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Abstract: It is difficult to keep the balance of high quality and high yield for graphene quantum
dots (GQDs). Because the quality is uncontrollable during cutting large 2D nanosheets to small 0D
nanodots by top-down methods and the yield is low for GQDs with high quality obtained from
bottom-up strategy. Here, aphanitic graphite (AG), a low-cost graphite contains a large amount of
small graphite nanocrystals with size of about 10 nm is used as the precursor of graphene oxide
quantum dots (GO-QDs) for the first time. GO-QDs with high yield and high quality were successfully
obtained directly by liquid phase exfoliating AG without high strength cutting. The yield of these
GO-QDs can reach up to 40 wt. %, much higher than that obtained from flake graphite (FG) precursor
(less than 10 wt. %). The size of GO-QDs can be controlled in 2–10 nm. The average thickness of
GO-QDs is about 3 nm, less than 3 layer of graphene sheet. Graphene quantum dots (GQDs) with
different surface properties can be easily obtained by simple hydrothermal treatment of GO-QDs,
which can be used as highly efficient fluorescent probe. Developing AG as precursor for GQDs offers
a way to produce GQDs in a low-cost, highly effective and scalable manner.
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1. Introduction

Graphene, with unique thermal, mechanical, and electronic properties, as well as its excellent
chemical stability, has attracted increasingly attention in recent years [1–3]. These superior properties of
graphene have advanced applications in energy, catalysis, and biomaterial fields [4–9]. However, large
graphene nanosheet has zero bandgap which limits its electronic and opto-electronic application [10,11].
According to quantum confinement and edge effect, the bandgap of graphene can be designed by
varying its size. GQDs with zero-dimensional structure, higher photo stability, lower toxicity, and easily
changeable functional groups have attracted considerable attention for applying in sensors, bioimaging,
and solar cell [12–18].

Over the past few years, GQDs have been widely studied and various synthesis methods have been
developed [19–21]. These methods can be divided into two types: bottom-up strategy and top-down
strategy. As for bottom-up approach, solution-based chemical routes were demonstrated as useful
methods to synthesize large polycyclic aromatic hydrocarbons from dendritic arene precursors [22–24].
Li group employed 2′,4′,6′-triakyl phenyl groups as the precursor to form the edge of graphene
moieties [25]. Through this approach, the size and colloidal stability could be controlled. But bottom-up
approaches usually contain many complicated steps and the yield of GQDs is low. Furthermore,
during the synthesis process, large amount of organic solvents is usually used. The purification
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of obtained GQDs is difficult and the purified GQDs cannot be dispersed in water easily, which
limit their applications. Comparing with bottom-up strategy, top-down approach is a relatively
simple process. The crucial point of this approach is how to cut large 2D nanosheets to small 0D
nanodots. Many researchers are committed to developing simple and efficient methods for cutting large
sheets into nanodots. Various synthesis routes have been developed, such as oxidation cutting [26],
hydrothermal (solvothermal) [27,28], electrochemistry [29–31], photo-Fenton reaction [32], and oxygen
plasma etching [33]. Various precursors were adopted, such as graphene oxide (GO) [34], C60 [35],
carbon nano-onions [36], carbon fibers [37], coal [38,39], graphite nanoparticle [40], and rice husk [41].
However, there are also many problems that limit the practical application of GQDs, such as complex
pretreatments, high energy-consumption, special instruments or high precursor costs, and so on.
It is still a challenge to synthesize GQDs or GO-QDs at a large scale with uniform size in a high yield
and low-cost way.

Different from coal, AG is a kind of graphite ore that is composed of carbonaceous material by
thermal decomposition of deep metamorphic products (such as from coal deterioration). Its conductivity,
thermal conductivity, lubricity, and oxidation resistance are lower than full crystalline graphite.
Therefore, it has not been taken seriously and its price is much lower than flake graphite. AG with
particle size of ~5 µm has been used to synthesize small size graphene sheets [42,43]. But it is ignored
that AG contains a large amount of small graphite nanocrystals with size of about 10 nm. Here, reserve
thinking of how to cut 2D graphene sheets into 0D nanodots efficiently, we report for the first time
the large-scale synthesis of GO-QDs with uniform size by simply exfoliating AG precursor through
a chemical exfoliation process without high-strength cutting. The yield of GO-QDs can reach up to
40%, much higher than that by using FG as precursor (less than 10%). GQDs with different surface
properties can be easily obtained by simply hydrothermal treating of GO-QDs in the presence of
different functional molecules. These modified GQDs can be used as highly efficient fluorescent probe.

