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Abstract

Background

In countries with high tuberculosis (TB) burden, there is urgent need for rapid, large-scale

screening to detect smear-positive patients. We developed a computer-aided whole smear

screening system that focuses in real-time, captures images and provides diagnostic grad-

ing, for both bright-field and fluorescence microscopy for detection of acid-fast-bacilli (AFB)

from respiratory specimens.

Objectives

To evaluate the performance of dual-mode screening system in AFB diagnostic algorithms

on concentrated smears with auramine O (AO) staining, as well as direct smears with AO

and Ziehl-Neelsen (ZN) staining, using mycobacterial culture results as gold standard.

Methods

Adult patient sputum samples requesting for M. tuberculosis cultures were divided into three

batches for staining: direct AO-stained, direct ZN-stained and concentrated smears AO-

stained. All slides were graded by an experienced microscopist, in parallel with the auto-

mated whole smear screening system. Sensitivity and specificity of a TB diagnostic algo-

rithm in using the screening system alone, and in combination with a microscopist, were

evaluated.

Results

Of 488 direct AO-stained smears, 228 were culture positive. These yielded a sensitivity of

81.6% and specificity of 74.2%. Of 334 direct smears with ZN staining, 142 were culture

positive, which gave a sensitivity of 70.4% and specificity of 76.6%. Of 505 concentrated

smears with AO staining, 250 were culture positive, giving a sensitivity of 86.4% and speci-

ficity of 71.0%. To further improve performance, machine grading was confirmed by manual
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smear grading when the number of AFBs detected fell within an uncertainty range. These

combined results gave significant improvement in specificity (AO-direct:85.4%; ZN-

direct:85.4%; AO-concentrated:92.5%) and slight improvement in sensitivity while requiring

only limited manual workload.

Conclusion

Our system achieved high sensitivity without substantially compromising specificity when

compared to culture results. Significant improvement in specificity was obtained when

uncertain results were confirmed by manual smear grading. This approach had potential to

substantially reduce workload of microscopists in high burden countries.

Introduction

Global tuberculosis (TB) burden is still enormous even after years of efforts to reduce its inci-

dence and mortality. According to the World Health Organization (WHO) 2017 report [1],

6.3 million new cases of TB were reported in 2016 (up from 6.1 million in 2015) equivalent to

61% of the estimated incidence of 10.4 million, and 1.7 million deaths resulted from TB in

2016 globally.

Most of the high incidences were in developing countries and areas where diagnostic

instrumentation and medical professionals were in severe shortage. With today’s globalization

trend, TB infection poses a threat not only to high incidence countries, but also to the whole

world. It is therefore urgent to provide quick and effective diagnostic solutions for TB. Sec-

ondly, current microbiological diagnostic methods of TB still require improvement. Culture

diagnosis remains the gold standard but it takes weeks to obtain results, while smear micros-

copy provides quick diagnosis but with limited sensitivity.

Current sensitivity of manual smear microscopy diagnosis is highly variable, with some-

times up to almost half of acid fast bacilli (AFB) positive smears being mistakenly graded as

negative [2]. As a consequence, true TB patients remained undetected by smear microscopy

and no anti-TB treatment can be started before culture results are available. Not only would

the patient not be given the proper anti-TB treatment, but this also meant no effective control

measures could be in place to prevent spread of infection to others, whether in hospital or in

the community. In some situations, the low sensitivity was mainly due to failure of detecting

“scanty” positive smears with very few AFBs, when only about 10% of the smear area (2

cm×1cm under 200x) was examined using commonly recommended practice [3]. Although

new technologies such as the Xpert MTB/RIF (GeneXpert) molecular tests help improve reli-

ability in detection of TB, they are not easily affordable to many low- to middle-income coun-

tries. Despite its shortcomings, smear microscopy continues to be the most widely used tool

for TB diagnosis in high-burden developing countries.

In the smear microscopy screening process, AFBs are searched in either auramine-O (AO)

stained or Ziehl-Neelsen (ZN) stained smears under fluorescence or bright-field microscope

respectively. Fluorescence microscopy, due to its higher contrast and larger field-of-view

(FOV), has been used to screen smears for higher throughput. However, objects other than

AFB can also emit green fluorescence under excitation, which may cause false-positive results.

