and did not differ from zero in the Post-training con-
dition (FDI t26 = 1.029, p = 0.313, d = 0.199, BF10 = 0.329; FDS t26 = − 0.881, p = 0.386, d = 0.170, BF10 = 0.290). Beta 
CMC for the left and right hands were positively correlated before training whereas they were uncorrelated after 
training. Beta CMC for the right and left hands over the length of the pattern for one representative participant is 
illustrated in Fig. 4A, along with topographic maps of the same participant and averaged across all participants 
(Fig. 4B). No main effect was observed for Muscle (p = 0.866, BFInc = 0.318).

Intermuscular coherence.  The ANOVA on the averaged IMC considering Muscle and Training as factors 
indicated a main effect of Muscle, F1,26 = 9.686, p = 0.004, ηp

2 = 0.271, BFInc = 16.295, also showing higher coher-
ence for FDI (M = 0.046 SE = 0.002) than FDS (M = 0.042 SE = 0.001). The ANOVA did not yield any other sig-
nificant effects for Training (p = 0.839, BFInc = 0.177) or Muscle × Training interaction (p = 0.731, BFInc = 0.177).

Discussion
Here we investigated brain and muscular activity, and the synchronisation between these two signals by means 
of EEG–EMG cortico-muscular coherence in the beta band, before and after learning a bimanual rhythmic 
pattern consisting of different pitched sounds produced by the two hands. The proposed training effectively 
improved task performance, reflecting that participants learnt how to play the bimanual rhythmic pattern. 
Importantly, learning the bimanual rhythmic pattern affected cortico-muscular communication during passive 
listening. Specifically, our results show that dynamic modulations in right- and left-hand beta band CMC that 
were positively correlated before training were uncorrelated after training. This change after training is likely 
due to a lateralised and segregated activation pattern elicited in accordance with the hand recruited to produce 
each particular sound in the sequence.

Selective brain processing shaped by movements has been previously demonstrated with EEG, showing that 
periodic body movement performed on a rhythmic pattern leads to enhanced brain response at these perio-
dicities corresponding to the movement when participants subsequently listen to the rhythmic pattern without 
moving21. Further, Perez et al.58 showed that visuo-motor training increases CMC between muscle and cortical 
representation specifically involved in training. Our study extends these findings by showing decreased correla-
tion between the CMC of right and left upper limb muscles and their cortical representations after training in a 



7

Vol.:(0123456789)

Scientific Reports |         (2022) 12:6271  | https://doi.org/10.1038/s41598-022-10342-5

www.nature.com/scientificreports/

−0.50

−0.25

0.00

0.25

0.50

tsoperp
Training

C
or

re
la

tio
n 

C
oe

ffi
ci

en
t

Muscle

FDI

FDS

Figure 3.   Mean and confidence interval of the correlation coefficient between right and left hand beta CMC for 
FDI (pink) and FDS (blue) muscles before and after training (represented by larger dots and bars). Smaller dots 
represent data for individual participants. The left and right hand FDS muscle that were positively correlated 
pre-training became uncorrelated post-training, indicating segregation of left and right hand after training.

ID 17

Averaged participants

B. Topoplots of Beta CMC 
PostPre

ID 17

Averaged participants

hand
left
right

Pre Post

FD
I

FD
S

0 1 2 3 4 5 0 1 2 3 4 5

−0.04

0.00

0.04

−0.04

0.00

0.04

time (s)

co
he

re
nc

e

A. Beta CMC over time (ID 17)

.04 .07
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data throughout the rhythm pattern for a representative participant (ID 17) before (Pre) and after (Post) training 
for the right hand-C3 (blue) and left hand-C4 (pink) for FDI (first dorsal interosseus) and FDS (flexor digitorum 
superficialis) muscles. The shaded colours represent the low-pitch (pink) and high-pitch (blue) sounds that 
were learnt to be played using left and right hand, respectively. Panel (B) represents the topoplots of the same 
participant and the average of all participants for beta CMC for FDI and FDS muscles before (Pre) and after 
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condition where participants are listening to the auditory signals they learnt to produce with hand movements. 
We speculate that this effect occurs after training because of spontaneous alternating recruitment of the cortico-
muscular connections involved in producing each different sound even if participants were simply passively 
listening to them. This is in line more generally with previous research showing that CMC of one hand decreases 
during concurrent movement of the other hand due to divided attention50. This is also in accordance with pre-
vious research that found changes in auditory-motor interactions with musical expertise17,38,41, extending this 
research by demonstrating how quickly changes in cortico-muscular interactions elicited by auditory rhythm 
can occur with training. In turn, as auditory training per se affects CMC, our study is limited by the fact that we 
do not have a control group submitted solely to the auditory rhythm presentation. Considering that our effects 
were specifically related to lateralisation, it is not likely to be a result of auditory exposure alone. Pure auditory 
training would be expected to increase general CMC without specifically indexing a decrease of correlation 
between lateralised brain-muscle engagement. However, further studies are needed to clarify if specific sound 
pitches, in non-musicians, could be more likely to engage right or left hand muscles and therefore an auditory 
stimulation effect alone cannot be completely excluded.