2. Materials and Methods

2.1. Synthesis of GO-QDs by Exfoliating of AG

The exfoliating of AG (Chenzhou Botai Graphite Co., Ltd., Hunan, China) was carried out
by a conventional intercalation process, which was generally used for preparing large GO sheets.
In a typical procedure, 5 g of AG, 2.5 g of NaNO3, and 115 mL of concentrated H2SO4 were ultrasonically
mixed in a beaker at room temperature for 30 min. Then the beaker was removed into an ice bath under
mild agitation and 15 g of KMnO4 was added slowly at a temperature under 10 ◦C. Then the mixture
was heated to 35 ◦C and kept for 40 min. After adding 250 mL of deionized (DI) water, the solution
was kept at 98 ◦C for another 45 min. Then the mixture was diluted to 700 mL and 30 mL of H2O2

(30%) was added. After that, the solution was centrifuged and washed by DI water for several times
until the pH value of the system reached to about 7. Then the as-prepared sample was first centrifuged
at 3000 rpm for 15 min, dividing into supernatant and precipitates. The precipitates mainly composed
of un-exfoliated AG were removed. The obtained GO-QDs were dispersed in water for further study.
To make a comparison, FG (CP, Aladdin Reagent Database Inc., Shanghai, China) was exfoliated via
the same procedure. For investigating the exfoliating mechanism of AG, the exfoliating process was
stopped at intercalation and oxidation steps, respectively. The corresponding intermediate products
were isolated, characterized, and stored under appropriate conditions. The products obtained after
intercalation by H2SO4 are defined as AG-I and FG-I, respectively, and the products obtained after
oxidation by KMnO4 are defined as AG-O and FG-O, respectively.

2.2. Preparation of GQDs with Different Functional Groups

For obtaining GQDs, 1 mg of the prepared GO-QDs was added into 10 mL of deionized water,
and the mixture was placed into a sonic bath for 30 min to obtain a homogeneous solution. The solution
was sealed in a Teflon-line autoclave at 90 ◦C–200 ◦C for 12 h. After cooling to room temperature, GQDs
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were obtained. For obtaining GQDs modified with functional groups, different functional molecules
can be added during the hydrothermal process. For example, modified GQDs of GQDs-NH3·H2O,
GQDs-NaBH4, and GQDs-H3BO3 were simply prepared by adding ammonia, NaBH4, and H3BO3 as
modifier during hydrothermal treatment, respectively.

2.3. Characterization

The crystalline phases of the samples were identified by using X-ray powder diffraction (XRD)
techniques (Bruker D8 Advance diffractometer, Karlsruhe, Germany) operating with Cu Kα radiation
(λ = 0.15418 nm) at a scan rate (2θ) of 3 o·min−1. The scan range is from 10◦ to 70◦. The morphologies of
the samples were characterized by using a field emission scanning electron microscope (SEM, Hitachi
S4800, Tokyo, Japan), and a Tecnai G2 F30 S-Twin transmission electron microscope (TEM, FEI company,
Hillsboro, OR, USA). The morphology and thickness of GO-QDs were obtained by an atomic force
microscope (AFM, Cypher ES, Asylum Research, Oxford Instrument, Oxford, UK). Samples used for
AFM characterization were prepared by dipping the piranha-cleaned silicon wafer substrate into their
ethanolic suspensions. Raman spectra were recorded using a Raman microscopy (Horiba, LabRAM HR
Evolution, Villeneuve-d’Ascq, France). Thermogravimetric analyses (TG) of samples were conducted
using a thermal analyzer (NETZSCH, Selb, Germany). Samples were analyzed in the temperature
range of 25–790 ◦C under a flow of nitrogen. X-ray photoelectron spectroscopy (XPS) was carried
out on a PHI-5000 Versa Probe instrument (ULVAC-PHI, Chigasaki, Japan) with Al Kα X-ray source.
The Fourier transform infrared spectra (FI-IR) of the samples were obtained with a PerkinElmer
spectrum 100 (PerkinElmer, Waltham, MA, USA), in which KBr was used as diluents. PL lifetimes
and quantum yield were investigated by LSP920 (Edinburgh Instruments, Corston, UK) using Xenon
lamps (450 W).

2.4. Detection of Metal Ions in Water

Cu2+ solution was prepared in advance with CuCl2, and then mixed with the above-mentioned
GQDs-NH3·H2O in a certain proportion. Finally, a series of solution were obtained with a concentration
of Cu2+ in the range of 0–100 µM. The resulting solution was shaken well to ensure the complete
reaction, and then its fluorescence emission is measured at the optimal excitation wavelength of 323 nm
to detect the change of fluorescence intensity because of Cu2+. For detecting other metal ions, CuCl2 was
replaced by FeCl3, MnCl2, AgNO3, KCl, CuCl2, CaCl2, BaCl2, MgCl2, CdCl2, and ZnCl2, respectively.