Therefore, smears diagnosed as positive in fluorescence microscopy are usually confirmed by

re-checking the slide using ZN bright field microscopy at higher magnifications. In Hong

Kong, this two-step screening process was often adopted by TB laboratories to balance the
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work throughput and diagnostic accuracy. Therefore, smear screening tool development for

these two modes were critical and equally important.

To effectively reduce human error while keeping our objective of low-cost, we developed a

computer-aided AFB whole-smear microscopy screening system which included real-time

focusing, digitally capturing images, as well as providing diagnostic grading based on the num-

ber of AFBs identified by computer vision algorithms. Our system worked in both bright field

and fluorescence microscopy modes.

Previous research works related to this important area have been published [4, 5, 6]. Most

of these only proposed solutions for particular components, however, without getting together

into one holistic system. There had been two automated microscopy systems for this applica-

tion [7]. The first was the TBDx system from Signature Mapping Medical Science Inc. [8]. Its

performance when combined with manual microscopy [9] and use of GXP as a confirmatory

test [10] had been described. However, the evaluation was only done on concentrated-smears

using AO-staining. The second was an automated smear microscopy reader from Becton

Dickinson. This was under development and no further detailed information was available.

Another system was known as Fluorobot [11], but no detailed description and system perfor-

mance could be found in the published literature.

Our study aimed to examine the performance of a dual-mode screening system in AFB

diagnostic algorithms on concentrated smears with AO staining, as well as direct smears with

AO and ZN staining. The evaluation was conducted and analysed using results produced by

our screening system alone, as well as in combination with a microscopist, with AFB culture

results as the gold standard. Comparison of machine grading with manual smear grading was

also made.

Materials and methods

Ethics statement

Ethical approval for this study was obtained from the Joint Chinese University of Hong Kong–

New Territories East Cluster Clinical Research Ethics Committee.

(http://www.crec.cuhk.edu.hk/)

Respiratory samples were collected and saved from patients suspected of clinical respiratory

infections, with requests for mycobacterial cultures and AFB smears prepared for subsequent

staining and examination.

Sample preparation

Sputum smears were prepared according to standard diagnostic microbiology laboratory pro-

tocols. Each sample was smeared over a 2cm2 area on a clean glass slide. For AO staining,

smears were air dried and fixed by gentle heating. Each slide was then stained with 0.1% aura-

mine phenol (Merck, Darmstadt, Germany), decolorized in 0.5% acid-alcohol (0.5% conc.

HCl in 70% ethanol), counterstained with 0.5% potassium permanganate (Merck, Darmstadt,

Germany), and then air-dried. Smears were examined by experienced microscopists covering

at least 30 microscopic fields for typical slender fluorescent rods under fluorescence micro-

scope using 250x magnification. For ZN staining, smears were air-dried and fixed by gentle

heating. Each slide was then flooded with 1.2% carbol fuchsin (Merck, Darmstadt, Germany),

decolorized in 3% acid-alcohol, counterstained with dilute malachite green solution 0.5%, and

rinsed with water. Slides were examined for at least 300 fields under light microscope at 1000x

magnification for typical AFB slender rods. To prepare concentrated specimens, sputum diges-

tion-decontamination with equal volume of N-acetyl-L-cysteine-NaOH (making final volume

of approximately 3 mL) and centrifugation (3000g for 15 min.) were done before staining.
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Following the two-step screening process mentioned in the Introduction Section, the grading

based on the WHO guideline was given by an experienced microscopist who worked for years

in a routine TB diagnostic laboratory.

AFB screening

The smears were then scanned and graded using the automated scanning platform, blinded to

all other test results. Slides were freshly stained with auramine-O before scanning to ensure

that objects appeared bright and sharp in the digitized images, as seen under routine diagnostic

laboratory conditions.