In order to control for the observed CMC effects and the possibility that they would be related to individual 
EEG or EMG modulations, we also analysed beta power oscillations in both EEG and EMG data. The correlation 
of EEG beta amplitude over time between C3 and C4 did not change after training. The correlation between left 
and right EMG did not change either for both FDI and FDS muscles, suggesting that lateralised CMC responses 
after training did not originate from more lateralised responses at cortical and/or muscular levels.

Interestingly, beta inter-muscular coherence (IMC) between homologous right and left hand muscles did not 
show any effect of training. The lack of evidence for decreased synchronisation in IMC between the left and right 
hand muscles after training as opposed to the decreased synchronisation observed in CMC suggests that distinct 
processes underpin cortico-muscular and bilateral motor unit synchronisation59. Specifically, EEG–EMG and 
EMG–EMG coherence display dissimilar temporal and frequency profiles, with peak IMC occurring earlier and 
in lower frequencies compared to CMC59. Furthermore, Carr et al.60 found no evidence for cross-correlations 
between several homologous upper-limb muscles, suggesting that those may be co-activated voluntarily but 
often act independently. Our results show that bimanual training requiring the segregation, i.e., the capacity to 
separate information into modules that perform specialised computations57, of the left and right hands selectively 
modulates the processes underlying cortico-muscular communications independently from those underlying 
inter-muscular synchronisation. Our findings are broadly consistent with research on whether bimanual poly-
rhythm production involves integrated or independent timing control across the two hands61,62. Previous work 
has shown that this varies as a function of tempo and expertise63. Of relevance to the present results, experts 
(i.e., trained musicians) are able to employ flexible approaches, and can achieve high level performances with 
independent control64. Our pattern was elaborated to have a level of difficulty suitable for novice participants 
and to have the same number of stimuli for the left and right hands. It is possible that different tones, as well as 
different sound and silent durations would promote entrainment to a lesser or greater extent. Still, our study 
evaluated only one rhythmic pattern as the main goal was to evaluate the learning effects on cortico-muscular 
coupling of the specific hand involved in producing the sound, and decoupling of the hand not involved in 
producing the sound. One interesting avenue for future studies would be to investigate if and which different 
rhythmic characteristics impact the entrainment and learning of the rhythmic pattern, and also if using a more 
challenging pattern would require even more segregation. Furthermore, we attributed the low and high pitch to 
the left and right hand, respectively, and possible hand-pitch effects were not investigated. Counterbalancing the 
hand-pitch combinations in future research could also be interesting for further control as well as investigating 
the role of each hand separately.

The results also revealed that beta CMC was greater for FDI compared to FDS muscles. Differential EEG–EMG 
coherence for different muscles has been previously reported, and has been attributed to variations in the loca-
tion and orientation of corticospinal neurons50. In particular, larger cortical representations of the muscles, 
as well as the robustness and superficiality of the muscle itself, likely allow better recordings due to superior 
signal-to-noise ratio, and thus, stronger CMC50. EMG analyses also showed larger amplitude in FDI compared 
to FDS in both beta and broadband data. Recording of FDI might have been facilitated by the fact that FDI is 
more superficial compared to FDS, which could partially explain the greater CMC for this muscle. However, such 
EMG amplitude differences between FDI and FDS is unlikely to explain the correlation effects reported above, 
which were actually stronger for FDS. Differences between EMG power peak and EEG–EMG coherence peak 
are not uncommon and have been previously reported during isometric contraction tasks50. In fact, some have 
argued that these measures are dissociated65,66, and that coherence relies on the EEG–EMG amplitude ratio and 
the phase differences between them rather than the amplitudes of EEG or EMG signals alone67.

Finally, these results focused on the beta band since its relevance has been extensively demonstrated in 
cortico-muscular literature. Still, although CMC is much weaker in other frequency bands, there are studies 
suggesting that these bands might also play a role68, and therefore, investigating CMC at other frequencies such 
as in alpha and gamma range is a potential avenue for future research.

To conclude, this study found that the correlation between right- and left-hand beta CMC is modified by 
motor training of a bimanual rhythmic pattern. To our knowledge this is the first report of significant effect of 
learning on the cross-correlation between left and right CMC when listening to a rhythmic pattern without 
movement or intention to move. It is likely that motor cortex entrainment was shaped according to the bimanual 
training that led to the automatic association of the low-pitch with the left hand and high-pitch with the right 
hand, resulting in lateralised CMC responses even during passive listening. With no effect of training observed 
for homologous muscle coherence, our results also indicate distinct underlying processes for CMC and IMC 
that can be separately modified by motor learning. Plasticity in the functional configuration of the motor system 
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may thus underpin the perception and production of complex auditory sequences, with the coupling between 
cortical and muscular activity providing an index of audio-motor entrainment and musical and rhythmic skills.
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