3. Results and Discussion

3.1. Synthesis and Characterization of GO-QDs from AG

The exfoliating of AG was carried out by a modified Hummers’ method, which is the most
commonly used for the preparation of graphene oxide (GO) sheets [44]. TEM and AFM images
in Figure 1a,b indicate that product synthesized from AG is composed of quantum dots with narrow
size distribution. The average size of these GO-QDs is about 4.5 nm as calculated by counting
100 nanoparticles (Figure 1c). GO-QDs have an average thickness of ~3 nm, which corresponds to
only 2–3 layers of graphene sheets (Figure 1c). The yield of these GO-QDs is about 40 wt. % of raw
AG. So, a large amount of GO-QDs can be obtained with AG precursor, and the concentration of
GO-QDs aqueous solution can reach up to 5 mg·mL−1 (Figure 1d). For comparison, FG were also
adopted as precursors for preparing GO-QDs under the same conditions. Figure 1e shows that at low
resolution the product synthesized from FG looks like a crumpled membrane with large size, which
should be GO sheets. Small size quantum dots cannot be observed on this large crumpled membrane.
If this product is further separated under 15,000 rpm for 30 min, large GO nanosheets are removed and
small size GO nanosheets can be observed (Figure 1f). The size of these small GO nanosheets is mostly
larger than 30 nm and not uniform, as well as the yield of these small GO sheets is less than 10 wt. % of
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raw FG. Above results demonstrate that GO-QDs with high yield and high quality can be synthesized
by using low cost AG.

Figure 1. (a) Transmission electron microscope (TEM) and atomic force microscope (AFM). (b) Images
of graphene oxide quantum dots (GO-QDs) synthesized from aphanitic graphite (AG). (c) Lateral
size and height distribution. (d) Mass produced GO-QDs aqueous solution. (e) TEM image of GO
synthesized from flake graphite (FG). (f) GO nanosheets synthesized from FG. (Separated at 15,000 rpm
for 30 min).

3.2. Synthesis Mechanism of GO-QDs from AG

To understand the synthesis mechanism of GO-QDs from AG, the difference between AG and
FG were compared first. The morphology difference between AG and FG can be obviously observed
from their SEM images. Figure 2a indicates that FG has a large layered structure. The average
length of these layers is about 35 µm. Completely different from FG, AG has a particle structure
(Figure 2b). The average diameter of AG particles is about 5 µm (Figure 2c). It is noteworthy that each
AG particle contains a large amount of small graphite nanocrystals with size of less than 10 nm as
pointed in Figure 2d. These graphite nanocrystals are not fully developed graphite crystals during
the formation period. If these small graphite nanocrystals are exfoliated, GQDs will be obtained
directly without needing high-intensity or repeated cutting.

To further investigate the structural difference, XRD and Raman spectroscopy of AG and FG were
characterized. Figure S1a shows XRD patterns of AG and FG. It can be observed that there are two
strong peaks at 26.5◦ and 54.6◦ in the XRD pattern of FG, which is characteristic peaks of (002) and
(004) of graphite materials [45]. In the XRD pattern of AG, the intensity of these peaks is quite weaker
than that of FG, which suggests the low c-axis order and poor crystallinity of AG. The positions of
characteristic peaks of AG are the same as that of FG and no other impurities are detected in AG,
suggesting the graphite nature of AG but not amorphous coal. The Raman spectrum of FG in Figure
S1b reveals their defect-free graphite nature due to the absence of D bond signal. In AG, D band
(1341 cm−1) is strong and ID/IG ratio is 0.48 attributing to smaller average size of sp2 domains in AG.
The smaller the sp2 domain, the higher the edge concentration in AG is and the stronger the D band.
These results are in accordance with the TEM and SEM results.
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Figure 2. (a) SEM image of FG, (b–d) SEM and TEM images of aphanitic graphite (AG). The red arrows
in Figure 2d point the small graphite nanocrystals.

Tour and co-workers showed that the formation of GO from bulk graphite by modified Hummers’
method is a diffusive-controlled process [46]. Smaller-size flakes and lower crystalline graphite are
oxidized significantly faster and more fully than the large and high crystalline flakes at same usage of
oxidant. For investigating the mechanism in depth, the chemical and structural changes, which occurred
during exfoliating of AG and FG, were monitored by XRD, Raman, FTIR, and TG analyses. The products
obtained after intercalation by H2SO4 are defined as AG-I and FG-I, respectively, and the products
obtained after oxidation by KMnO4 are defined as AG-O and FG-O, respectively. Figure 3 show XRD
patterns and Raman spectra of AG, AG-I, AG-O, FG, FG-I, and FG-O. The corresponding data are
listed in Table 1.