The automated system consisted of a modified Motic motorized microscope platform that

enabled both fluorescence and brightfield mode whole smear scanning. After a sputum smear

sample was loaded, a low magnification whole slide preview image (with identification bar-

code) was acquired by scanning with a 2x/0.05 Numerical Aperture (N.A.) objective lens, and

the sputum smear microscopy area (typically a 2cm by 1cm ellipse area) was automatically

selected from the whole smear image. Then high magnification images were acquired from the

selected smear microscopy area by scanning with a 20x/0.5N.A. objective lens, with fluores-

cence images for AO stained smears under blue LED excitation (through an optical filter cube)

and brightfield images for ZN stained smears under white LED illumination. The imaging

camera was a Point Grey 5MP color camera with 2/3 inches CCD sensor. The pixel resolution

for the captured image was 0.17 micron, with the exposure time of 70ms and 2ms for fluores-

cence and brightfield imaging respectively. Each FOV size was determined by the CCD camera

sensor size and the objective lens magnification. Thus, the total number of FOVs covered on

the selected smear microscopy area could be derived (with a tiny overlap between neighboring

FOVs). With a proprietary real-time auto-focusing module, it took less than 5min to complete

one smear scan under both imaging modes.

The image processing and analysis algorithm for both fluorescence and brightfield smear

microscopy FOV images were carried out during the scan, thus the AFB detection results were

available immediately after the smear microscopy scan was completed. For fluorescence

images, only morphology and brightness features were utilized to segment out the AFB candi-

dates and separate them into AFB or non-AFB categories with a classifier based on both SVM

and Decision Tree. For brightfield images, color information was also taken into account to

design the feature vector to conduct AFB segmentation and classification. Each FOV of the

slide was then analyzed and the maximum number of AFBs detected in one optical field length

was returned for further diagnostic grading. The detected AFB numbers from all the FOVs

were then added together to determine the total number of AFBs of a smear. To be consistent

with the WHO TB smear grading criteria, the number of AFBs was calculated for each

“length”, i.e. a whole strip of consecutive FOVs along the long axis of the ellipse smear micros-

copy area. The smear then was automatically graded into one of the five levels (negative,

scanty, 1+, 2+, 3+) based on the grading standards for TB diagnosis (3), depending on the total

number of AFB detected as shown in Table 1. The critical AFB threshold to separate “Nega-

tive” and “Scanty” was tuned to balance sensitivity and specificity. After repeated determina-

tions in the training step, these were set at 9 and 6 AFBs for fluorescence and brightfield

modes respectively.

Validation

Two analyses were performed to evaluate our dual-mode screening system in TB diagnostic

algorithms, viz.: results produced by our screening system alone, and then results in
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combination with a microscopist. The workload of independent microscopist for each setting

was also reported.

The final mycobacterial culture results were used as the gold standard throughout all exper-

iments. Two statistical performance measurements of our system were reported: sensitivity

was defined as the proportion of culture positive cases which were machine graded as positive;

specificity was defined as the proportion of culture negative cases graded as negative.

Finally, the comparison of machine grading and manual smear grading was also made.

Overall performance of TB diagnostic algorithms was assessed by the percentage symmetric

difference between two positive-negative grading results defined as the proportion of disagree-

ment sets, and the major discrepancy (more than one grade difference) rate between two

5-level grading (negative, scanty, 1+, 2+, 3+) results.

Results

A total of 1600 sputum samples from adult patients with respiratory illness and requesting for

Ziehl-Neelsen staining and mycobacteria cultures were included. Of all specimens, 1416 were

either culture positive for M. tuberculosis or culture negative, 103 were culture positive for

Mycobacteria spp. other than M. tuberculosis complex (MOTT), 70 were overgrown with con-

taminants, and 11 were from treated cases. A flow chart of sample processing is shown in Fig 1.

Specimens were divided into three batches for evaluation. From these smears; 89 contained

scratches or cracks rendering inability of the system to auto-focus, and were excluded from

evaluation. The ratio of positive to negative samples was about 1-to-1.

Comparisons of smear grading vs culture

Of 488 direct smears with AO-staining, 228 were culture positive. There were 203 smears

graded as positive, giving a sensitivity of 89.0% [95% CI: 84.2–92.8%] (Table 2). The remaining

260 were culture negative, of which 250 were graded as smear negative, giving a specificity of

96.2% [95%CI: 93.8–98.5%]. Out of 334 direct smears with ZN staining, 142 were culture posi-

tive. There were 122 graded as smear positive, resulting in a sensitivity of 85.9% [95%CI: 79.1–

91.2%]. Of the remaining 192 that were culture negative, 181 were graded as smear-negative,

giving a specificity of 94.3% [95%CI: 90.0–97.1%]. For 505 concentrated smears with AO stain-

ing, 250 were culture positive, and 220 of these were graded as smear positive, resulting in a

sensitivity of 88.0% [95%CI: 83.3–91.8%]. The remaining 255 were culture negative, all of

which were graded as smear negative, giving a specificity of 1 [95%CI: 98.6–100%].