Figure 3. (a) XRD patterns and (c) Raman spectra of AG, AG-I, AG-O. (b) XRD patterns and (d) Raman
spectra of FG, FG-I, and FG-O.

Table 1. Comparation of XRD and Raman data of AG and FG during exfoliating.

Measurements Pristine After Intercalation After Oxidation

2θ(◦) AG 26.5 26.4 10.7
FG 26.5 25.7 11.3

ID/IG
AG 0.48 0.60 2.65
FG 0 0.71 1.31
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It can be observed that intercalation process has less effect on the structure of AG. However, for FG,
after intercalation of H2SO4, the intensity of characteristic peak of (002) is dramatically decreased and
ID/IG ratio increases to 0.71, indicating an increase of degree of disorders. The less effect of intercalation
on AG is related to the more disorders of AG than FG. After oxidation, the characteristic peaks at 26.5◦

in AG and FG almost disappear and new peaks appear at 10.71◦ and 11.34◦, respectively (Figure 3a,b).
From Figure 3c,d and Table 1 it can be found that after oxidation ID/IG ratios of AG-O and FG-O
all significantly increase compared with that of the corresponding precursors, indicating the destruction
of conjugated sp2 networks. The ID/IG ratio of AG-O is much higher than that of FG-O, suggesting
more oxygen-containing functional groups in AG-O than FG-O. The higher-degree oxidation of AG is
also confirmed by FTIR and TG analyses in Figure 4. FG-O exhibits many vibration peaks of O−H
stretch and bending at 3422 cm−1 and 1382 cm−1, respectively, attributed to hydroxyl and phenolic
groups, C=C stretch of unoxidized sp2 carbon domain at 1622 cm−1, C–O stretch at 1235 cm−1 ascribed
to phenols, ethers, and epoxy groups, and C–O stretch at 1048 and 1111 cm−1 attributed to hydroxyl
groups (Figure 4a). All these mentioned peaks can be observed in AG-O, and they are stronger than
those in FG-O. Additionally, C=O stretch at 1723 cm−1 attributed to carboxyl and carbonyl groups is
detected in AG-O. TG analysis indicates that both FG-O and AG-O show two significant weight losses
(∼10 and ∼17%) near 100 ◦C and (∼20 and ∼29%) in the range of 150–300 ◦C, owing to the evaporation
of the trapped water molecules and thermal decomposition of oxygen-containing functional groups
in the samples, respectively (Figure 4b). All above results demonstrate that AG has a higher degree
oxidation. The oxidation is complete and homogeneous due to shorter diffusion path for oxidant
between AG layers, which is difficult to achieve for FG at the same condition because of the diffusion
resistance between large layers. A large amount of GO-QDs can be obtained by exfoliation of fully
oxidized AG-O without further high-strength cutting (Figure 5).

Figure 4. (a) FTIR spectra and (b) TG curves of FG-O and AG-O.

Figure 5. Schematic of the exfoliating of (a) AG and (b) FG with the same amount of intercalator
and oxidizer.
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3.3. Modification of GO-QDs and Their Applications

The obtained large amount of GO-QDs from AG can be used as precursor for GQDs with different
properties. If GO-QDs are treated in pure water by hydrothermal method, brown GO-QDs turn into
black GQDs. These GQDs can keep in good dispersion in water even after standing for 6 months
(Figure 6a). TEM image in Figure 6b further confirms the monodispersing of GQDs. The concentration
of the obtained GQDs dispersion can reach to 1 mg/ml. HRTEM image of GQDs was measured
as shown in Figure 6b inset. The lattice distance of 0.24 nm is observed, suggesting the crystalline
nature of GQDs. Controlled experiment was carried out by treating the product synthesized from FG
at the same condition. The picture in Figure 6c indicates that after hydrothermal treatment the black
agglomerate deposits at the bottom. During hydrothermal treatment, the large GO sheets (Figure 1e)
with rich -OH and -COOH groups in the plane are very easy to connect with each other and form a 3D
structure by the interaction of hydrogen bond [47] (Figure 6d).

Figure 6. (a) Picture and (b) TEM and HRTEM (inset) images of GQDs by hydrothermal treatment of
GO-QDs. (c) Picture and (d) SEM image of product after hydrothermal treatment of GO.

XPS test further confirm the reduction of GO-QDs during hydrothermal treatment. Comparing
with GO-QDs (Figure S2a), the binding energy peaks of GQDs do not shift, but their intensities
drastically change. The intensities of oxygen-containing functional groups such as -C-O, -C=O,
and -O-C=O significantly decrease. The peak intensity of C-C increases (Figure S2b). These results
suggest the reduction of GO-QDs during hydrothermal treatment. GO-QDs has an orange-emission
at 595 nm (Figure 7). After the removal of oxygen-containing functional groups, GQDs almost have
no fluorescence emission. While a series of GQDs with different fluorescence properties can be
easily synthesized from GO-QDs by adding modifiers during hydrothermal treatment. For example,
three kinds of soluble fluorescent GQDs could be obtained by adding ammonia, NaBH4, and H3BO3

as modifier during hydrothermal treatment, respectively. These fluorescent GQDs are defined as
GQDs-NH3·H2O, GQDs-NaBH4 and GQDs-H3BO3, respectively. These modified GQDs exhibit
fluorescence emission at 425 nm, 435 nm, and 539 nm, respectively (Figure 7). Therefore, GQDs
with different fluorescence properties for specific application requirements can be synthesized by AG
in a large scale and its quality and quantity can be guaranteed by the special precursor. For example,
the lifetime of GO-QDs is 1.07 ns and that of GQDs-NH3·H2O is 5.98 ns. Meanwhile, the quantum yield
of GQDs-NH3·H2O (9.7%) is about twenty-five times as much as that of GO-QDS (0.4%) (Figure 8a
and Table 2). After modification, the size of GQDs-NH3·H2O is almost the same as that of GO-QDs
(Figure S3a). FTIR spectrum of GQDs-NH3·H2O demonstrates obvious N–H stretching vibration
peaks in the range of 3300–3600 cm−1, N-H bending peak at 1655 cm−1 and C–H stretching vibration
peak at 1412 cm−1 (Figure S3b). These results indicate the successful modification of GO-QDs by
NH3·H2O. GQDs-NH3·H2O with higher quantum yield can be used as fluorescence probe for detecting
metal ions in water. The results indicate that GQDs-NH3·H2O has a high selectivity for copper ions
(Cu2+) (Figure 8b). Figure 8c displays the PL intensity spectra of GQDs-NH3·H2O with different
concentration of Cu2+ at 323 nm excitation. It can be clearly observed that the fluorescence quenching
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of GQDs-NH3·H2O is naturally increasing with the increasing of Cu2+ concentration. The modified
plot in Figure 8d shows the relationship of F/F0 and Cu2+ concentration. There is a distinct linear
relationship between quenched PL intensity (∆F/F0) and Cu2+ concentration in the range of 5 µM to
25 µM (Inset in Figure 8d). The limitation of detection can reach up to 0.4 µM, which is enough to
satisfy the demand in detection for Cu2+ in wastewater.

Figure 7. PL spectra of GO-QDs, GQDs-NH3·H2O, GQDs-NaBH4 and GQDs-H3BO3 excited at 323 nm.
The insets are their corresponding digital photographs (λex = 365 nm).

Figure 8. (a) Time resolved PL decay curves of GO-QDs and GQDs-NH3·H2O. (b) The effect of different
metal ions on the PL intensity of GQDs-NH3·H2O, (c) PL quenching of GQDs-NH3·H2O with different
concentration of Cu2+, and (d) the relationship of F/F0 and Cu2+ concentration.

Table 2. Exponential fitting results for time resolved PL decay curves of GO-QDs and GQDs-NH3·H2O.

Samples τ1(ns) A1(%) τ2(ns) A2(%) Lifetime(ns)

GO-QDs 0.6056 75.95 2.5346 24.05 1.07 ns
GQDs-NH3·H2O 2.1349 36.59 8.1989 63.41 5.98 ns
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4. Conclusions

In conclusion, AG was used for the synthesis of GQDs for the first time. Comparing with FG,
the merits of AG as precursor for GQDs is as follows: (i) AG is low cost, (ii) the synthesis process does
not need high-strength cutting step, (iii) the size of obtained GQDs is uniform, high yielding (~40%),
and of good quality, (iv) can be easily modified according to the request of applications. It is believed
that these GQDs synthesized by AG as precursor can be a candidate for graphene-based tunable
luminescent material in many potential fields.

Supplementary Materials: The following are available online at http://www.mdpi.com/2079-4991/10/2/375/s1.
Figure S1: (a) XRD patterns and (b) Raman spectra of AG and FG. Figure S2: XPS patterns of GO-QDs (a) and
GQDs (b). Figure S3: (a) TEM image of GQDs-NH3·H2O.and (b) FTIR spectra of GQDs-NH3·H2O and GO-QDs.
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