Machine grading of smears versus culture

Using the automated system for reading and grading the smears of AO stained direct smears,

186 were graded as machine positive (i.e., in which the system detected at least 9 AFBs) which

Table 1. 5-level grading scheme for AFB slides.

Grading standards from (Lumb, Deun, Bastian, & Fitz-Gerald,

2013) (1 field in 1000x� 0.035mm2)

Machine grading scheme (1

length� 7mm2)

(δ = 9 for AO-stained, δ = 6 for

ZN-stained)

Negative No AFB in 1 length <δ AFB in 1 length

Scanty 1–9 AFB in 100 fields δ-20 AFB in 1 length

1+ 10–99 AFB in 100 fields 20–200 AFB in 1 length

2+ 1–10 AFB per field 200–2000 AFB in 1 length

3+ > 10 AFB per field >2000 AFB in length

https://doi.org/10.1371/journal.pone.0190988.t001
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were culture positive, giving a sensitivity of 81.6% [95%CI: 75.9–86.4%] (Table 3). There were

193 smears graded as machine negative were culture negative, giving a specificity of 74.2%

[95%CI: 68.5–79.4%]. For the batch of ZN stained direct smears, 100 smears were graded as

machine positive (i.e. in which the system detected at least 6 AFBs) were culture positive, giv-

ing a sensitivity of 70.4% [95%CI: 62.2–77.8%]. There were 147 smears graded as machine neg-

ative that were culture negative, giving a specificity of 76.6% [95%CI: 69.9–82.4%]. For the

batch of AO stained concentrated smears, 216 smears graded as machine positive were culture

positive, giving a sensitivity of 86.4% [95%CI: 81.5–90.4%]. On the other hand, 181 graded as

machine negative were culture negative, giving a specificity of 71.0% [95%CI: 65.0–76.5%].

Combined automated smear with microscopist review versus culture

For the two AO stained batches, a good sensitivity and fair specificities were obtained by

machine-reading; while the reverse was obtained for the ZN stained batch. In order to improve

the overall performance of the results while minimizing any additional manual workload, an

algorithm was designed by adjusting the cutoff number of positively-stained bacilli during

machine grading. The limits of detection of the number of AFB cutoffs were set for a negative

smear (i.e. five for AO and three for ZN) and a positive smear of bacteria (‘scanty’ grade) (i.e.

15 for AO and 13 for ZN) respectively. Fig 2 shows the trade-off between sensitivity and

Fig 1. Flow chart of sample processing.

https://doi.org/10.1371/journal.pone.0190988.g001

Table 2. The sensitivity and specificity of microscopist’s smear grading, compared to culture results and the corresponding microscopist’s workload for the three

batch categories.

Type of smear and staining Sensitivity

[95%CI]

Specificity

[95%CI]

No. of slides reviewed by microscopist

AO Direct 89.0 [84.2–92.8] 96.2 [93.8–98.5] 488

ZN Direct 85.9 [79.1–91.2] 94.3 [90.0–97.1] 334

AO Concentrated 88.0 [83.3–91.8] 100 [98.6–100] 505

https://doi.org/10.1371/journal.pone.0190988.t002
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specificity of the diagnostic algorithm as the grading cutoff changes for the AO stained concen-

trated batch. In particular, the sensitivity increased to 89.6% when the cutoff for a positive

smear was set to be> 5 (i.e., black asterisk in Fig 2), as a result of dropping specificity to

49.8%. On the other hand, the specificity could be increased to 92.5% when the cutoff was set

at> 15 (i.e. green asterisk in Fig 2), as a result of dropping the sensitivity to 74.4%. Note that

this range gave a much improved performance in terms of better specificity while keeping

good sensitivity. The results obtained by combining automated smear with microscopist

review gave a significant improvement in specificity while at the same time a slight increase in

sensitivity. As shown in Table 3 for the batch of AO-stained direct smears, 196 graded as

smear-positive were culture positive, giving a sensitivity of 86.0% [95%CI: 81.5–90.5%]

(Table 3). There were 222 graded as smear-negative that also turned out to be culture negative,

giving a specificity of 85.4% [95%CI: 81.1–89.7%]. For the batch of ZN stained direct smears,

110 were graded as positive were proven culture positive, giving a sensitivity of 77.5% [95%CI:

70.6–84.3%]. There were 164 graded as negative were culture negative, giving a specificity of

85.4% [95%CI: 80.4–90.4%]. The corresponding improvement in performance for AO-stained

concentrated smears showed sensitivity reaching 87.2% [95%CI: 83.1–91.3%], and specificity

92.5% [95%CI: 89.3–95.8%].

Comparison of the machine grade scores versus smear grading by

microscopist

The performance of the system in the TB diagnostic algorithm was assessed by comparison of

the smear scores performed by the microscopist. The scores of AO stained direct smears are

listed in Table 4. The percentage symmetric difference was 16.0% (Table 4) and the major dis-

crepancy rate was 12.5%. For ZN stained direct smears, the percentage symmetric difference

was 17.4% (Table 5) and the major discrepancy rate was 8.4%. For AO stained concentrated

smears, the percentage symmetric difference was 15.4% (Table 6) and the major discrepancy

rate was 9.7%.

Discussion

To the best of our knowledge in the searchable literature, this is the first description of a com-

prehensive evaluation of an automated whole-smear microscopy scanning system for detec-

tion of AFB on sputum smears using a combination of AO and ZN staining. The advantage of

having whole smear scanning was to avoid false negatives due to some AFBs being excluded

from the scanning. However, the bottleneck of such a system was the time required to scan a

whole smear. Our system was designed to overcome this by using large FOV and by speeding

Table 3. The sensitivity and specificity of TB diagnostic algorithms, compared to culture results and the corresponding microscopist’s workload for the three

batches.

Batch Sensitivity

[95%CI]

Specificity

[95%CI]

No. of slides reviewed by microscopist

(1) Stand-alone by automated system

AO Direct 81.6 [75.9–86.4] 74.2 [68.5–79.4] 0

ZN Direct 70.4 [62.2–77.8] 76.6 [69.9–82.4] 0

AO Concentrated 86.4 [81.5–90.4] 71.0 [65.0–76.5] 0

(2) Confirmed by smear grading

AO Direct 86.0 [81.5–90.5] 85.4 [81.1–89.7] 131

ZN Direct 77.5 [70.6–84.3] 85.4 [80.4–90.4] 70

AO Concentrated 87.2 [83.1–91.3] 92.5 [89.3–95.8] 148

https://doi.org/10.1371/journal.pone.0190988.t003
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Fig 2. Receiver operating characteristic curve showing the trade-off between sensitivity and specificity of the diagnostic algorithm as the grading cutoff

changes for the AO stained concentrated smear microscopy batch.

https://doi.org/10.1371/journal.pone.0190988.g002

Table 4. The matching matrix between results of smear and machine 5-level grading for AO stained direct

smears.

Number of AFBs detected by system Smear negative Smear positive

Scanty 1+ 2+ 3+

0–9 216 8 10 1 0

10–20 32 13 4 3 0

21–200 27 30 41 12 9

201–2000 0 6 24 13 17

>2000 0 0 5 3 14

https://doi.org/10.1371/journal.pone.0190988.t004
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up the auto-focusing as well as AFBs recognition steps. The whole scanning and analyzing pro-

cesses took only approximately 5 minutes for a 2cm×2cm smear region. Our system achieved a

high sensitivity without substantially compromising specificity, when compared to mycobacte-

rial culture results, and showed high consistency even with successive smear grading from

scanty to 3+. To further improve the performance, the machine grading was confirmed by the

smear grading when the number of AFBs detected by the system fell in a range with uncertain

values. This approach only required 27% of specimens to be examined by the microscopist

while obtaining a significant improvement in specificity. We noted that the proportion of the

specimens requiring confirmation was slightly highly than those described in previous studies

[9, 10]. This might be due to the fact that the positive-negative ratio of the samples used in this

study was different from those in other studies.

Another advantage of having whole smear scanning was that the system provided a finer

grading (negative, scanty, 1+, 2+, 3+) which were based on the distribution of the detected

AFBs in the whole smear. According to published smear examination guideline [3], the

microscopist should first scan the whole smear in low power and then confirm the suspicious

objects using high power. Then the specimen should be graded based on the number of identi-

fied AFBs. Based on the guideline, there may not be sufficient information for giving finer

grading when only partial smears were examined.

Most of the previous studies focused on automatic AFB detection from images obtained

by only one mode of microscopy. In this study, we examined the performance of our dual-

mode screening system in TB diagnostic algorithms using concentrated smears with AO-

staining, as well as direct smears with AO- and ZN-staining. We proposed that smear

screening tools for different modes were equally important for high-burden countries set-

ting. The system achieved the highest sensitivity on the batch of AO-stained concentrated

smears, which was consistent with results obtained in [12] which stated that the sensitivity

could be greatly increased by concentration technique. The sensitivity we achieved was

higher than those reported in another study [10]. Amongst the three batch categories used,

Table 5. The matching matrix between results of smear and machine 5-level grading for ZN stained direct smear

batch.

Number of AFBs detected by system Smear negative Smear positive

Scanty 1+ 2+ 3+

0–6 166 19 4 0 0

7–20 26 15 16 3 0

21–200 9 8 17 14 10

201–2000 0 0 8 2 11

>2000 0 0 2 0 4

https://doi.org/10.1371/journal.pone.0190988.t005

Table 6. The matching matrix between results of smear and machine 5-level grading for AO stained concentrated

smear batch.

Number of AFBs detected by system Smear negative Smear positive

Scanty 1+ 2+ 3+

0–9 210 1 2 0 0

10–20 66 20 22 15 0

21–200 9 9 15 47 21

201–2000 0 2 1 21 26

>2000 0 0 0 2 16

https://doi.org/10.1371/journal.pone.0190988.t006
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the system achieved the highest specificity but the lowest sensitivity on the batch of ZN-

stained direct smears. It might be due to difficulties in detection of AFBs under bright field

microscopy: 1) lower sensitivity when compared to fluorescence microscopy [13]and 2) cal-

ibration required due to color variation of carbol fuchsin dye in specimens from different

stain batches [6]. Overall, our dual-mode screening system performed well in all these three

different settings.

In TB high-burden low-income countries, it is important to keep the system cost at

affordable range. To achieve this while maintaining good performance, we adopted a mid-

range microscope and computer. Together with the TB diagnostic kit, our system cost was

approximately USD20,000. Compared to other platforms such as TBDx[8] which costs

USD23,000 for both components (software license not included) [7], our solution was more

definitely attractive. In comparison with other reported automated TB smear diagnosis-sup-

port systems (e.g. TBDx from Signature Mapping), our system was designed with a low cost

motorized microscopy system. In contrast to the Olympus microscope, optics, camera and

Prior Scientific slide loader, our Motic system and Point Grey camera were much less costly.

Moreover, our system had the following advantages: firstly, the system could be easily con-

figured to operate in either fluorescence or brightfield mode. The only change that needed

to be done was to switch the light source and filter cube. Secondly, with our proprietary

auto focusing module, the system could complete a whole smear microscopy scan within

5min which covered more than 1200 FOVs under a 20x objective lens, while other systems

could deal with much less numbers (<100 FOVs) within the same time frame. Thirdly, we

utilized LED light sources instead of the Mercury lamp used in traditional fluorescence

microscopes or those used in traditional brightfield microscopes, with a significant benefit

for lower cost as well as longer lifetime.

One potential limitation of our system was that currently the slides were manually placed

on the stage for scanning. The system could, however, be easily configured to operate with a

mechanized slide loader or with an automated stage with multiple slide feeding capacity. In

terms of performance, the sensitivity of our present system had been substantially increased by

whole smear microscopy scanning approach without much compromise on specificity. On the

other hand, specificity was greatly improved by confirming those showing uncertain machine-

generated grading with a subsequent proper smear grading. In situations where laboratory

expertise might be limited, another confirmatory test such as Xpert MTB/RIF tests could be

considered as well. In future, the performance of detection algorithms should be optimized

further to eliminate remaining false-positive smears.
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